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ABSTRACT

Natural product (NP) has a long history in promot-
ing modern drug discovery, which has derived or in-
spired a large number of currently prescribed drugs.
Recently, the NPs have emerged as the ideal candi-
dates to combine with other therapeutic strategies
to deal with the persistent challenge of conventional
therapy, and the molecular regulation mechanism un-
derlying these combinations is crucial for the related
communities. Thus, it is urgently demanded to com-
prehensively provide the disease-specific molecular
regulation data for various NP-based drug combina-
tions. However, no database has been developed yet
to describe such valuable information. In this study, a
newly developed database entitled ‘Natural Product-
based Drug Combination and Its Disease-specific
Molecular Regulation (NPCDR)’ was thus introduced.
This database was unique in (a) providing the com-
prehensive information of NP-based drug combina-
tions & describing their clinically or experimentally
validated therapeutic effect, (b) giving the disease-
specific molecular regulation data for a number of
NP-based drug combinations, (c) fully referencing
all NPs, drugs, regulated molecules/pathways by
cross-linking them to the available databases de-
scribing their biological or pharmaceutical charac-
teristics. Therefore, NPCDR is expected to have great

implications for the future practice of network phar-
macology, medical biochemistry, drug design, and
medicinal chemistry. This database is now freely
accessible without any login requirement at both
official (https://idrblab.org/npcdr/) and mirror (http:
//npcdr.idrblab.net/) sites.

GRAPHICAL ABSTRACT

INTRODUCTION

Compared with synthetic compounds, the natural prod-
ucts (NPs) show the unique advantages of metabolite-
likeness (1), which makes them the main resource of mar-
keted drugs (2). Recently, a variety of additional advan-
tages of NPs have been identified, including good tolera-
bility (3), low toxicity (4), poly-pharmacological modula-
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tion (5), etc. Due to these advantages, NP has emerged to
be the ideal candidates to combine with other therapeutic
agents for dealing with the persistent challenge of conven-
tional therapies (6–8), which have then attracted tremen-
dous research interest from worldwide scientists (9–11). Par-
ticularly, NP-based drug combinations are characterized by
disease-specific molecular regulation (12,13), which make
them able to achieve pharmacokinetic synergy by target-
ing multiple pathways or regulating the absorption, distri-
bution, metabolism & excretion (ADME) profile of com-
bined therapies (14,15), enhance the sensitivity of conven-
tional therapy to disease cells or reversing drug resistance
by acting in multi-specific manner (16), and reduce patients’
burden by lowering the effective dose of their accompanied
therapies (6).

With the rapid advance of this research direction, many
studies have been conducted, which has accumulated valu-
able data for the researchers in the diverse fields of: Network
Pharmacology to uncover the molecular mechanisms (syn-
ergistic, potentiative or antagonistic (17)) underlying the
traditional medicines of Africa, China, India, Mexico (18–
20), Medical Biochemistry to identify disease marker (20),
drug target (21) or target combination (22,23), and Medic-
inal Chemistry & Drug Design to discover new multitarget
drug (24) or drug combination (25,26). To promote the de-
velopment of these promising research directions, it is cru-
cial to comprehensively collect the disease-specific molecu-
lar regulation data of NP-based drug combinations.

So far, many valuable databases have been constructed to
provide the NP-related data. As shown in Table 1, some of
them describe the traditional medicines around the world
and their active or inactive ingredients (labeled by ‘TI’ in
the second column of Table 1; e.g. HERB (27), SymMap
(28), VIETHERB (29), BIOFACQUIM (30), ETCM (31),
NANPDB (32), NuBBE (33), TCMID (34), etc.); some
others provide the structural characteristics and biologi-
cal activities of each NP (labeled by ‘SB’ in the second
column of Table 1; e.g. NPASS (35), CMAUP (36), CO-
CONUT (37), etc.); the remaining ones collect various NP
data from certain species and their phylogenetic distribu-
tions (labeled by ‘PD’ in the second column of Table 1;
e.g. StreptomeDB (38), CMNPD (39), etc.). Although these
NP-related databases have their unique data coverage (the
last column of Table 1), none of them contains the NP-
based drug combinations. For the available databases offer-
ing drug combination information (e.g. DCDB (40), Drug-
CombDB (41), etc.), none of them specifies the identity of
NP, let alone describes the NP-induced clinical effect on the
accompanied conventional therapies (especially drugs; the
seventh column of Table 1). Thus, it is essential to have a
new database that describes the molecular regulations of
NP-based drug combinations.

Herein, a newly constructed database, Natural Product-
based Drug Combination and Its Disease-specific Molecu-
lar Regulation (NPCDR) was therefore introduced to pro-
vide the comprehensive molecular regulation data of NP-
based drug combinations in various disease cell lines and
model organisms. First, a number of clinically important
drugs were collected from DrugBank (42) and TTD (43),
and a systematic literature review on the NPs that were
reported to combine with these drugs was conducted. As

a result, the collected NP-based drug combinations (as
shown in Figure 1) were found to (a) enhance drug effi-
cacy by augmenting drug sensitivity (44,45) and achiev-
ing therapeutic synergy (46,47), (b) decrease the adverse
drug reaction (48,49) and (c) reverse drug resistance (50,51).
Second, the molecules or pathways regulated by these
collected combinations were manually identified by addi-
tional literature review, and their regulation profiles (expres-
sion up/down-regulation, increased/decreased phosphory-
lation, etc.) were explicitly provided (shown in Figure 1).
Finally, those data in NPCDR were fully cross-linked to
well-established databases (UniProt (52), TTD (53), KEGG
(54), NCBI Gene (55), VARIDT (56), BRENDA (57), INT-
EDE (58), TCDB (59), Pfam (60), Cellosaurus (61), miR-
base (62), etc.) to facilitate the prediction of drug safety
or sensitivity, the assessment of drug–drug interactions,
and the discovery of detailed information for each NP
or drug. Because of such unique characteristics and data
provided online, NPCDR (https://idrblab.org/npcdr/) is ex-
pected to have great implications for the future practice
of network pharmacology, medical biochemistry, medicinal
chemistry and drug design.

FACTUAL CONTENT AND DATA RETRIEVAL

Collecting the regulation data for each combination

NP-based drug combinations together with their disease-
specific molecular regulation data were collected using the
sequentially steps shown below. First, a number of clinically
important drugs were identified by retrieving from Drug-
Bank (42) and TTD (43), which resulted in ∼2000 drugs
approved by FDA, ∼9000 drugs in clinical trial, and ∼1000
preclinical or patented drugs. Second, 50 000 NPs were re-
trieved from existing NP-related databases: NPACT (63),
HERB (27), ETCM (31), SANCDB (64), NANPDB (32),
BIOFACQUIM (30), NuBBE DB (33) and VIETHERB
(29). Third, NP-based drug combinations were collected
by the literature review in PubMed (55) using such key-
word combinations: ‘[NP name] + drug combination’, ‘[NP
name] + combination’, ‘[NP name] + synergistic effects’,
‘[NP name] + synergy’, ‘natural product + [drug name]’,
and so on. As a result, 1172 NP-based drug combinations
between 425 NPs and 476 drugs were extensively identi-
fied and manually collected to the NPCDR database. Fi-
nally, the corresponding literatures of the newly collected
NP-based drug combinations were carefully reviewed, and
their regulating molecules and pathways (as illustrated in
Figure 1) were recorded.

NP-based drug combinations and therapeutic effects

Among those newly identified 1172 NP-based drug com-
binations, the vast majority (93.5%) of them were between
one NP and one drug, and the remaining ones (6.5%)
were the combinations among >2 NPs/drugs (with at least
one NP in each combination). Such newly collected NP-
based drug combinations were reported to treat the dis-
ease indications of 218 classes as defined by the latest
International Classification of Diseases (65) released by
World Health Organization. These indication classes be-
longed to the extremely diverse super-classes, which could
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Table 1. A variety of databases available for providing the data of natural product or drug combination (the first is the new database proposed in this
study, and the remaining ones are those available databases in alphabetical order)

Database

Data of
natural
product

(NP)
Data of drug
combination

Disease
indication

Clinical
status

Target or
molecular
regulation

NP’s effects on
the efficacy of
conventional

therapy
Unique data contents

provided in each database

NPCDR © © © © © © NP-based drug combinations
and their molecular
regulations on targets

BIOFACQUIM © × × × × × NPs isolated & characterized
in Mexico and the
structure-related data

CMAUP © × © × © × Multi-target activities of
functionally useful (e.g.,
food, medicinal) plants

CMNPD © × × × © × Comprehensive data
describing the various marine
natural products

COCONUT © × × × × × Aggregated data of the
elucidated or predicted NPs
from open sources

DCDB × © © © © × The first database offering
clinically important drug
combinations

DrugCombDB × © © © © × Dose responses of drug
combinations found by
high-throughput screening

ETCM © × × × × × Ingredients, herbs, and
formulas of traditional
Chinese medicine (TCM)

HERB © × © × © × High-throughput
experimental and
reference-guided TCM data

NANPDB © × × × × × Natural products primarily
collected from Northern
African sources

NPASS © × × × © × Experimental target activities
and species origins of natural
products

NuBBE © × × × × × Chemical & biological
diversities of the NPs
originated from Brazil

StreptomeDB © × × × × × Natural compounds isolated
from the Streptomyces species

SymMap © × © × © × Integrative data of TCM
enhanced by symptom
mapping strategy

TCMID © × © × © × Ingredient, herb, disease, and
target data and their relations
in TCM

VIETHERB © × © × × × NP, disease, morphology
data of the Vietnamese
herbal species

The existence and non-existence of certain data type were indicated using ‘©’ and ‘×’, respectively. The unique contents covered by each database were
briefly described in the last column.

be classified to: infections (e.g. influenza, malaria, hepati-
tis virus, etc.), neoplasms (e.g. melanoma, breast cancer,
leukemia, thymoma, etc.), metabolic disorders (e.g. hypoan-
drogenism, hyperlipidemia, diabetes, etc.), metal disorders
(e.g. depression, schizophrenia, anxiety, etc.), nervous sys-
tem diseases (e.g. Parkinson, Alzheimer, etc.), visual system
disorders (e.g. retinal vein occlusion, glaucoma, optic nerve
contusion, etc.), circulatory system diseases (e.g. arrhyth-
mias, atherosclerosis, myocardial infarct, etc.), respiratory
disorders (e.g. COPD, pulmonary fibrosis, etc.), digestive
diseases (e.g. diverticulosis, ulcerative colitis, gastric ulcer,
etc.), musculoskeletal diseases (e.g. osteomyelitis, rheuma-

toid arthritis, etc.), genitourinary diseases (e.g. nephropa-
thy, etc.), and so on. Furthermore, the clinical developmen-
tal statuses of the NPs, drugs and drug combinations that
were collected from ClinicalTrials.gov (66), and TTD (43),
were all provided in the NPCDR database.

The administration of drugs was reported to be signif-
icantly restricted by their limited therapeutic effect (67),
adverse drug reaction (68), acquired drug resistance (69)
and so on. Natural products were thus reported capable
of (a) enhancing drug efficacy via augmenting its sensitiv-
ity (44,45) or achieving therapeutic synergy (46,47), (b) de-
creasing adverse drug reactions (48,49) and (c) reversing
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Figure 1. The unique contents and characteristics of NPCDR. The NPs were reported to enhance drug efficacy by augmenting drug sensitivity/achieve
therapeutic synergy, decrease adverse drug reaction and reverse drug resistance. Thus, NPCDR is UNIQUE in providing the comprehensive NP-based
drug combinations & describing their clinically/experimentally validated therapeutic effects, and describing the disease-specific regulations of molecules
and pathways for a number of NP-based drug combinations.

drug resistance (50,51). To have such valuable data about
NP-based regulations in this database, the improved ther-
apeutic effects of NP on their corresponding drug were re-
viewed and explicitly described in NPCDR. Particularly, 58
NPs were reported to augment the sensitivity of 66 drugs
in 184 combinations for the treatment of 38 diseases; 370
NPs were found to achieve therapeutic synergies with 430
drugs in 921 combinations for treating 184 diseases; 64 NPs
were reported to decrease the adverse reaction of 57 drugs
in 84 combinations for the treatment of 44 diseases; 57 NPs
were discovered to reverse the resistances of 33 drugs in 93
combinations for the treatment of 27 diseases. As shown in
Figure 2, the therapeutic effect of each NP-based drug com-
bination was described, and the corresponding experiments
for clinically or experimentally validating such therapeutic
effects were shown in NPCDR. All in all, NPCDR covered
a number of NP-based drug combinations, and was the first
source describing the therapeutic effects of NP on enhanc-
ing drug efficacy, decreasing adverse drug reactions or re-
versing drug resistance.

Disease-specific regulation of molecules and pathways

Disease-specific regulations of molecules and pathways by
the collected drug combinations were carefully identified by
literature review. Particularly, 518 molecules (primarily, pro-
tein and RNA) and 217 pathways (physiological or patho-
logical) that were regulated by these drug combinations
were provided in NPCDR. These regulated molecules were
from 71 biochemical classes such as GPCR, peptidase, tran-
scription factor, microRNA, kinase, ABC transporter and
so on. As shown in Figure 3, the mechanisms of molecu-
lar regulations were explicitly described, which included the
induction of protein degradation, the up/down-regulation
of molecule’s expression, cleavage, activity, phosphoryla-
tion or ubiquitination, and so on. Apart from these molec-
ular regulation data, the biological regulation data of some
drug combinations had also been reported, which included
the induction of cell cycle arrest, inhibition of metabolites
biosynthesis, accumulation of reactive oxygen species, ex-
tension of clotting time, induction of DNA damage, and so
on. All in all, such data of molecular & biological regulation
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Figure 2. Combinatorial therapeutic effects that were clinically or experimentally validated. The NPs were reported able to enhance the drug efficacy by
augmenting its sensitivity and achieving therapeutic synergy, decrease adverse drug reaction, and reverse drug resistance. The therapeutic effects of each
NP-based drug combination were thus described in the bottom panel (highlighted using the green frame) of this figure.

were essential for the understanding of the mechanisms un-
derlying the NPs’ therapeutic effects on a particular drug to
enhance its efficacy, decrease its adverse reaction, or reverse
its acquired resistance.

As shown in Figure 3, all molecular & biological regu-
lation data were described in NPCDR and linked to their
in-vitro and in-vivo disease models (Figure 3), which made
all the regulation data disease-specific and experimentally-
verified (the disease names were identified according to
the models applied in corresponding experiment, includ-
ing different cell lines and model organisms). In total,
715 cell lines of a variety of disease & species origins to-
gether with 23 model organisms (including mouse, rat, rab-
bit, zebrafish, etc.) were collected in NPCDR to describe
the regulation data of each drug combination. Moreover,
a variety of experimental techniques that were applied to
identify the molecular and biological regulations were also
recorded, which included shRNA, siRNA, western-blot,
qPCR, etc., and the analytical results of various experi-
ments were recorded to give comprehensive information
for each combination, and the extended descriptions on
each regulated molecule can be accessed by clicking the
‘Molecule Info’ buttons given in Figure 3. Additionally,

the pathways altered by the particular drug combination
were also identified by the literature review. These identi-
fied pathways were then manually linked to available path-
way data, such as KEGG (54), Reactome (70), Biocyc (71),
SIGNOR (72) & Pathway Commons (73). All the regulated
molecules were finally highlighted on their corresponding
pathway maps (both the physiological and the pathological
pathway maps).

Descriptions of the NP and drug in each combination

For each natural product (NP), the detailed descriptions on
its general information were provided in NPCDR. As illus-
trated in Figure 4, the descriptions included NP name, NP
synonyms, species origin(s), applied disease indication(s),
3D and 2D molecular structures in various formats (MOL
and PNG, both could be directly downloaded), and other
molecular information associated with the external links
to: PubChem (55), TTD (43), HERB (27), ETMC (31),
SymMap (28), TCMSP (74), and so on. Meanwhile, the
combinatorial therapeutic effects of a particular NP on a
list of drugs that were clinically/experimentally validated,
were also described (as shown in Figure 4). These accompa-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/D

1/D
1324/6401896 by Zhejiang U

niversity user on 05 January 2022



Nucleic Acids Research, 2022, Vol. 50, Database issue D1329

Figure 3. Regulation of molecules and pathways by NP-based drug combinations. Mechanisms of molecular regulation were explicitly described (including
the induction of protein degradation, the up or down-regulation of molecule’s cleavage, activity, phosphorylation, ubiquitination, and expression). The
biological regulation of drug combinations was also provided (e.g. the induction of cell cycle arrest, inhibition of metabolite biosynthesis, etc.). These
regulation data were linked to their in-vitro or in-vivo disease model, and an extended description on each regulated molecule could be accessed by clicking
the ‘Molecule Info’ buttons.
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Figure 4. The natural product (NP) page of this database. The general information (upper orange panel) and the combinatorial therapeutic effects
of this NP (lower blue panel) were provided in NPCDR. Particularly, the combinatorial therapeutic effects of this NP on a list of drugs that were
clinically/experimentally validated were shown. These accompanied drugs were grouped based on three types of combinatorial effects of NP: (a) a list
of drugs whose efficacy can be enhanced by this NP, (b) a list of drugs whose adverse effects can be decreased by this NP and (c) a list of drugs whose
resistance can be reversed by this NP.

nied drugs were grouped based on three types of NP’s com-
binatorial effects: (a) a list of drugs whose efficacy can be
enhanced by this NP, (b) a list of drugs whose adverse effect
can be decreased by this NP and (c) a list of drugs whose re-
sistance can be reversed by this NP. Under each therapeutic
effect, the regulated molecules and pathways, in-vivo and in-
vitro models, together with the results of experimental val-

idations were demonstrated (illustrated in Figure 4). Based
on the information provided on the NP page of NPCDR,
the users could readily retrieve a list of drugs whose thera-
peutic effects were improved by this particular NP.

Similar to the NP page, the drug page of NPCDR
also provided the general information of certain drug.
Such general information included drug name, drug syn-
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onyms, molecular type, the applied disease indication(s),
3D and 2D drug structures in various formats (MOL and
PNG, both formats were directly downloadable), and other
molecular information associated with the external links to
ChEBI (75), GDSC (76), DrugBank (42), TTD (43) and
PubChem (55). In the meantime, the combinatorial thera-
peutic effects of a drug on a list of NPs that were clinically
or experimentally validated, were described. These accom-
panied NPs were grouped by three combinatorial effects of
a drug: (a) a list of NPs capable of enhancing the efficacy of
this drug, (b) a list of NPs capable of decreasing the adverse
reactions of this drug and (c) a list of NPs able to reverse the
resistance of this drug. Under each therapeutic effect, the
regulated molecules and pathways, and validating experi-
mental models (in-vivo/in-vitro, various cell lines/model or-
ganisms & experimental details) were fully collected and de-
scribed. Based on the information provided on the NPCDR
drug page, the audiences could readily retrieve a list of natu-
ral products that were capable of improving the therapeutic
effects (enhancing drug efficacy, decreasing adverse drug re-
actions, or reversing drug resistance) of the corresponding
drug described on that particular drug page.

Standardization and customized retrieval of NPCDR data

To make the access and analysis of NPCDR data conve-
nient to all readers, the collected raw data were carefully
cleaned up and then systematically standardized. These
standardizations included: (a) all NPCDR diseases were
standardized using the latest version of International Clas-
sification of Disease that was officially released by the
World Health Organization (65); (b) all NPs, drugs, pro-
teins, RNAs, pathways, cell lines, species and disease indi-
cations in this database were fully cross-linked to a number
of well-established databases (UniProt (52), BRENDA (57),
TTD (53), Pfam (60), KEGG (54), VARIDT (56), NCBI
Gene (55), Cellosaurus (61), TCDB (59), INTEDE (58),
miRbase (62), etc.), which could facilitate the prediction of
drug safety or sensitivity, drug-drug interactions, and so on.
These databases could also help to discover the detailed in-
formation for each molecule in this database. All NP-based
drug combination data can be viewed, assessed, and down-
loaded from the NPCDR website, which is freely assessable
without login requirement by all users at its official (https:
//idrblab.org/npcdr/) and mirror (http://npcdr.idrblab.net/)
sites.

CONCLUSION

NP-based drug combinations have attracted broad in-
terests from worldwide scientists, since they have great
benefits in treating complex disease by regulating mul-
tiple targets/signaling pathways, enhancing the sensi-
tivity of conventional therapy, and reversing drug re-
sistance. Therefore, their valuable data (such as the
clinically/experimentally-validated molecular regulations
of target and pathway, disease indications, improved ther-
apeutic effects and so on) provided in NPCDR could have
great impacts on promoting the identification of NP-based
drug, the investigation of disease mechanism, and the devel-
opment of new computational method/software tool that

facilitates the researches in network pharmacology, medi-
cal biochemistry, medicinal chemistry & drug design, etc.
Those literature-supported and clinically-tested drug com-
binations collected in NPCDR are reported to be much
more credible than the predicted/simulated data, which can
thus serve as the gold standards for the construction of
novel in-silico tools. Moreover, disease-specific molecular
regulation data could help to clarify the elusive biological
process underlying each combination, and inspire new ther-
apeutic potential of the combinations in other disease indi-
cations.
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