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The long non-coding RNAs (lncRNAs) play critical roles in various biological processes and are associated
with many diseases. Functional annotation of lncRNAs in diseases attracts great attention in understand-
ing their etiology. However, the traditional co-expression-based analysis usually produces a significant
number of false positive function assignments. It is thus crucial to develop a new approach to obtain
lower false discovery rate for functional annotation of lncRNAs. Here, a novel strategy termed DAnet
which combining disease associations with cis-regulatory network between lncRNAs and neighboring
protein-coding genes was developed, and the performance of DAnet was systematically compared with
that of the traditional differential expression-based approach. Based on a gold standard analysis of the
experimentally validated lncRNAs, the proposed strategy was found to perform better in identifying
the experimentally validated lncRNAs compared with the other method. Moreover, the majority of bio-
logical pathways (40%�100%) identified by DAnet were reported to be associated with the studied dis-
eases. In sum, the DAnet is expected to be used to identify the function of specific lncRNAs in a
particular disease or multiple diseases.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Long non-coding RNA (lncRNA) is broadly defined as a type of
non-coding RNA with a length of more than 200 nucleotides [1].
Tremendous evidences have shown that lncRNA can carry out
diverse functions in biological processes [2] and is associated with
many diseases [3], such as cancers [4], cardiovascular diseases [5],
neurodegenerative diseases [6], metabolic diseases [7], and inflam-
matory diseases [8]. Currently, many computational methods for
predicting lncRNA function have been developed [9], for instance,
the differential expression analysis (DEA) combined with the
weighted correlation network analysis (WGCNA) [10]. This method
has been frequently employed for identifying co-regulatory
relationships among lncRNAs and mRNAs in polycystic ovary
syndrome [11] and discovering the cis-regulatory lncRNAs
involved in vascular inflammation [12].

However, analysis based on co-expression usually results in a
large number of false positive function assignments [9]. Currently,
the lncRNA-disease association data supported by experiments are
quite limited in the publications [13]. Specifically, only about 6,000
of over 90,000 lncRNAs have been characterized by experiments as
‘‘disease-associated” in human genome [14,15]. This may be attrib-
uted to the complex characteristics of lncRNA, including the higher
expression variability across disease conditions [16–18], the sus-
ceptibility on expression/secondary structure to genetic variants
[19–21], and the various levels of regulation on the coding genes
(cis/trans) [2,18], etc.

So far, the analysis considering disease specificity into lncRNA
functional annotation can improve the discovery of diseased-
associated lncRNA [16]. In particular, lncRNA-disease associations
can be well-established via the single nucleotide polymorphisms
(SNPs) type of genetic variants within lncRNAs [16] and
condition-specific analysis estimated by the coefficient of variation
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Table 1
Twenty-four datasets of eight disease types were collected for function analysis of lncRNA. The first 22 datasets were collected from GEO and the last two datasets were collected
from TCGA. MDD: major depressive disorder; VHD: valvular heart disease; AF-VHD: valvular heart disease with atrial fibrillation; SLE: systemic lupus erythematosus; ALL: acute
lymphoblastic leukemia; TPM: Transcripts Per Million; Normalized: DESeq normalized; nRPKM: normalized Reads Per Kilobase of transcript, per Million mapped reads; FPKM:
Fragments Per Kilobase of exon per Million; RPKM: Reads Per Kilobase of transcript per Million reads mapped; Normalized signal intensity: Quantile normalization using the
GeneSpring software.

Type of
Disease

Dataset ID No. of Sample in the specific dataset Expression Unit (Experiment type) No. of lncRNAs & mRNAs

8A20 GSE113524 [72] 19 Alzheimer disease20 Healthy controls TPM (RNA-Seq) 12,937 lncRNAs & 18,969 mRNAs
8A20 GSE104704 [73] 12 Alzheimer disease10 Healthy controls Normalized (RNA-Seq) 2,199 lncRNAs & 17,965 mRNAs
8A20 GSE125583 [74] 219 Alzheimer disease70 Healthy controls nRPKM (RNA-Seq) 2,803 lncRNAs & 18,852 mRNAs
6A70 GSE101521 [75] 30 MDD29 Healthy controls Normalized (RNA-Seq) 11,109 lncRNAs & 18,754 mRNAs
6A70 GSE102556 [76] 26 MDD22 Healthy controls FPKM (RNA-Seq) 12,718 lncRNAs & 18,793 mRNAs
6A20 GSE112523 [77] 29 Schizophrenia28 Healthy controls Reads Count (RNA-Seq) 12,179 lncRNAs & 18,437 mRNAs
BA41 GSE65705 [78] 32 Myocardial infarction2 Healthy controls RPKM (RNA-Seq) 1,351 lncRNAs & 17,801 mRNAs
BA41 GSE127853 [79] 3 Myocardial infarction3 Healthy controls FPKM (RNA-Seq) 503 lncRNAs & 10,216 mRNAs
BD40 GSE97210 [80] 3 Atherosclerosis3 Healthy controls Normalized signal intensity (Microarray) 10,347 lncRNAs & 18,604 mRNAs
BD40 GSE120521 [81] 4 Atherosclerosis unstable4 Atherosclerosis stable FPKM (RNA-Seq) 10,343 lncRNAs & 18,381 mRNAs
BC81 GSE113013 [27] 5 AF-VHD5 VHD Normalized signal intensity (Microarray) 10,347 lncRNAs & 18,604 mRNAs
BC81 GSE108660 [27] 5 Atrial fibrillation5 Non-atrial fibrillation Normalized signal intensity (Microarray) 8,090 lncRNAs & 18,807 mRNAs
CA23 GSE106388 [82] 15 Mild asthma4 Healthy controls Reads Count (RNA-Seq) 8,036 lncRNAs & 17,244 mRNAs
CA23 GSE96783 [83] 21 Asthma30 Healthy controls Reads Count (RNA-Seq) 10,451 lncRNAs & 18,324 mRNAs
DD71 GSE128682 [84] 14 Ulcerative colitis16 Healthy controls Reads Count (RNA-Seq) 1,756 lncRNAs & 17,355 mRNAs
4A40 GSE131525 [85] 3 SLE3 Healthy controls Reads Count (RNA-Seq) 6,031 lncRNAs & 16,972 mRNAs
5A10 GSE131526 [85] 12 Type-1 diabetes3 Healthy controls Reads Count (RNA-Seq) 6,798 lncRNAs & 16,458 mRNAs
5B81 GSE129398 [86] 12 Obesity10 Controls Reads Count (RNA-Seq) 822 lncRNAs & 14,300 mRNAs
5B81 GSE145412 [87] 8 Obesity8 Controls TPM (RNA-Seq) 6,896 lncRNAs & 16,595 mRNAs
5A11 GSE133099 [27] 6 Type-2 diabetes6 Lean controls Reads Count (RNA-Seq) 8,843 lncRNAs & 17,480 mRNAs
2B33 GSE141140 [88] 13 ALL4 Healthy controls Reads Count (RNA-Seq) 867 lncRNAs & 16,297 mRNAs
2B91 GSE144259 [89] 6 Colorectal cancer3 Healthy controls FPKM (RNA-Seq) 3,249 lncRNAs & 18,604 mRNAs
2C6Z TCGA-BC [28] 115 Breast cancer113 Healthy controls FPKM (RNA-Seq) 14,097 lncRNAs & 19,631 mRNAs
2D10 TCGA_TC [28] 510 Thyroid cancer58 Healthy controls Reads Count (RNA-Seq) 13,618 lncRNAs & 19,493 mRNAs
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(CV) [17,22]. Moreover, lots of lncRNAs have been reported to reg-
ulate the expression of their neighboring genes (act in cis) [23–25].
The co-expression of the cis-regulatory lncRNAs and their neigh-
boring protein-coding genes led to the discovery of functional
lncRNAs in given disease [26]. It is therefore crucial to develop a
new approach integrating diseased associations for obtaining
lower false discovery rate (FDR) [16].

In this study, a novel strategy termed DAnet which combining
disease associations with cis-regulatory network was developed.
In particular, disease-associated SNPs were first integrated for
screening disease-associated lncRNAs. And then the CV of these
lncRNAs was estimated to assess the condition-specific expression
of lncRNAs in a specific disease. Moreover, the WGCNA-based co-
expression network between lncRNAs and their neighboring
protein-coding genes and Kyoto Encyclopedia of Genes and Gen-
ome (KEGG) pathway enrichment analysis were further conducted
for identifying the function of the lncRNAs involved. Furthermore,
experimentally verified lncRNA-disease associations were curated
to evaluate the performance of this newly proposed strategy across
24 datasets involving eight types of disease based on classification
of the ICD-11. Overall, the findings of this study can facilitate the
discovery of disease-associated lncRNAs and their function in the
specific disease.
2. Methods

2.1. Collection of the benchmark datasets for the analysis

For the function analysis of lncRNA in different type of diseases,
a variety of microarray/RNA-seq data were collected by searching
disease names in Gene Expression Omnibus (GEO) [27] and The
Cancer Genome Atlas (TCGA) [28]. We considered several criteria:
(1) the gene expression profiling was conducted using high
throughput sequencing or lncRNA microarray for ‘‘Homo sapiens”,
(2) the dataset consist of patient and control groups, (3) the raw
data or normalized data were available, (4) the number of lncRNAs
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identified by disease-associated SNPs was more than zero, (5) the
experimentally validated disease associated lncRNAs, which
obtained from 5 public databases (LncRNAWiki [29], LncRNADi-
sease [14], LncRNA2Target [30], Lnc2Cancer [31], and EVLncRNAs
[32]), were available for the diseases and (6) multiple types of dis-
ease based on classification of the ICD-11. In total, 22 benchmark
datasets were collected from GEO and two datasets were collected
from TCGA, which included 16 diseases, divided into 8 types of dis-
ease according to the classification of ICD-11. Then, the lncRNA and
mRNA expression matrices obtained from the 24 datasets of
control-case studies were used for subsequent analysis. Table 1
demonstrates the disease type (ICD-11 code), dataset ID, the num-
bers of sample, the expression unit, and the number of lncRNAs
and mRNAs for each dataset.
2.2. Collection of the SNP-disease association data for the identification
of potential disease-associated lncRNAs

The SNP-disease association data were collected and used to
identify potential disease-associated lncRNAs. First, we collected
the 16 diseases associated SNPs and their locations from three
well-known sources: GRASP2 [33], NHGRI-EBI GWAS Catalog
[34], and GWASdb [35]. The significance level with p less than 5.
0 � 10-8 is widely accepted in the genome-wide association studies
[34]. Since many susceptible loci may only show moderate signif-
icance in association analysis, a p value of less than 1.0 � 10-3 was
applied for collecting the disease-associated SNPs [35]. Then, we
downloaded the chromosome information of lncRNAs from the
GENCODE (v31, human reference genome hg38) [36] to map the
disease-associated SNPs to the lncRNA region. In total, we collected
124,428 associations between 101,360 SNPs and the 16 diseases
for further analyses, and 4,435 unique lncRNAs were found to be
potentially associated with these diseases. Data details on the
number of disease-associated SNPs and lncRNAs are shown in Sup-
plementary Table S1. Finally, we exacted expression level of these
lncRNAs in each dataset from raw lncRNA expression matrix, and



Table 2
Optimization for the KCV and CD across different datasets. When the Nexp was maximum, the lower KCV/CD was identified as the optimal value. Nexp: the number of experimental
verified lncRNAs; KCV: the top number of lncRNAs with the higher variabilities; NA: Not available.

Disease Name Dataset ID No. of lncRNA in the specific
dataset

No. of lncRNA based on disease-
associated SNP

No. of experimental verified
lncRNA

KCV

cutoff
CD
cutoff

Alzheimer disease GSE113524 12,937 1680 5 400 400 kb
Alzheimer disease GSE104704 2199 407 5 200 5 kb
Alzheimer disease GSE125583 2803 537 5 400 50 kb
Major depressive

disorder
GSE101521 11,109 1043 2 600 5 kb

Major depressive
disorder

GSE102556 12,718 1098 2 1000 5 kb

Schizophrenia GSE112523 12,179 917 3 300 5 kb
Myocardial infarction GSE65705 1351 35 2 35 100 kb
Myocardial infarction GSE127853 503 16 2 16 NA
Atherosclerosis GSE97210 10,347 163 1 100 NA
Atherosclerosis GSE120521 10,343 120 1 100 5 kb
Atrial fibrillation GSE113013 10,347 38 1 38 NA
Atrial fibrillation GSE108660 8090 33 1 33 NA
Asthma GSE106388 8036 291 2 200 5 kb
Asthma GSE96783 10,451 352 2 100 5 kb
Lupus erythematosus GSE131525 6031 64 1 64 5 kb
Ulcerative colitis GSE128682 1756 20 1 20 70 kb
Type-1 diabetes

mellitus
GSE131526 6798 283 3 200 5 kb

Obesity GSE129398 822 46 1 46 5 kb
Obesity GSE145412 6896 197 1 100 5 kb
Type-2 diabetes

mellitus
GSE133099 8843 1075 5 600 5 kb

Acute lymphoblastic
leukemia

GSE141140 867 12 1 12 NA

Colorectal cancer GSE144259 3249 43 6 43 300 kb
Breast cancer TCGA_BC 14,097 528 12 500 5 kb
Thyroid cancer TCGA_TC 13,618 8 1 8 NA
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the number of the exacted lncRNAs based on disease-associated
SNPs for each dataset is listed in Table 2.

2.3. Detection of the expression variability of lncRNA by condition-
specific expression

The lncRNAs have higher expression variability pattern in dis-
eases compared to normal conditions. LncRNAs with relative high
expression variability pattern may indicate disease-related func-
tion while with relative low variability indicate function in normal
condition [16,22]. The CV is the standard measurement for detect-
ing the expression variability [16,22]. The CV is defined as ‘‘the
ratio between the standard deviation of the lncRNA expression
levels across the patients and its mean” [22]. In this study, we used
this measurement to assess the variability of potential disease-
associated lncRNAs. The CV value (ratio) was calculated for each
lncRNA in disease samples, and the lncRNA with relative high CV
value represents disease associated lncRNA. Finally, we ranked
the CV values from high to low, and then identified the lncRNAs
with top ranked CV values as the disease-associated ones. Mean-
while, different top numbers were used in the following optimiza-
tion procedure. Among the top KCV (the top number of lncRNAs
with the higher variabilities) lncRNAs across each dataset, the
number of experimentally validated lncRNAs was computed (Nexp).
When the number of lncRNA identified by SNPs (Nsnp) was less
than 100, the K was equal to the Nsnp, if else, the K was from 100
to Nsnp with gradient of 100. When the Nexp was maximum, the
lower KCV was identified as the optimal value.

2.4. Construction of the cis-regulatory network based on lncRNAs’
neighboring genes

Co-expressed genes are more likely to be co-regulated and func-
tionally associated, meaning that identification of the co-expressed
neighboring protein-coding genes can be helpful in lncRNA func-
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tion assignments [16,37,38]. Firstly, we collected the information
of all 16,840 lncRNAs and 19,975 protein coding genes from GEN-
CODE (V31, human reference genome hg38) [36]. After this, we
obtained 10 candidate chromosome distances (CDs) based on the
publications on genomic distance between the lncRNAs and their
regulated neighboring genes. These CDs including: 5 kb [39],
10 kb [40], 20 kb [41], 50 kb [42], 70 kb [43], 100 kb [44], 200 kb
[45], 300 kb [46], 400 kb [47], 500 kb [12]. Secondly, we calculated
the neighboring genes within these CDs up/downstream of all
lncRNAs based on the collected location information. Therefore, a
collection of neighboring genes of identified disease-associated
lncRNAs based on SNPs and optimal KCV was yielded. Thirdly, we
constructed the co-expression network between identified
disease-associated lncRNAs and their neighboring genes in differ-
ent CDs for each dataset using WGCNA [10]. Moreover, optimiza-
tion procedure was performed to determine the optimal CD
across the benchmark datasets. Among the lncRNAs co-expressed
with neighboring genes, the number of experimentally validated
lncRNAs was computed (Nexp). When the Nexp was maximum, the
lower CD was regard as the optimal one. Finally, for the functional
prediction, the co-expression network based on the optimal KCV

and CD was constructed by WGCNA for each dataset. The network
of selected module identified by WGCNA was illustrated by Cytos-
cape 3.7.2 (http://www.cytoscape.org/) [48] software.

2.5. Annotating the lncRNA function based on KEGG pathway

Groups of transcripts that are identified though clustering need
to be subjected to a functional enrichment step to help in revealing
the biological processes that these genes are involved in [16]. The
KEGG pathway [49] is globally used for characterizing the function
of disease-associated lncRNA. Herein, we performed the KEGG
enrichment analyses by using the mRNAs that were found to be
co-expressed with disease-associated lncRNAs. The statistical sig-
nificance of KEGG pathway enrichments were determined with

http://www.cytoscape.org/


Fig. 1. Performance comparison between DAnet and DEA across the 24 benchmark datasets (shown in Table 1) based on the percentage of successful prediction (Rate, %), the
Rate was for characterizing the experimentally verified disease associated lncRNAs.
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the hypergeometric test. A p value less than 0.05 indicated a signif-
icant enrichment. Also, a chord diagram was constructed using R
package ‘‘circlize” [50] to illustrate the enrichment results.

2.6. Evaluating the ability of DAnet on the function annotation of
lncRNA

As a gold standard for verifying the DAnet analysis, 9,949 pairs
of experimentally verified lncRNA-disease association were inte-
grated from five databases including LncRNAWiki [29], LncRNADi-
sease [14], LncRNA2Target [30], Lnc2Cancer [31], and EVLncRNAs
[32], which provided many experimental verified lncRNAs for dis-
eases. Two metrics were employed to evaluate the ability of the
DAnet in characterizing the function of disease-associated
lncRNAs. Both metrics were based on experimentally validated dis-
ease associated lncRNAs. The metrics included: (1) percentage of
successful prediction (Rate), and (2) enrichment factor (EF). The
Rate (%) of DAnet and DEA (Supplementary Method S1) in charac-
terizing the experimental verified lncRNAs was employed as the
first metric to evaluate the performances. Also, EF was used to rep-
resent the comparison between the concentration of the experi-
mentally verified lncRNAs in the identification results of DAnet/
DEA and the concentration in the entire lncRNAs expression. The
false discovery can be effectively evaluated by fully considering
the experimentally validated disease associated lncRNAs [51].
The formula for EF is given:

EF ¼ Ntruesuc=Nsuc

Ntrue=Nall

where Ntruesuc denoted the number of experimental verified
lncRNAs successfully characterized as ‘disease-associated’ by DAnet
or DEA; Nsuc represented the number of lncRNAs characterized as
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‘disease-associated’ by DAnet or DEA; Ntrue was the number of
experimental verified lncRNAs in the integrated experimentally ver-
ified lncRNAs-disease associations; and Nall indicated the total num-
ber of lncRNAs in the expression matrix. The EF no less than 1
indicated that there is an enrichment. The larger EF value repre-
sented the lower FDR [51].
3. Results

3.1. Identification of disease-specific lncRNA by SNPs across the
benchmark datasets

More than 90% of disease-associated SNPs are actually located in
the non-coding region (e.g., lncRNAs). The SNPs located in lncRNAs
can either modify their secondary structure or affect their expression
level [20]. As described in the Methods section, potential disease-
associated lncRNAs of the 24 benchmark datasets were identified
by disease-associated SNPs for DAnet analysis. The differential
expressed lncRNAs were regarded as disease-associated lncRNAs
for DEA (Supplementary Method S1). Subsequently, the Rate was uti-
lized as a metric to measure the performance of DAnet and DEA
about identifying experimentally verified lncRNAs. As shown in Sup-
plementary Fig. S1, the Rate value of each dataset by the adjusted p
value (from 0% for 18 datasets to 16.7% for GSE125583) was lower
than that by the p value (from 0% for 11 datasets to 33.3% for
GSE106388). Among the 24 datasets, there were 8 datasets with no
differentially expressed genes using the FDR less than 0.05. Thus,
the raw p value (p less than 0.05) was used for identifying the differ-
ential expressed lncRNAs across the 24 datasets.

As shown in Fig. 1, the Rate of DAnet was varied (from 2.6% for
TCGA-TC to 100% for GSE113013 and GSE108660) and the Rate of
DEA was also differed greatly (from 0% for 11 datasets to 33.3%



Fig. 2. Performance comparison between DAnet and DEA across the 24 benchmark datasets (shown in Table 1) based on the enrichment factor (EF), the EF represented the
comparison between the concentration of the experimentally verified lncRNAs in the identification results of DAnet/DEA and the concentration in the entire lncRNAs
expression.
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for GSE106388). The Rate of DAnet was generally no less than DEA
across 24 benchmark datasets. Moreover, among the 24 bench-
mark datasets, two datasets GSE97210 and GSE120521 from the
atherosclerosis were collected from the microarray and RNA-Seq,
respectively. We further compared the differences between the
microarray and RNA-Seq data in terms of the originally detected
lncRNAs, the potential disease-associated lncRNAs and the experi-
mentally validated lncRNAs. As shown in the Supplementary
Fig. S2, the total number of the originally detected lncRNAs for
GSE97210 and GSE120521 was 10,347 and 10343, respectively.
The number of lncRNAs detected by both GSE97210 and
GSE120521 was 6836 (highlighted in blue and red lines). The num-
ber of potential disease-associated lncRNAs for GSE97210 and
GSE120521 was 163 and 120, respectively. The number of shared
lncRNAs was 111 (highlighted in green and red lines). In both
GSE97210 and GSE120521, the experimentally validated lncRNA
(CDKN2B-AS1) was identified via the DAnet. These findings indi-
cate that both GSE97210 and GSE120521 are consistent in identi-
fying the experimentally validated lncRNA.

Similarly, the EF was employed to assess the ability of DAnet
and DEA about controlling the false characterization. As shown in
Fig. 2, the EF of DAnet was differed greatly (from 2.2 for
GSE125583 to 272.3 for GSE113013) and the EF of DEA was also
varied (from 0.0 for 11 datasets to 9.2 for GSE106388). The EF of
DAnet was generally no less than DEA of each dataset and all EFs
of DAnet were greater than one.

3.2. Optimizing the KCV and CD parameters across the benchmark
datasets

In order to identify more likely disease-associated lncRNAs,
optimization procedure was performed to determine the optimal
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KCV and CD across the benchmark datasets. As shown in Fig. 3,
the optimal KCV represented in red square was varied across the
datasets (from 8 for TCGA-TC to 1000 for GSE102556), and the
CV of experimentally verified disease-associated lncRNAs was gen-
erally higher. Table 2 shows the optimal KCV value across the data-
sets. Moreover, as shown in Supplementary Fig. S3, the optimal CD
represented in red square was different across the datasets (from
5 kb for 13 datasets to 400 kb for GSE113524). Table 2 shows the
optimal CD across the datasets. For six datasets (GSE127853,
GSE97210, GSE113013, GSE108660, GSE141140, TCGA_TC), the
CD was not available.

3.3. The function of lncRNA in disease characterized by DAnet

3.3.1. KEGG enrichment analysis to character lncRNA function
Moreover, the co-expression network of lncRNAs and neighbor-

ing mRNAs was constructed under the optimal KCV and CD by
WGCNA for each dataset. The network of module (contains the
most genes with significant correlation) were displayed by Cytos-
cape [48]. Four networks are shown in Fig. 4 A-D as examples,
the light-yellow square represented the lncRNA and the blue dot
represented the co-expressed mRNA in the cis-lncRNA regulatory
networks, red edge represented the association between disease-
associated lncRNA and neighboring mRNA. Other 14 networks
are shown in Supplementary Fig. S4. For each dataset, the KEGG
enrichment analysis was performed to character lncRNA function
via the co-expressed mRNAs. A chord diagram was dawn for illus-
trating the significantly enriched pathways across different data-
sets (Fig. 4 E). As shown in Fig. 4 E, the enriched pathways
reported to be associated with the disease studied were indicated
in blue lines, and other pathways were shown in grey lines. The
statistical results of disease-related pathways in each dataset are



Fig. 3. Optimization for the KCV across these benchmark datasets. X axis: the top number of lncRNAs with the higher variabilities, Y axis: the number of experimental verified
lncRNA (Nexp). When the number of lncRNA identified by SNPs (Nsnp) was less than 100, the K was equal to the Nsnp, if else, the K was from 100 to Nsnp with gradient of 100.
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shown in Fig. 4 F. As shown, the percentage of disease-associated
pathways were differed from 40% to 100% across datasets. The
detail ed descriptions on relevance between disease and pathways
are provided in Supplementary Table S2.
3.3.2. Association between lncRNAs identified by DAnet and the
specific disease

Finally, the relationships of lncRNAs and diseases were systemic
manually searched. As illustrated in Fig. 5, 41 directly diseases-
associated lncRNAs were identified for most diseases (blue lines).
In particular, 13 lncRNAs were identified for Alzheimer disease (or-
ange square, 8A20), three for major depressive disorder (brown
square, 6A70), four for schizophrenia (brown square, 6A20), 12 for
myocardial infarction (blue square, BA41), two for atherosclerosis
(blue square, BD40), six for asthma (pink square, CA23), one for lupus
erythematosus (purple square, 4A40), one for ulcerative colitis (tur-
quoise square, DD71), five for obesity (yellow square, 5B81), six for
type-2 diabetes mellitus (yellow square, 5A11), three for colorectal
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cancer (green square, 2B91), six for breast cancer (green square,
2C6Z). The detailed descriptions on relevance between lncRNAs and
the specific disease are provided in Supplementary Table S3.

Meanwhile, as illustrated in Fig. 5, the lncRNAs (red dots) associ-
ated withmultiple diseases were identified. Specifically, two lncRNAs
(LINC-PINT, GAS5) were associated both with Alzheimer disease and
type-2 diabetes mellitus [52–56], SOX2-OT was associated with Alz-
heimer disease and asthma [57,58], CCDC39 was associated with
asthma and schizophrenia [59,60], HCP5 was associated with asthma
and breast cancer [61,62], IFNG-AS1 was associated with asthma and
ulcerative colitis [63,64], CDKN2B-AS1 was associated with five dis-
eases including Alzheimer disease, myocardial infarction, atheroscle-
rosis, type-2 diabetes mellitus, and breast cancer [65–70].
4. Discussion

Functional annotation of lncRNAs in diseases has attracted great
attention for understanding disease etiology. In this study, we pro-



Fig. 4. The function of lncRNA in disease characterized by DAnet. A-D: co-expression network of module (contains the most genes with significant correlation) constructed by
WGCNA for each dataset. A: GSE113524, B: GSE65705, C: GSE131525, D: GSE131526, green square: lncRNA, blue dot: mRNA. E: chord diagram of enriched pathways of 15
benchmark datasets (p less than 0.05). F: the statistic of diseases-associated pathways.
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posed a novel strategy termed DAnet by combining disease associ-
ations with cis-regulated network between lncRNAs and neighbor-
ing protein-coding genes for improving the functional annotation
of lncRNAs. The strategy mainly consists of three procedures
including: (1) identifying potential disease-associated lncRNAs
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based on disease-associated SNPs, (2) detecting more likely
disease-associated lncRNAs based on expression variability, (3)
developing cis-regulated networks between disease-associated
lncRNAs and their neighboring protein-coding genes. To widen
the scope of DAnet to other RNA-seq or Microarray data, the code



Fig. 5. Associations between lncRNAs identified by DAnet and the specific disease. The blue lines mean the reported associations between lncRNAs and diseases. The squares
represent the type of diseases. The dots indicate lncRNAs identified by DAnet. Orange square: diseases of the nervous system; brown square: mental, behavioural or
neurodevelopmental disorders; blue square: circulatory system disease; pink square: diseases of the respiratory system; purple square: diseases of the immune system;
turquoise square: diseases of the digestive system; yellow square: endocrine, nutritional or metabolic diseases; green square: neoplasms; grey dot: lncRNA not reported in
the studied disease; green dot: lncRNA associated with a single disease; red dot, lncRNA associated with multiple diseases.
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of DAnet was provided in Supplementary Method S2. DAnet can be
expected to identify the specific lncRNA function in the given
disease.

Primarily, based on the analysis of 24 datasets involving 16
diseases, the Rate value of DAnet was overall higher than the
DEA, which indicates that the performance of DAnet could be bet-
ter than traditional differential expression-based analysis on
identification of experimentally validated lncRNA. In addition,
the EF of DAnet was overall higher than the DEA. All EFs of DAnet
were higher than 1. These findings indicate the superior capacity
of DAnet in controlling the false characterization of lncRNA func-
tion. Furthermore, during the optimization procedure for deter-
mining the optimal KCV, we found that the experimentally
verified disease-associated lncRNAs were generally with higher
CV values. This finding is consistent with those reported by other
investigators [16–18]. Under the optimal KCV, the optimal CD was
not available for these six datasets (GSE127853, GSE97210,
GSE113013, GSE108660, GSE141140, TCGA_TC). This may be
attributed to the effect of the small number of samples and the
few numbers of lncRNAs/mRNAs in the co-expression analysis
[71]. Finally, the KEGG enrichment results indicate most biologi-
cal pathways identified by DAnet were associated with the corre-
sponding disease (from 40% to 100%). And by DAnet, directly
diseases-associated lncRNAs were identified for most diseases.
Moreover, lncRNAs associated with multiple diseases were also
identified.
329
5. Conclusions

A new strategy integrating disease associations was developed
for obtaining the lower false discovery rate in functional annota-
tion of lncRNAs. The analysis of 24 datasets involving 16 diseases,
indicated that the performance of DAnet could be better than tra-
ditional differential expression-based on identification of experi-
mentally validated lncRNA, and the most biological pathways
identified by DAnet were associated with the studied diseases. This
provides a way to study the function of lncRNA in diseases from
another aspect. In sum, DAnet is expected to identify the specific
lncRNA function in the given disease.
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