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Abstract

Individual variations in drug efficacy, side effects and adverse drug reactions are still challenging that cannot be ignored in
drug research and development. The aim of pharmacometabonomics is to better understand the pharmacokinetic
properties of drugs and monitor the drug effects on specific metabolic pathways. Here, we systematically reviewed the
recent technological advances in pharmacometabonomics for better understanding the pathophysiological mechanisms of
diseases as well as the metabolic effects of drugs on bodies. First, the advantages and disadvantages of all mainstream
analytical techniques were compared. Second, many data processing strategies including filtering, missing value
imputation, quality control-based correction, transformation, normalization together with the methods implemented in
each step were discussed. Third, various feature selection and feature extraction algorithms commonly applied in
pharmacometabonomics were described. Finally, the databases that facilitate current pharmacometabonomics were
collected and discussed. All in all, this review provided guidance for researchers engaged in pharmacometabonomics and
metabolomics, and it would promote the wide application of metabolomics in drug research and personalized medicine.

Key words: pharmacometabonomics; precision medicine; analytical technique; data processing; statistical analysis

Introduction

Diseases are commonly complicated and concerned with dys-
regulation of multiple biological pathways, including neuropsy-
chiatric disorders such as depressive disorders [1–3], cardiovas-
cular diseases such as atherosclerosis [4], metabolic diseases
such as diabetes mellitus [5], and cancers [6–11]. Despite the
development and clinical application of various drugs with phar-
macotherapeutic potential, the intrinsic diversity in disease sub-
types [12, 13] coupled with individual variability in efficacy, side
effects [14] and adverse drug reactions (ADRs) of drugs [15–18]
are still non-negligible challenges in pharmaceutical researches.
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Severe shortcomings of empiric therapy reinforce the urgent
need to discover and validate biomarkers which are benefi-
cial for understanding the mechanisms of diseases, detecting
and diagnosing diseases, guiding drug development and clin-
ical selection, and stably predicting individual differences in
response to the same drug treatment [19–24]. Consequently,
precision medicine and individualized treatment have emerged
recently, which utilize high throughput omics technologies and
computational resources to overcome these challenges [25–27].

Numerous factors collectively contributed to differential
drug response phenotypes, mainly including genetics and
environmental influences [28]. And multiple omics-based
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Figure 1. Summary and classification of pharmacometabonomics applications of all bioinformatics tools discussed in this review.

approaches such as pharmacogenomics, pharmacotranscrip-
tomics, pharmacoproteomics and pharmacometabonomics
have been put forward in succession [29–32]. Different from the
other three omics techniques, pharmacometabonomics identi-
fies something that is actually happening rather than something
may happen [33]. Pharmacometabonomics, first proposed by
Clayton et al. in 2006 [32], was described as the prediction and
evaluation of the response (for instance, therapeutic efficacy
or toxicity) of pharmaceutical compounds individually based
on statistical models of pre-treatment metabolic signatures.
Broadly speaking, pharmacometabonomics refers to the quan-
titative measurement and analysis of metabolites produced by
the body in pre-, during- and post-treatment, with the aim of
understanding the pharmacokinetic properties of drugs better
and monitoring the effects of drugs on specific metabolic
pathways (pharmacodynamics) [34–39]. As shown in Figure 1,
main applications in the field of pharmacometabonomics fall
into the following categories [34, 35, 40]: (i) Drug discovery:
the investigation into the drug and target for identifying
the disease biomarkers, understanding the pharmacokinetics
(PK)/pharmacodynamics (PD) properties of drugs on the human
body and identifying/validating therapeutic targets; (ii) Clinical
research: the detection of metabolic changes resulted from drug
exposure as well as the variations in metabolic features of a
drug among different conditions (e.g. drug versus placebo),
the selection of key features which reliably distinguish drug
response phenotypes (good responders versus poor responders,
therapeutic effects versus side effects or ADRs) based on
variations in baseline metabolism, and the utilization in drug

safety assessment; (iii) Personalized medicine: the measurement
of metabolite concentration changes in human to determine
disease status, the identification of diagnostic/prognostic
biomarkers, and the prediction of individualized drug responses.

As a discipline stems from metabolomics, the general
analytical workflow of pharmacometabonomics studies [34, 41–
47] schematically shown in Figure 2 includes: (i) Sample prepara-
tion: the collection and extraction of samples of interest (tissue
biopsies, biofluids, etc.), (ii) Data acquisition: the separation and
quantification of the molecules of interest based on analytical
platforms, including the nuclear magnetic resonance spectrom-
etry (NMR) and/or hyphenated mass spectrometry (MS) such as
Liquid Chromatography coupled with Mass Spectrometry (LC–
MS) and Gas Chromatography coupled with Mass Spectrometry
(GC–MS), (iii) Data preprocessing: the collection and curation of
raw instrumental signals acquired from analytical platforms,
and the format conversion of these original data into sample-
by-feature tables by commercial or open source software,
which facilitate the subsequent data processing and statistical
analysis, (iv) Data processing: the employment of multiple
processing procedures to transform the raw data matrix with the
aim of improving the quality of data, such as normality and com-
parability, (v) Statistical analysis: the comprehensive and flexible
application of various univariate and/or multivariate statistics
to reveal discriminant metabolites, (vi) Metabolite identification:
the putative metabolites searching based on metabolic databases
followed by the validation of them and (vii) Interpretation: the
biological interpretations based on the association of altered
metabolites to corresponding metabolic pathways based on
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Data manipulation in pharmacometabonomics 3

Figure 2. The schematic representing general workflow of pharmacometabonomics studies, from sample preparation to biological interpretation.

metabolic databases. In this study, we systematically reviewed
recent technological advances in pharmacometabonomics
based on the main analytical steps as mentioned above.

The field of separation and quantitative analysis of com-
pounds has grown by leaps and bounds in recent years,
which significantly promotes the development of analysis
techniques in pharmacometabonomics. The mainstream
analytical platforms commonly utilized for data acquisition
in pharmacometabonomics are NMR and MS [21, 48–50].
For example, a latest study used the NMR technique to
identify novel biomarkers of warfarin, which could distinguish
warfarin responses based on the international normalized
ratio with good accuracy [51]. Another study based on the
ultra-high-performance liquid chromatography coupled with
high-resolution mass spectrometry (UPLC-HRMS) performed
targeted neurotransmitter quantitative analysis and non-
targeted metabolic profiling for pharmacometabonomics
analysis of olanzapine, and identified significantly down-
regulated/upregulated metabolites for providing insights on
interpreting the pharmacodynamic effect and mechanism of
olanzapine [52]. Although these technologies have served as the
primary workhorses and been widely used in multiple aspects
of pharmacometabonomics studies, each technique has its own
strengths and weaknesses. Inevitably, many technical challenges

of curation and analyzing of the obtained data still remain under
consideration. High-dimensional information [53, 54] generated
by various sophisticated analytical techniques [55, 56] usually
contains large proportions of uninformative features [57] and
non-negligible amounts of missing values [58], accompanied
with properties such as heteroscedasticity [59], skewness
[60] and biological variability [61]. To cope with these pivotal
technical challenges which hamper the discovery of biomarkers
in pharmacometabonomics, the quantitative performances of
the analytical platforms have been improved and multiple
computational algorithms and software have been developed
[62–66]. Various data processing procedures and methods, each
with their own underlying theory, have been proposed in
succession and extensively used in pharmacometabonomics
studies to determine significantly altered metabolites as
biomarkers. In this case, it is of increasing importance to
review features and underlying algorithms of these procedures
and methods for proper selection and application on specific
datasets with different intrinsic properties.

Both feature selection and feature extraction are powerful
strategies for reducing dimensionality [67], which significantly
simplified the analysis of pharmacometabonomics data with
high dimensionality. Feature selection methods can pick out
markedly altered features from hundreds or thousands of
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metabolites among distinct conditions (e.g. healthy control
versus patients, drug treatment versus placebo treatment, good
versus poor responders). And the feature extraction methods
can reduce dimensionality and facilitate the classification
of samples. So far, a variety of feature selection approaches
have been successfully and extensively applied in pharma-
cometabonomics to identify biomarkers and to further provide
corresponding hidden biological interpretations [36, 37, 39, 68,
69]. Kaddurah-Daouk et al. [70] constructed the partial least
squares discriminant analysis model (PLS-DA) to investigate
the baseline metabolic predictors of response to placebo
or sertraline in depressed outpatients, which distinguished
outpatients between who did and did not respond to treatment
with placebo or sertraline. In another work, Trupp et al. [38] made
use of the orthogonal partial least squares discriminant analysis
(OPLS-DA) model to analyze baseline metabolic signatures of
good and poor low-density lipoprotein cholesterol responders
to simvastatin for the determination of biomarkers that best
defined distinct metabotypes. However, the consistency and
reproducibility of the biomarkers selected by feature selection
methods remain ambiguous owing to the absence of robustness
[71]. Consequently, the performance of several popular feature
selection algorithms used in metabolomics studies were com-
prehensively assessed and compared to provide guidelines on
better determining proper methods for specific metabolomics
datasets [72–74]. Nevertheless, no such review has been reported
yet on pharmacometabonomics studies.

Moreover, accompanied with the advent of the era of big data
as well as the booming development of computational statistical
software and algorithms, numerous computerized databases
have been constructed and further used throughout pharma-
cometabonomics studies [75–77]. And it makes sense to review
and highlight the concepts and applications of these technical
tools against the background of rapid multiplication of multifar-
ious tools.

In this review, the recent technological advances in pharma-
cometabonomics for better understanding the pathophysiolog-
ical mechanisms of diseases as well as the metabolic effects
of drugs on bodies were systematically reviewed. First, the
advantages and disadvantages of all mainstream analytical
techniques were compared. Second, many data processing
strategies including filtering, missing value imputation, quality
control (QC)-based correction, transformation, normalization
together with the methods implemented in each step were
discussed. Third, various feature selection and feature extraction
algorithms commonly applied in pharmacometabonomics
were described. Finally, the databases that facilitate current
pharmacometabonomics were collected and discussed. To the
best of our knowledge, this review was the first and the most
comprehensive one providing exhaustive discussion, systematic
classification and rational advice on applications of popular
data manipulation methods in pharmacometabonomics studies,
while most of the other reviews focused on reviewing the history,
discussing multiple applications of pharmacometabonomics,
and briefly introducing the general analytical workflow of
pharmacometabonomics studies based on MS and/or NMR
[15, 78–81].

Mainstream analytical techniques
for pharmacometabonomics
Researches on the application of various separation and quan-
tification techniques to metabolic profiling of biological samples
could be traced back to the work of Dalgliesh et al. [82] carried

out in last century, in which metabolites in urine were sepa-
rated by two-dimensional paper chromatography to produce the
so called ‘map of spots’. With the increasing advancement of
pulse-Fourier transform proton NMR spectroscopy [80] as well as
a variety of hyphenated MS techniques [39, 83] which were capa-
ble of analyzing hundreds or thousands of metabolites in a single
experimental run [84, 85], the use of these analytical platforms
in pharmacometabonomics significantly increased. Up to now,
there are three mainstream analytical techniques (NMR, LC–MS
and GC–MS), which provide convenience for efficient pharma-
cometabonomics studies. The comprehensive assessments of
strengths and weaknesses in pharmacometabonomics of these
quantitative techniques were briefly shown in Table 1.

NMR

The basic theory of NMR is the induction of the energy level
transitions of NMR-active nuclei of certain compounds with a
highly homogeneous and strong magnetic field [86, 87]. Take the
representative one-dimensional NMR experiment as an exam-
ple, the biofluid samples are kept in NMR tubes and further
inserted into probes under a generated magnetic field, where
the absorption of electromagnetic radiation and the energy level
transitions occur based on the variations across magnetic lev-
els. Then, the excited nuclei relax to ground state and cause
the decaying oscillating current in receiver coils that last for
several seconds, which can be detected by the spectrometer.
Finally, the free induction decay signals are transformed into
classical frequency-domain NMR spectrums which contain the
correspondence of nuclear resonance frequencies and signal
intensities.

NMR is one of the most dominant methods used for illu-
minating the structure of small molecular compounds and has
played a crucial role in detecting, identifying and quantifying
metabolites in biological samples, especially in biofluids for
pharmacometabonomics studies. Particularly, the first demon-
stration of NMR in pharmacometabonomics was conducted by
Clayton et al. [32] for the metabolic prediction of rats adminis-
tered with paracetamol (acetaminophen). In addition to pharma-
cometabonomics studies being carried on preclinically, a host of
clinical studies have been published. Clayton et al. [88] continued
their research for the metabolic prediction of paracetamol in
humans and finally identified a host-microbiome co-metabolite
predictor by using 1H-NMR spectroscopy. Moreover, the applica-
tions of NMR in pharmacometabonomics studies also included
the prediction of drug efficacy [51, 89–91], side effects and ADRs
[32, 92–98].

Hyphenated MS (LC–MS and GC–MS)

MS is another powerful quantification technology for metabolic
profiling, which quantitively measures the mass-to-charge
ratios of charged ions. In general, metabolites to be analyzed
are first broken down into multiple fragments and ionized in
the ion source to generate charged ions. Then, the ion beam
is formed by the accelerating electric field and detected by
mass analyzer. Due to the excellent capabilities of separation for
complex samples and highly selective and sensitive detection
belonged to chromatography and MS respectively, MS is mostly
commonly combined with separative chromatography such as
gas chromatography (GC), high/ultra-performance liquid chro-
matography. In this case, information of retention time, mass-
to-charge and peak intensities are provided simultaneously,
which can be utilized for metabolite identification and further
quantitative analysis [99–102].
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Table 1. Comprehensive comparisons and assessments of mainstream analytical techniques applied in pharmacometabonomics studies

Analytical techniques Strengths Weaknesses

NMR [296–301] 1. Non-invasive measurement without sample
destruction so that samples can be recovered
and analyzed for multiple times.

2. High selectivity and resolution.
3. Superiorities in illuminating the structure of

small molecular compounds.
4. The permission of quantification of all

metabolites containing NMR-active nuclei
with detectable concentration levels by an
NMR spectrum based on only one reference
compound.

5. 5. The use of crude extracts without
purification of samples and/or separation of
metabolites.

1. Low sensitivity with detection limits in the
range from mM to μM, but can be improved by
higher magnetic fields, low temperature,
microprobes and the dynamic nuclear
polarization.

2. High investment of the instrument and
equipment.

LC–MS [302–306] 1. High sensitivity with detection limits in the
range from mM to pM.

2. High selectivity and resolution.
3. Suitable for the analysis of metabolites which

are unstable, hard to derivatize, not easy to
volatilize and/or with large molecular weights.

1. Destructive measurement, but only a few
samples are required.

2. With relatively few databases and limitations
in metabolite identification.

GC–MS [43, 104, 307–309] 1. High sensitivity with detection limits in the
range from mM to pM.

2. High selectivity and resolution.
3. Suitable for the analysis of metabolites which

are easy to derivatize, with low polarity and/or
with small molecular weights.

4. With relatively sound databases for
metabolite identification.

1. Destructive measurement, but only a few
samples are required.

2. Require somewhat more complicated
processes of sample preparation. For instance,
non-volatile or semi-volatile compounds need
to be derivatized in prior to further analysis.

Due to the volatilization process at the beginning of GC,
the types of biological samples suitable for GC–MS and LC–MS
analysis differ considerably [102]. LC–MS is suitable for the study
of metabolites which are unstable, hard to derivatize, not easy to
volatilize and/or with large molecular weights, whereas GC–MS
is more applicable for metabolites which are easy to derivatize,
with low polarity and/or with small molecular weights. There-
fore, the separation analysis by GC–MS often requires additional
derivatization of metabolites so as to ensure the volatilization
before going through the chromatographic column [102–104].
However, variable derivatization may occur owing to the differ-
ent derivatization efficiency between different metabolites, and
the existence of mono-derivatization, di-derivatization and/or
poly-derivatization of partial metabolites will generate various
fragment ions and significantly make it harder to interpret the
spectrum. Except for differences in the types of samples suit-
able for analysis, another difference between LC–MS and GC–
MS lies in the ionization methods used. Electron impact ion-
ization is usually used in GC–MS experiments, which belongs
to hard ionization technologies resulting in fragmentations of
metabolites [105, 106]. In contrast, the most commonly used
ionization technology in LC–MS mode is electrospray ionization
in positive and/or negative ionization modes, which belongs
to soft ionization technologies and generates fewer fragments
[107, 108].

Plenty of publications have proved the superior capa-
bilities of separation and detection of hyphenated MS in
pharmacometabonomics studies [109–119]. The first application
of pharmacometabonomics-informed pharmacogenomics

research strategy to precision medicine used the GC–MS
technique to identify outcome biomarkers of citalopram/esc-
italopram treatment for patients with major depressive dis-
order [68]. For the prediction of pharmacokinetics and drug
metabolism, Navarro et al. [120] successfully identified the
predictive biomarkers of intravenous busulfan clearance of
hematopoietic cell transplant recipients relying on the targeted
LC–MS/MS analytical platform against 200 standard metabolites.
Muhrez et al. [121] determined urine metabolites by GC–MS
and tried to evaluate whether the baseline metabolic profiles
of high-dose-methotrexate administration were predictive of
clearance and/or toxicity in adult patients with lymphoid
malignancies. Moreover, for the prediction of side effects and
ADRs, an integrated LC–MS and GC–MS pharmacometabonomics
analysis was conducted to determine the associations between
the variability in toxic response of rats to lipopolysaccharide
treatment and the predose serum metabolic profiles [122].
In another work, untargeted LC–MS combined with GC–MS
metabolomics analysis were performed for recognizing the
individual metabolic differences in rats treated with cisplatin
and predicted nephrotoxicity with accuracy of 85%, which
brought insights into nephrotoxicity and personalized medicine
of cisplatin in clinical studies [123].

Data processing methods for
pharmacometabonomics datasets
After data acquisition and corresponding preprocessing meth-
ods, a raw data matrix containing rows as observations (samples)
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and columns as variables (features) is generated. Due to the
escalation of data complexity and the intrinsic properties of the
data, such as the inclusion of uninformative features [57] and
missing values [58], heteroscedasticity [59], skewness [60] and
biological variability [61], processing of the data is required and
employed to improve the quality of the data by transforming
the raw data matrix into a more ‘cleaner’ one [124]. As various
data processing procedures and corresponding methods with
different underlying theories have been proposed and widely
used in pharmacometabonomics, the choice of robust and
accurate methods is crucial to prevent possible errors during
multiple processing steps between the original matrix and
the statistical output. Even though some earlier literatures
have discussed and compared part of available processing
methods, most of them were not comprehensive with focus
on only a particular processing step or only a small number
of methods [125–127]. Therefore, key procedures and as many
methods of pharmacometabonomics data processing were fully
discussed below for providing guidance on making proper
decisions in each step of the processing pipeline with respect
to specific datasets. Five sequential data processing procedures
as suggested by the Metabolomics Standards Initiative [53]
and some other literatures were discussed as follows. And the
Table 2 summarized these procedures with their corresponding
methods that are commonly used in pharmacometabonomics
studies.

Methods for filtering the pharmacometabonomics data

Filtering was advised to be implemented first by many litera-
tures [128–130]. It refers to selectively removing data points that
are uninformative or with low quality. The filtering procedure is
considered to improve the data quality and to help in lowering
the false discovery rate during downstream statistical analysis
[124]. Here, two common filtering methods that are usually used
in pharmacometabonomics studies were introduced.

The Percent of Missing Values (MVP) method calculates the
percentage of missing values of each feature based on the
precondition that a representative quantitative metabolomics
dataset usually involves a large number of missing values [131].
Features are directly discarded if they are missing in more
than a user-set percentage (default 20% by experience, which
is called ‘80% rule’) of samples [125]. This method was employed
to remove missing peaks in a pharmacometabonomics study for
revealing the therapeutic mechanism of HuangQi injections in
rats with cisplatin-induced nephrotoxicity [132].

The Relative Standard Deviation (RSD) method calculates
the value absolutely representing the inter-batch variations (i.e.
the coefficient of variation) [133]. The lower the RSD of a spe-
cific feature, the better analytical reproducibility of the feature
among batches indicated. And the metabolic feature will be
removed from the data matrix if the RSD value of it among
QCs is higher than the threshold value predefined. The prede-
termined threshold value (default 30%) is determined based on
the experience for metabolomics studies, which is considered
to be stable enough for prolonged analysis [134]. This method
has been utilized to filter chromatograms with the threshold of
RSD (less than 30% in QCs) in a pharmacometabonomics study
of identifying predictors of cytarabine and anthracycline-treated
chemosensitivity in patients with acute myeloid leukemia [135].
In addition to performing the RSD method, the chromatograms
obtained from the real samples were also filtered by the MVP
method in this study.

Methods for imputing missing values of the
pharmacometabonomics data

Due to technical and/or biological reasons, metabolomics
datasets usually contain ∼20–30% missing values [131]. Given
the integrality of the dataset that some transformation and
normalization methods require [136, 137], it is common to
apply missing value imputation followed by transformation
and normalization. Moreover, imputation is performed to obtain
coherent and complete dataset, which is usually recognized
as a prerequisite for reducing the bias and ensuring robust and
accurate statistical analysis [138]. Therefore, seven missing value
imputation methods were described for proper selection for
pharmacometabonomics datasets.

By obtaining the values generated from the Bayesian prin-
cipal component analysis (BPCA) regression, the algorithm of
the BPCA imputation fills the missing values within the data
matrix. To be more specific, it combines Bayesian estimation
and an expectation maximization algorithm with PCA regres-
sion [139]. In this case, each missing value imputed will not
occur multiple times among the dataset, either across the sam-
ples nor across the metabolites [140]. BPCA outperforms the K-
nearest Neighbor Imputation (KNN) and Singular Value Decom-
position (SVD) imputation methods due to its ability to select
the estimation parameters automatically [141]. BPCA has been
applied in processing non-targeted ultra-high performance liq-
uid chromatography coupled with mass spectrometry (UHPLC–
MS) metabolomics data [142] and handling missing covariates in
epidemiologic studies [143].

The Half of the Minimum Positive Value (HAM)/Background
Imputation method substitutes missing values with the
half of the minimum positive values with respect to the
corresponding variable [141, 144], which is likely to reduce
differences between diverse experimental groups and result
in less statistical power [58]. The HAM method has helped to
predict different lipopolysaccharide-induced lipid metabolomic
profiles in survival and non-survival rats [122]. In another phar-
macometabonomics study, this method acted as an imputation
step to demonstrate the synergistic killing of the combination
of polymyxin B and mitotane against multidrug-resistant
Acinetobacter baumannii [145].

The KNN algorithm is designed to search k metabolites of
interest that are close to the metabolites containing missing
values. The similarity between metabolites is determined by the
Euclidean distance, and the metabolite with missing values are
imputed with the weighted mean of k-nearest metabolites [146].
To be more specific, if we process metabolite A that contains a
missing value in experiment I, KNN aims to select k metabolites
whose intensity in experiment I is non-missing and in other
experiments is most similar to metabolite A [147]. KNN appears
to provide a more superior performance than SVD and BPCA and
has been applied in multi-omics integrative analysis [146, 147].
Furthermore, the KNN method also has been used to process
pharmacometabonomics data of early prediction of vincristine-
induced peripheral neuropathy [148].

The algorithm of Mean Imputation (MDI) fills the specific fea-
ture containing missing values with the average value of remain-
ing positive values. Compared with HAM method which reduces
differences between diverse experimental groups, mean imputa-
tion tends to increase differences between diverse experimental
groups and reduce variance simultaneously, which results in
more rejections of the null hypothesis of no difference. This MDI
has been used to invesitigate biomarkers of metformin exposure
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Table 2. Summary of five sequential data processing procedures (filtering, missing value imputation, QC-based correction, transformation and
normalization based on samples, metabolites or ISs) available for pharmacometabonomics studies, coupled with the accessibility in R packages
and applications in pharmacometabonomics of various methods in each procedure

Procedure and method (abbr.) R package
(function)

Applications in pharmacometabonomics study

Filtering MVP base packages Removing missing peaks for discovering the therapeutic mechanism of
HuangQi injections in cisplatin-induced nephrotoxic rats [132].

RSD goeveg (cv) Filtering chromatograms to find dodecanamide and leukotriene B4
dimethylamide (LTB4-DMA) as a predictor of chemosensitivity to cytarabine
plus anthracycline chemotherapy for patients with acute myeloid leukemia
[135].

Missing value
imputation

BPCA pcaMethods
(bpca)

Processing untargeted UHPLC–MS datasets acquired for different samples of
mouse serum, placental tissue extracts, human urine and mammalian
cellular extracts [142].

HAM base packages Replacing missing values with a half of the minimum value to help to select
sphingosine, sphinganine, palmitic acid, oleic acid and cholesterol as
predictors for variable LPS responses in survival and non-survival rats [122].

KNN impute
(impute.knn)

Enabling early prediction of peripheral neuropathy in patients with
pediatric leukemia [148].

MDI base packages Imputing missing values of metabolite data in a pharmacometabonomic
assessment research of metformin administration in non-diabetic African
Americans [149].

MEI base packages Imputing missing values in prior to hierarchical clustering for analyzing
significant metabolites of participants treated with atenolol and
hydrochlorothiazide [150].

SVD pcaMethods
(svdImpute)

Using urine metabolomics to understand the pathogenesis of infants
infected with respiratory syncytial virus and the role of respiratory syncytial
virus in childhood wheezing [153].

ZER base packages Dealing with missing values in hepatocellular carcinoma metabolomics
dataset and helping to identify four upregulated and two downregulated
metabolites as potential biomarkers of hepatocellular carcinoma [154].

QC correction QC-RLSC statTarget
(shiftCor)

Correcting for signal shifts and batch effects in a study of identifying the
serum metabolomic alterations in Beagle dogs with Toxocara canis infection
[164].

Transformation BOX AID (boxcoxfr) Helping to identify serum biomarkers of cholangiocarcinoma,
hepatocellular carcinoma and primary sclerosing cholangitis for diagnosis
[179].

CUT pamr
(pamr.cube.roo)

Utilized with the combination of other processing and statistical tools in
MetaboAnalyst 3.0 for revealing the role for histidine, phenylalanine and
threonine in the development of paclitaxel-caused peripheral neuropathy
[177].

LOG metabolomics
(LogTransform)

Correcting for the positively skewed distribution of the
pharmacometabonomics data for discovering time-dependent alternations
in urinary metabolome induced by intensive phase tuberculosis therapy
[174].

SRT base packages Reducing the influence of the skewed distribution and heteroscedasticity of
the data, and thus facilitating the maternal serum metabolomic
fingerprint-based study of diagnostic performance evaluation of a machine
learning ensemble model [180].

Sample-based
normalization

CON affy (normal-
ize.AffyBatch.contrasts)

Correcting for unwanted experimental or biological variations in
LC/MS-based untargeted metabolomics analysis [197].

CUB affy (normal-
ize.qspline)

Reducing batch variation and help to correctly classify samples with the
aim of identifying clinically relevant biomarkers [198].

CYC affy
(normalize.loess)

Removing the systematic effect in a study where the metabolic alterations
in the brain of the APP/PS1 mice with Alzheimer’s disease was observed
[199].

EIG ProteoMM
(eig_norm1,
eig_norm2)

Detecting and correcting for systematic bias to assist the identification of
metabolomic biomarkers and novel dietary factors related to gestational
diabetes in China [200].

LIN affy (normal-
ize.scaling)

Correcting for systematic variation for predicting capecitabine-induced
toxicity in patients with inoperable colorectal cancer by
pharmacometabonomic profiling [95].

LIW affy (normal-
ize.AffyBatch.
invariantset)

Removing unwanted sample-to-sample variation in LC–MS-based
untargeted metabolomics analysis [197].

(Continued)
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Table 2. Continued

Procedure and method (abbr.) R package
(function)

Applications in pharmacometabonomics study

MEA metabolomics
(Normalise)

Eliminating background effects for differentiating l-carnitine response
phenotypes in patients with vasopressor-dependent septic shock [90].

MED metabolomics
(Normalise)

Normalizing the breath mass spectra in a pharmacometabonomics analysis
of the confirmation of the existence of highly individual phenotypes [201].

MSTUS base packages Overcoming the sample variability in long-term and large-scale
pharmacometabonomics studies and identifying diagnostic and prognostic
biomarkers [202].

PQN AlpsNMR
(nmr_normalize)

Assisting the prediction of capecitabine-induced toxicity in patients with
inoperable colorectal cancer using the processing serum metabolic profiles
[95].

QUA affy (normal-
ize.quantile)

Integrated in a metabolomic analysis tool to process a
pharmacometabolomics dataset of antihypertensive medication [204].

TSN metabolomics
(Normalise)

Helping to demonstrate the potential association of serum formate and
acetate with varying responses to gemcitabine-carboplatin chemotherapy
in patients with metastatic breast cancer [205].

Metabolite-based
normalization

ATO DiffCorr
(scalingMethods)

Used together with the cube root transformation for processing the
secondary whole blood pharmacometabolomics dataset [177].

LEV DiffCorr
(scalingMethods)

Scaling the data and helping to differentiating liver metabolic profiles
between sample groups in toxicology studies and clinical investigations of
liver disease [212].

PAR DiffCorr
(scalingMethods)

Reducing the weight of the large FCs in metabolite signals for
pharmacometabonomic phenotyping of different responses to xenobiotic
intervention in rats [119].

POW DiffCorr
(scalingMethods)

Correcting for heteroscedasticity and pseudo scaling in MS-based serum
metabolic profiling and investigating their alterations in colorectal cancer
[213].

RAN DiffCorr
(scalingMethods)

Scaling important indicators with different order of magnitude in a
pharmacometabonomics study of predicting individual differences of
cisplatin nephrotoxicity in rats [209].

VAS DiffCorr
(scalingMethods)

Enhancing multivariate models used for disease classification and
biomarker identification in unsupervised and supervised metabolomics
analysis [210, 214].

Sample and
metabolite-based
normalization

VSN vsn (vsn2) Processing urine 1H NMR spectra with factors such as diseases, drugs and
toxins for metabolic profiling [219].

IS-based
normalization

CCMN metabolomics
(Normalise)

Used in metabolomics and integrative omics for facilitating the
development of Thai traditional medicine [224].

NOMIS metabolomics
(Normalise)

Utilizing multiple ISs to remove overall unwanted experimental and
biological variations in untargeted metabolomics data for Thai traditional
medicine [224].

RUV-
random

MetNorm (Nor-
malizeRUVRand)

Dealing with multivariate noise between samples in blood metabolomics
data from maintenance hemodialysis patients with chronic kidney disease
[225].

RUV-2 ruv (RUV2) Detecting and correcting for unwanted variation in drug metabolomics data
[226].

Note: Abbreviation (abbr.) was assigned to each processing method and was described in section of the ‘Data processing methods for pharmacometabonomics datasets’.

and response in non-diabetic volunteers by the non-targeted
pharmacometabonomics approach [149].

The Median Imputation (MEI) method is similar to the MDI
method, except, rather than the average value of non-missing
values, it uses the median value to replace missing values.
Median value is used in MDI to improve reliability since the mean
value is easily affected by outliers. Both MDI and MEI method is
frequently used because they are quite easier to implement com-
pared with other methods. In a pharmacometabonomic assess-
ment research on discovering metabolic phenotypes of atenolol
and hydrochlorothiazide, the MEI method was applied to impute
missing values in prior to hierarchical clustering [150].

The SVD method is also referred as principal-component
analysis in statistics and Karhunen–Loève expansion in pattern

recognition, respectively [151]. It is an imputation method that
estimates the missing values based on a linear consideration
[146]. Furthermore, the fundamental principle of this algorithm
is estimating the missing values by regression against the prin-
cipal components representing the whole data matrix informa-
tion [152]. Both the SVD and KNN imputation methods outper-
form the Zero imputation [147], and SVD has been adopted to
understand the pathogenesis of respiratory syncytial virus infec-
tion in infants and its association of childhood wheezing [153].

Zero Imputation (ZER) is easier to understand compared
with the methods mentioned above, which simply replaces
all missing values with zero. Zero imputation does not utilize
any information from the dataset and may lead to biases such
as altered distribution of missing variables and lower level of
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the standard deviation [125]. This ZER has been successfully
used to impute missing values in hepatocellular carcinoma
metabolomics dataset for biomarker identification [154].

Method for QC-based correction of the
pharmacometabonomics data

The QC samples refer to the pooled sample mixtures mixed
by small and equal aliquots from the real samples of interest
and dispersed evenly across the multiple batches to ensure the
data quality for metabolic profiling [155, 156]. QC samples are
frequently involved in large-scale metabolomics studies for sig-
nal drifts correction, intra- and inter-batch variations removal,
where a great number of samples are impossible to be analyzed
in a single run [157]. From this point of view, this data process-
ing strategy based on the QCS for correcting for signal drifts
and batch variations could be termed as ‘QC-based normaliza-
tion’ [158, 159]. In this case, the available Quality Control–based
Robust LOESS Signal Correction (QC-RLSC) method intergrated
in the statTarget R package was proposed [160]. By specifying the
parameter ‘degree’, the QC-RLSC method provides three distinct
regression models (i.e. degree = 0/1/2 represent the Nadaraya–
Watson estimator, locally linear regression and local polyno-
mial regression fitting, respectively). The regression model of
Nadaraya–Watson estimator is the classical one of QC-RLSC,
which estimates the regression function by using the weighted
average of the original data [161]. The locally linear regression
is a non-parametric model where input-space looks linear if
the function has sufficient smoothness [162]. And the local
polynomial regression fitting model is also non-parametric for
smoothing scatter plots and modeling functions [163]. This QC
sample-based processing procedure has been applied in large-
scale pharmacometabonomics study for signal correction and
batch effects removal [164].

Methods for transforming the pharmacometabonomics
data

The next step of the processing pipeline is the data transfor-
mation for reducing heteroscedasticity and correcting skew-
ness [165–169]. The raw metabolomics matrix is typically het-
eroscedastic and right-skewed/positively skewed [137]. The het-
eroscedasticity is reflected as unequal variance of the data
across samples, while the latter refers to the increase of variance
accompanied with the value of the measurement. Given the
assumption (the intensities of most metabolites are assumed
to be unchanged considerably across samples) that most nor-
malization methods hold for [137, 170], data are required to go
through transformation in prior to data normalization. Here, four
data transformation methods that are widely used in pharma-
cometabonomics studies were discussed.

The Box-Cox transformation, cube root transformation and
square root transformation (SRT) are all transformation methods
which utilize the power function for reducing heteroscedasticity
and correcting skewness. Particularly, the corresponding trans-
formation method is called as ‘Box-Cox transformation’, ‘cube
root transformation’ or ‘SRT’ when the exponent of the power
function equaled to [−5, 5], 3 and 2, respectively [126, 171, 172].
For instance, the ‘SRT’ calculates the square root of each element
in the data matrix and replaces it with the original data.

In order to reduce heteroscedasticity of the data and to make
the distribution more symmetrically previous to statistical anal-
ysis, the Log Transformation (LOG) converts multiplicative rela-
tions into addictive relations nonlinearly. The log transformation

is often used due to its ability of removing heteroscedasticity
based on the precondition that the RSD is constant. Two typical
defects of the log transformation are that it is not applicable
to value zero and it excessively emphasizes metabolites with
relatively lower concentrations [173]. This method has been per-
formed in a pharmacometabonomics study of describing urinary
metabolomic alterations reflecting time-dependent alterations
in response to intensive phase tuberculosis treatment, where the
LOG method significantly corrected for the positively skewness
of the metabolomics dataset [174].

The Cube Root Transformation (CUT) method employs the
nth power transformation by replacing n with 1/3, which is based
on the probability density function, the mean and the variance
of the distribution [175]. The cube root transformation is often
carried out to increase the weight of metabolites with rela-
tively lower concentrations and compress the weight of metabo-
lites with relatively higher concentrations to approximate a
normal distribution [176]. With the help of the CUT method
integrated in the MetaboAnalyst, Sun et al. [177] carried out a
secondary whole blood pharmacometabonomics analysis and
revealed the role of threonine, histidine and phenylalanine play-
ing during the progression of peripheral neuropathy caused by
paclitaxel.

As another means allowing parametric power transforma-
tion, the Box-Cox Transformation (BOX) enhances its perfor-
mance with the ability of breaking away from multiple anoma-
lies [178]. Nowadays, this method has been applied to correct for
skewness of the serum metabolomics data and helped to find
biomarkers of cholangiocarcinoma, hepatocellular carcinoma
and primary sclerosing cholangitis for diagnosis [179].

The SRT is a method with the aim of transforming the distri-
bution of metabolomics data to be more normal. This method is
realized by calculating the square root of each element in the
data matrix and replacing it with the original data [126, 172].
For the maternal serum metabolomic fingerprint-based study
of diagnostic performance evaluation of a machine learning
ensemble model, the SRT was adopted to transform the data and
to correct for the skewness and heteroscedasticity [180].

Methods for normalizing the pharmacometabonomics
data

Derived from the technical and/or biological errors during
sample preparation and data acquisition, various forms of
unwanted variations in the raw data matrix may bias the
subsequent identification of significantly altered metabolites
among different conditions [124, 181]. Therefore, data normal-
ization strategy was proposed for eliminating the unwanted
systematic variations while preserving the ‘genuine’ biological
variability, which enhanced the reliability and interpretability
of the subsequent statistical analysis [64, 65]. Recent literatures
have categorized the normalization methods into four groups,
including the sample-based, metabolite-based, sample and
metabolite-based, and internal standard (IS)-based normaliza-
tion [182]. And the first two categories could be distinguished by
their aim for reducing systematic biases and making data more
comparable among samples or metabolites. At present, a variety
of normalization algorithms have been gradually developed and
frequently used in pharmacometabonomics studies.

Sample-based normalization algorithms

With the aim of eliminating technical and/or biological varia-
tions across samples, a variety of sample-based normalization
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methods have been developed and extensively utilized in the
field of pharmacometabonomics, which include the Contrast
(CON) [183, 184], Cubic Splines (CUB) [184, 185], Cyclic Loess (CYC)
[184], EigenMS (EIG) [186–189], Linear Baseline Scaling (LIN) [184],
Li-Wong (LIW) [183, 184], Mean Normalization (MEA) [186, 190],
Median Normalization (MED) [191, 192], MS Total Useful Signal
(MSTUS) [185, 193], Probabilistic Quotient Normalization (PQN)
[194], Quantile (QUA) [184, 195] and Total Sum Normalization
(TSN) [196].

Nowadays, the Contrast has been adopted in non-targeted
metabolomics studies based on the LC/MS analytical technique
to reduce the unwanted variations induced by biological or
experimental factors [197]. The CUB method has been utilized to
classify samples correctly regardless of the data set size and thus
helped to identify clinically relevant biomarkers [198]. The CYC
algorithm has been adopted in a high-throughput metabolomic
study and assisted to observe significantly altered intracephalic
metabolic features of the APP/PS1 model constructed for
Alzheimer’s disease [199]. This EigenMS has been used to process
LC/MS-based metabolomics dataset for identifying and reducing
systematic variations [187] and has also been utilized in the
characterization of the maternal metabolome with gestational
diabetes in China [200]. With its capacity of correcting for
systematic variations, this LIN method has been conducted in
a pharmacometabonomics study for predicting capecitabine-
induced toxicity in patients with inoperable colorectal cancer
[95]. LIW has been utilized to eliminate unwanted sample-to-
sample bias in LC–MS based non-targeted metabolomics as far
as possible [197]. Mean Normalization was applied to process the
pharmacometabonomics data in prior to statistical analysis in a
study of differentiating l-carnitine outcomes in patients for the
treatment of septic shock [90]. Median Normalization has been
adopted in a pharmacometabonomics analysis of human breath,
which suggested the existence of highly individual phenotypes
[201]. Given the superiority of improving the differentiation
across sample groups and facilitating determination of statis-
tically significant alterations of the urine samples, the MSTUS
has been advised to serve as a normalization step in the analysis
of urine samples [193]. Moreover, this method has been widely
applied in pharmacometabonomics studies [202]. In the 1H NMR-
based metabolomics analysis, the Probabilistic Quotient Normal-
ization has been discovered to perform as a robust algorithm
for complicated biological mixtures containing various dilution
concentration levels [203]. Furthermore, it has been applied
to predict capecitabine-induced toxicity based on the baseline
serum metabolic profiles [95]. The Quantile has been considered
as another well-performing normalization method for the 1D 1H
metabolomics analysis of urinary samples [194] and has been
integrated in an analysis tool with the capacity of dealing with
pharmacometabonomics dataset [204]. So far, the TSN method
has been extensively applied to act as a normalization strategy
with the aim of removing unwanted variations among samples
in pharmacometabonomics studies [205].

Metabolite-based normalization algorithms

Six metabolite-based normalization algorithms for minimizing
the metabolite-to-metabolite variations and making data
more comparable among metabolites were comprehensively
reviewed, which included the Auto Scaling (ATO) [184, 188, 206,
207], Level Scaling (LEV) [173, 188], Pareto Scaling (PAR) [173, 184,
208], Power Transformation (POW) [173], Range Scaling (RAN)
[173, 209] and Vast Scaling (VAS) [173, 210].

In current pharmacometabonomics, the Auto scaling
has been adopted in MS-based analysis for facilitating the

identification and diagnosis of patients with bladder cancers
and assisting the feature selection in patients with urogenital
cancers [211]. Moreover, it has been utilized to process the
secondary whole blood pharmacometabolomics dataset [177].
Level scaling has been applied to process the (UPLC−MS) dataset
in prior to PCA for classifying pre-designated classes of samples
in toxicology studies and clinical investigations of liver disease
[212].

And Pareto scaling has been utilized to perform as a nor-
malization algorithm for eliminating the mask effects in current
pharmacometabonomics analysis [119, 174]. The Power Trans-
formation has been adopted to facilitate the identification of
serum metabolic changes in patients with colorectal cancers
[213]. Range scaling has been used to scale important indicators
with different order of magnitude for improving value compa-
rability in a pharmacometabonomics study [209]. Moreover, the
Vast Scaling is reported to be a well-performing normalization
method and has been widely utilized in the supervised or unsu-
pervised metabolomics analysis, where the performance mul-
tivariate models for feature selection and sample classification
were significantly improved [210, 214].

Both sample-based and metabolite-based normalization algorithm

Originally proposed to process single or two-channel microarray
dataset [215], the Variance Stabilization Normalization (VSN)
[184, 216] has gradually acted as a powerful normalization
method in GC/MS-based metabolic analysis. With the unique
capacity of correcting for the systematic bias among both
samples and metabolites [217], the VSN method has been widely
utilized in pharmacometabonomics for analyzing liver tissues
during the progression of liver cancer [218] and has also adopted
to process urine 1H NMR spectra with factors such as diseases,
drugs and toxins for metabolic profiling [219].

IS-based normalization algorithms

In addition to the sample and/or metabolite-based normaliza-
tion algorithms discussed above, multiple popular normaliza-
tion algorithms based on the IS have been extensively utilized
in modern pharmacometabonomics studies. The ISs were ideally
stable isotopically labelled compounds introduced during sam-
ple processing and could be easily distinguished from endoge-
nous metabolites. The aim of the introduction was to correct
for uncontrolled sample losses or compound degradation and
subsequent sample losses, thus to improve method precision
and accuracy [220]. Here, four IS-based normalization algorithms
for removing overall unwanted experimental and biological vari-
ations were discussed, including the Cross-contribution Com-
pensating Multiple standard Normalization (CCMN) [221], Nor-
malization using Optimal selection of Multiple Internal Stan-
dards (NOMIS) [61], Remove Unwanted Variation-random (RUV-
random) [196, 222] and ‘Remove Unwanted Variation, 2-step’
(RUV-2) [223].

In current pharmacometabonomics, the CCMN (based on
a supervised statistical model for identifying and removing
the overall unwanted variations) and the NOMIS (built on
multiple ISs to normalize features and to eliminate unwanted
variations) were reported to facilitate the development of Thai
traditional medicine [224]. The RUV-random has been adopted
to remove systematic noise in blood metabolomics data from
maintenance hemodialysis patients with chronic kidney disease
[225]. Moreover, the RUV-2 has been applied to detect and adjust
for unwanted variation in drug metabolomics data [226].
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Figure 3. Statistical methods of feature selection and extraction strategies for dimensionality reduction in pharmacometabonomics analysis.

Statistical methods for biomarker
identification and sample classification in
pharmacometabonomics analysis
The feature selection and feature extraction strategies are
greatly required for dimensionality reduction [67] and are very
popular in the study of pharmacometabonomics for biomarker
identification and sample classification. An appropriate feature
selection method can facilitate the identification of optimal
differential metabolic features and thus more accurately predict
how patients will respond to certain medications. And the
feature extraction methods can facilitate the classification of
samples and help to identify the most significantly altered
features [227]. The feature extraction strategies applied in
pharmacometabonomics fall into two groups, including linear
and nonlinear methods [228]. The classification of methods
in the category of feature selection and feature extraction
strategies used in pharmacometabonomics for dimensionality
reduction was shown in Figure 3. And the descriptions of
various commonly used feature selection and feature extraction
methods for pharmacometabonomics studies were shown
below and summarized in Table 3.

Univariate feature selection algorithms for biomarker
identification in pharmacometabonomics

The univariate filtering strategy treats each feature individu-
ally and independently by evaluating and ranking each fea-
ture according to the certain criteria. Methods belonging to this
category include ANOVA, FC, MWW, T-test, WSR and χ2.

The Analysis of Variance (ANOVA) method uses linear statis-
tical hypothesis testing with or without parameters. It focuses on
comparing the dissimilitude between various groups variance or
average with respect to a specific metabolite. ANOVA has been
used for pharmacometabonomics study of patients treated with
l-carnitine and placebo for discovering the effect of l-carnitine
on different metabolic phenotypes [90].

The simple statistical method Fold Change (FC) is often uti-
lized with many other parametric or non-parametric algorithms
for assessing the change of absolute value between two sample
groups. It calculates the original or the log value of the ratio
and reports the result as significant when the FC value exceeds
the predefined threshold. FC was used to discover biological
predictors of the clinical response of cytosine arabinoside plus
anthracycline treatment for acute myeloid leukemia [135].

Mann–Whitney–Wilcoxon test (MWW) is a non-parametric
algorithm that sometimes referred as the Wilcoxon rank-sum
test, which can be alternative to two-sample t-test for identifying
the differences between two groups (unpaired samples) [229].
MWW are often used when the data do not meet the assump-
tions of the t-test. It is the null hypothesis that compares two
means of the same sample and then tests whether these two
means are equally distributed. The MWW was utilized to iden-
tify the biomarker for predicting alcohol-dependent treatment
outcomes of acamprosate [117].

T-test is used to estimate whether there is a significant
difference between the mean value of two datasets. It is one of
the most prevalent tests used in the medical field and the most
powerful unbiased test when the processed data fit a normal

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/5/bbab138/6236068 by Zhejiang U

niversity user on 08 February 2022



12 Fu et al.

Table 3. Summary of popular feature selection and feature extraction strategies and algorithms that are widely used in pharmacometabonomics
studies

Algorithm (abbr.) R package (function) Applications in pharmacometabonomics study

Univariate filtering ANOVA ANOVA.TFNs (fanova) Predicting different metabolic phenotypes of the l-carnitine [90].
FC metabolomics

(FoldChange)
Discovering biological predictors of the clinical response of cytosine
arabinoside plus anthracycline treatment for acute myeloid
leukemia [135].

MWW stats (wilcox.test) Identifying the biomarker for predicting alcohol-dependent
treatment outcomes of acamprosate [117].

T-test stats (t.test) Predicting capecitabine-induced toxicity in patients with inoperable
colorectal cancer [95].

WSR stats (wilcox.test) Comparing changes of salivary cortisol and IL-6 before and after
decompression therapy in breast cancer survivors [231].

χ2 stats (chisq.test) Identifying significant categorical clinical variables for predicting
response of lisinopril in treating hypertension [233].

Multivariate filtering OPLS-DA ropls (opls) Predicting metabolism characteristics of losartan in healthy
volunteers [235].

PLS-DA caret (plsda) Predicting therapeutic effects of trastuzumab-paclitaxel in HER-2
positive breast cancer patients [236].

sPLS-DA mixOmics (splsda) Predicting response to disease modifying treatment in patients
with multiple sclerosis [237].

Embedded feature
selection

ANN neuralnet (neuralnet) Applied for the study of pharmacometabonomics with the aim of
precise drug treatment for Alzheimer’s disease [238].

DT dtree (pca) Successfully predicting the development of IFNβ antibodies in
patients with multiple sclerosis [239].

RF randomForest
(randomFores)

Excavating the relationship between repeated meloxicam
administration and the damage to kidneys in cats [240].

SVM e1071 (svm) Being trained based on the pharmacometabonomics data to predict
hepatotoxicity of six drugs including l-carnitine [241].

Linear feature extraction PCA ropls (pca) Predicting metabolic phenotypes and pharmacokinetic parameters
of atorvastatin in healthy volunteers [110].

MDS stats (cmdscale) Assessing the effects of sample classification in breast cancer
metabolic profiling by using Spearman’s correlation as similarity
measure [243].

Nonlinear feature
extraction

ISOMAP RDRToolbox (Isomap) Assisting the discovery of underlying therapeutic effects and
functional patterns of Radix Paeoniae Alba administration [245].

LLE RDRToolbox (LLE) Helping to discover the underlying therapeutic effects and
functional patterns of Radix Paeoniae Alba administration [245].

t-SNE Rtsne (Rtsne) Identification of blood diagnostic biomarker of concussion in
adolescent male hockey players based on metabolic profiling [248].

Notes: The specific realization of algorithms in R packages were listed. Abbreviation (abbr.) was assigned to each method and was described in section of the ‘Statistical
methods for biomarker identification and sample classification in pharmacometabonomics analysis’.

distribution. It was used to analyze the relationship between
the toxicity after being exposed to capecitabine and the baseline
metabolic profiles in a 1H NMR pharmacometabonomics study
[95].

The Wilcoxon signed-rank test (WSR) is a common non-
parametric test for comparison of paired samples on the basis
of independent units of analysis, which is a non-parametric
substitute for the paired sample t-test [230]. It was used to mea-
sure twice for comparing changes of blood pressure in patients
before and after drug exposure [229]. The WSR has also been
applied to compare changes of salivary cortisol and interleukin-
6 (IL-6) before and after decompression therapy in breast cancer
survivors [231].

Chi-square (χ2) is a popular non-parametric statistical test
which can be used to assess the independence of two events. It
relies on degrees of the sample size and the freedom, which
makes its performance unreliable in very few cases [232].
Chi-square was applied to discover significantly altered
categorical clinical features, and thus to predict the outcomes of
lisinopril in patients with hypertension [233] and predicting SSRI

therapeutic response in adults with major depressive disorder
[234].

Multivariate feature selection algorithms for biomarker
identification in pharmacometabonomics

Each metabolite does not act independently in the body, while
they interact with each other and collectively influence the
metabolomic phenotype, which makes the multivariate filtering
strategy crucial for feature selection in the field of pharma-
cometabonomics.

OPLS-DA is a complicated multivariate algorithm that is
applicable for analysis containing single or multiple groups
especially for dataset with multi-collinear variables. It is a robust
statistical method that is similar to the standard PLS-DA, which
is capable of investigating as well as predicting qualitative
structures of the dataset. This method has widely utilized in
pharmacometabonomics studies for predicting metabolism
characteristics of losartan in healthy volunteers [235].
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As a most commonly used feature selection method,
the PLS-DA is classified as a linear binary classifier. It is a
supervised multivariate statistical approach that maximizes
the interval between predefined classes. It has been applied
to discover biomarkers that is significantly related with
pathologic complete outcome of trastuzumab plus paclitaxel as
neoadjuvant therapy among patients with HER-2-positive breast
cancers [236].

Compared with the model of PLS-DA, the Sparse Partial Least
Squares Discriminant Analysis (sPLS-DA) reduces more data by
utilizing a lasso penalization combined with SVD. Therefore, it
tends to neglect features that only differentiate between few
samples. In this method, model construction and feature selec-
tion can be done at the same time and it uses valuable graphical
output to modify interpretability. The sPLS-DA method has been
used to predict the outcome of disease-modifying treatments in
multiple sclerosis patients [237].

Embedded feature selection algorithms for biomarker
identification in pharmacometabonomics

In addition to the feature selection strategy based on the filtering
algorithms, another strategy commonly used for selecting the
optimal feature subset in the field of pharmacometabonomics is
the embedded strategy. The basic principles and applications in
pharmacometabonomics of methods contained to this category
were discussed below.

As a supervised embedding algorithm, the Artificial Neural
Network (ANN) can mimic the structure and function of
biological neural networks, and the basic unit of which is
artificial neurons representative of mathematical functions.
ANN processes the data by adjusting weight of large number
neuron connections. It is suitable for investigating complicated
non-linear association of dependent and independent features.
ANN has been used in the study of pharmacometabonomics
with the aim of precise drug treatment for Alzheimer’s disease
[238].

As a popular decision support tool with the structure like a
tree, leaf nodes in the Decision Tree (DT) denote class labels,
while the non-leaf nodes denote tests on characteristics, and
branches denote the test result. Relying on the training dataset,
the DT selects an attribute to split the given set of examples. It
needs less pre-knowledge and can be verified by testing data.
Moreover, the induction and classification steps are easy and
quick. Coupled with other five algorithms, this method has
been utilized to successfully predict the development of IFNβ

antibodies in patients with multiple sclerosis [239].
Random forest (RF) is a popular supervised machine-learning

algorithm that integrates multiple DTs. It is excellent in accuracy
and has a better performance in classification tasks comparing
with SVM, which makes it a common method in biomarker
selection and clinical phenotypic discrimination. Together with
PLS-DA, RF was used to excavate the relationship between
repeated meloxicam administration and the damage to kidneys
in cats [240].

As a supervised machine learning algorithm, the Support
Vector Machine (SVM) allows classification and regression
against the pharmacometabonomics dataset, with the aim of
finding the segmentation surface that successfully classify data
points into different categories. SVM can analyze complex large-
scale and time-consuming data and perform well with very few
samples with high dimensionality. An SVM model was trained
based on the metabolite data to predict hepatotoxicity of six
drugs including l-carnitine [241].

Linear feature extraction algorithms for sample
classification in pharmacometabonomics

Linear feature extraction method supposes that the data are
located on a lower dimensional linear subspace and it uses
matrix decomposition strategy to project the original data on
this subspace. Two methods belonging to this classification dis-
cussed here are PCA and MDS.

Relying on analyzing the linear association between different
metabolites, the PCA transforms the dataset and then bases
on the obtained variances to obtain the most important prin-
cipal components, which explain the decreasing amount of the
dataset variance. Along with the PLS regression, PCA was used
to predict and differentiate various treatment metabotypes and
pharmacokinetic properties of atorvastatin among healthy sub-
jects [110].

Multidimensional Scaling (MDS) can project high-dimensional
data into a low-dimensional space, which represents the
similarity between preserved data points. The dimensionality
reduction facilitates the discovery of hidden true structures in
the data and reduces the complexity of information retrieval in
large-scale datasets [242]. The MDS method using Spearman’s
correlation as similarity measure was utilized to evaluate the
effects of sample classification in breast cancer metabolic
profiling [243].

Nonlinear feature extraction algorithms for sample
classification in pharmacometabonomics

Non-linear feature extraction method can lower the dimen-
sionality of data by mapping features on a low-dimensional
surface into a high-dimensional space through a lifting function,
which allows to find non-linear relationships between features.
Methods belonging to this category include ISOMAP, LLE and
t-SNE.

Isometric Mapping (ISOMAP) analyzes and operationalizes
the intrinsic nonlinear degrees of freedom of high-dimensional
observations by finding meaningful low-dimensional structures
in high-dimensional observations [244]. In the field of phar-
macometabonomics, the ISOMAP could help to discover the
underlying therapeutic effects and functional patterns of Radix
Paeoniae Alba administration [245].

Locally Linear Embedding (LLE) is an unsupervised learn-
ing algorithm that projects high-dimensional data into a low-
dimensional embedding space while conserving object adjacen-
cies in the original high-dimensional feature space. Based on the
local symmetry of linear reconstruction, LLE can study the over-
all structure of non-linear manifolds [246]. The LLE algorithm has
also been used to discover the underlying therapeutic effects and
functional patterns of Radix Paeoniae Alba administration [245].

Similarities between low-dimensional and high-dimensional
data can be maintained during dimensionality reduction when
using the t-Distributed Stochastic Neighbor embedding (t-SNE),
which thus ensures the majority integrity of the structural infor-
mation [247]. The t-SNE is a dimensionality reduction method
with minimal loss of structural information and has been widely
applied in pharmacometabonomics for metabolic profiling of
concussion in adolescent male hockey players [248].

Metabolic databases for
pharmacometabonomics research
Accurately identifying and determining a set of metabolites (or
specific metabolites) of analyzed samples based on metabolic
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databases are crucial issues involved in metabolomics, which is
a prerequisite for subsequent biological interpretations [249,
250]. After the putative metabolites searching followed by
the validation of them, metabolic pathway analysis based on
metabolic databases is required, which attempts to discover the
association of altered metabolites to corresponding metabolic
pathways. Nowadays, numerous commercial or free databases
have been constructed for pharmacometabonomics researches,
which mainly fall into two categories according to the intended
purpose (for metabolite identification and metabolic pathway
analysis) [251]. Here, the summary of various widely used data
repositories for pharmacometabonomics studies was provided
in Table 4.

Databases for metabolite identification

Metabolite identification is only required for untargeted
metabolomics studies, whereas the metabolite or metabolic
class of interest in targeted metabolomics studies is already
known [249]. A host of databases developed with the purpose
of overcoming the challenge of illuminating the dark matter in
metabolomics [252] have emerged recently, seven of which were
described as follows.

As a free online resource containing comprehensive infor-
mation of metabolites, interactional enzymes and transport pro-
teins [253] as well as their chemical properties, biological roles,
disease-related properties, metabolic pathways and reference
spectrograms [75], The Human Metabolome Database (HMDB)
is regarded as the greatest and most exhaustive metabolomics
database all over the world. The latest version of HMDB con-
tained pharmacometabonomics data involving the analysis of
changes in metabolite levels in tissues, cells or biofluids after
drug administration, which contributed to the achievement of
precision drug delivery [254].

PubChem is the chemical information resource of the
National Center for Biotechnology Information for many
areas of biomedical research, such as the cheminformatics,
chemical biology, medicinal chemistry and drug discovery [255].
PubChem consists of three interrelated databases of Substances,
Compounds and Bioassays. The BioAssay database contains
descriptions and test results of bioassay experiments [256, 257].
In a case of untargeted pharmacometabonomics study based
on liquid chromatography coupled with electrospray ioniza-
tion tandem mass spectrometry (LC-ESI-MS/MS), researchers
matched the measured experimental features with compounds
mined from PubChem and thus obtained candidate structures
of unknown metabolites [258].

MassBank is the initial publicly available database of small
molecular compounds in the life sciences [259]. It contains high-
resolution MS information of metabolites and is an online spec-
tral search tool and repository [260]. By specifying one or more
experimental conditions, users can obtain access to the whole
or part of the data in MassBank [259]. The application of phar-
macometabonomics in translational and clinical research has
been improved by using MassBank to identify high confidence
metabolites, elucidate unknown metabolites, enable biological
interpretation of complex systems, and build reliable predictive
metabolic models [261].

Metabolite Link (METLIN) is an open-access, cloud-based
metabolite database providing a comprehensive set of more
than 1 million molecules, such as amino acids, small pep-
tides, lipids, carbohydrates and natural products [262]. The
database is capable of characterizing and identifying hundreds
or thousands of naturally existing metabolites in analyzed

samples, automating the identification of metabolites as well
as overcoming the drawbacks of traditional analytical methods
for more efficient identification of metabolites [77]. METLIN
has been utilized for untargeted pharmacometabonomics
analysis of plasma samples following psychoactive stimulants
administration, which provided a basis for further deepening
targeted metabolomic studies of pharmacological effects and
finding biomarkers of drug use [263].

The LIPID Metabolites and Pathway Strategy (LIPID MAPS) is
a freely available online database of lipid structural resources
[264]. Lipids are important metabolites that affect the physiolog-
ical and pathophysiological conditions of the human body. The
LIPID MAPS plays an important global role in advancing tech-
nologies and resources [265]. The latest version of LIPID MAPS
adds the software tool LipidFinder, which eliminates artifactual
signals from processed data obtained from MS with high reso-
lution. The combination of long time-course chromatographic
analysis and high-resolution MS allows the identification of
specific candidate lipids from large-scale lipidomic data. The
application of LIPID MAPS in pharmacometabonomics studies
facilitates the discovery of bioactive species that can be used as
biomarkers for diseases or new therapeutic targets in the field
of precision medicine [266].

The Chemical Entities of Biological Interest (ChEBI) is a
manually annotated database of molecular entities with a
focus on small molecule compounds, providing a wide range
of data entries including chemical nomenclature, ontology and
chemical structures [267]. The latest version of ChEBI extended
our collection of endogenous metabolites from human, mouse,
Escherichia coli and yeast, allowing for wide applications in a
variety of scientific settings for different types of users [268].
Ontology-based enrichment analysis helps to interpret and
understand large-scale biological data. Moreover, the BiNChE
is a ChEBI ontology-based small molecule enrichment analysis
tool that enables automated metabolite identification, facilitates
understanding of pharmacometabonomics and promotes the
development of metabolomics and systems biology [269].

Therapeutic Target Database (TTD) is an open and compre-
hensive database containing information of target modulators
such as target-interacting proteins, target-regulated microRNAs
and transcription factors, patent granted drugs and their tar-
gets [270]. By providing exhaustive information of the therapeu-
tic effects of drugs and the underlying functional patterns in
metabolism, TTD significantly facilitated the biological interpre-
tations of pharmacometabolomics data [271]. It provided numer-
ous disease targets for scanning diagnostic biomarkers in tradi-
tional Chinese medicine (TCM), which in turn could clarify the
complexity metabolic effects on human bodies and pharmaco-
logical mechanisms of TCM [272].

As a global leading database containing chemical compounds
mentioned in many literatures, the CAS Registry covers chem-
icals which could date back to more than 150 years ago. CAS
also stores data on the framework of each registered substance
that meets specific criteria [273]. All new molecular entities
(NMEs) are included in CAS, allowing insights into the origin of
NMEs by identifying compounds that are similar to them, which
helps the implementation of structural methods for assessing
the innovativeness of new drugs and advancing innovative drug
discovery [274].

Databases for metabolic pathway analysis

Both targeted and untargeted metabolomics studies include
the critical step of biological interpretation. Once the putative
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Table 4. Summary of various available data repositories that are commonly utilized in pharmacometabonomics studies

Database (abbr.) Accessa URL Application in pharmocometabonomics studies

Metabolite
identification

HMDB d, w www.hmdb.ca Incorporating pharmacometabonomics data to
analyze changes in metabolite levels in tissues,
cells or biofluids after drug administration [254].

PubChem d, w https://pubchem.ncbi.
nlm.nih.gov

Matching the measured experimental features
with compounds mined from PubChem, and thus
obtaining candidate structures of unknown
metabolites in an untargeted
pharmacometabonomics study based on
ESI-LC–MS/MS [258].

MassBank d, w http://www.massbank.jp Identifying high confidence metabolites,
elucidating unknown metabolites, interpreting
complex systems from a biological perspective,
building reliable predictive metabolic models, and
improving the application of
pharmacometabonomics in clinical research [261].

METLIN w http://metlin.scripps.edu/ Applied to untargeted pharmacometabonomics
analysis of plasma samples after psychoactive
stimulant administration to find biomarkers of
drug use [263].

LIPID MAPS d, w http://www.lipidmaps.o
rg/

Addressing pharmacometabonomics by facilitating
the discovery of bioactives that can be used as
disease biomarkers and new therapeutic targets in
the field of precision medicine [266].

ChEBI d, w http://www.ebi.ac.uk/che
bi

Automatically identifying metabolites, facilitating
metabolomics and systems biology, and deepening
understanding of pharmacometabonomics [269].

TTD d, w http://db.idrblab.net/ttd Helping to clarify the complexity metabolic effects
on human bodies and pharmacological
mechanisms of TCM by providing numerous
disease targets for scanning diagnostic biomarkers
[272].

CAS Registry c https://www.cas.org/ Facilitating the implementation of a structural
approach to assess the innovativeness of new
drugs by identifying compounds that are similar to
NMEs [274].

Metabolic
pathway analysis

KEGG d, w http://www.genome.jp/ke
gg/

Providing an integrated view on biological
mechanisms of breast cancer data based on
BRCA-Pathway [281].

Reactome d, w https://reactome.org Providing bioinformatics tools in
pharmacometabonomics studies and assisting in
visualization, interpretation and analysis of
metabolic pathways [285].

WikiPathways d, w http://www.wikipathwa
ys.org

Providing biotransformation pathway maps that
directly visualize expression changes associated
with drug metabolism [288].

MetaCyc d, w https://MetaCyc.org Providing a solid basis for predicting metabolic
pathways in other organisms and a reliable
resource for researchers in metabolic engineering,
drug discovery and many other disciplines [291].

SMPDB d, w http://www.smpdb.ca Used in conjunction with other tools, SMPDB could
obtain information about miRNAs and their target
genes, clarify relevant pathways and elucidate
miRNA regulatory mechanisms [294].

Notes: Details regarding accessibility and application covered by these databases discussed in this paper were summarized. Abbreviation (abbr.) was assigned to each
database and was described in section of the ‘Metabolic databases for pharmacometabonomics research’.
aAccessibility with respect to each database, c, d and w represent commercial, downloadable and online access, respectively.

metabolites are listed and their identification is confirmed, the
next step is to search for the corresponding metabolic pathways
[249, 275, 276]. Several databases have been established for
interpretating complicated interconnections between metabolic
pathways [277].

As an exhaustive database covering biological interpretations
of genome sequences as well as many other high-throughput
data [278], the Kyoto Encyclopedia of Genes and Genomes (KEGG)
consists of three generic databases of systematic, genomic and
chemical information for giving molecular-level and higher level
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functional information of genes and genomes [279, 280]. Breast
cancer-associated-pathway (BRCA-Pathway) supplies the KEGG
with capacity of exploring and visualizing the breast cancer data
interactively. Moreover, it provides researchers with a compre-
hensive and novel view of discovering the mechanisms of breast
cancer [281].

The Reactome Knowledgebase (Reactome) is a free, peer-
reviewed and human-managed database of metabolic pathways
[282], which provides the molecular details of cellular process.
Reactome is a comprehensive version of the typical metabolic
graph, providing an organized network of molecular conversions
in a singular consistent data model [283]. The Reactome allows
the discovery of functional relationships between data and the
storage of biological processes [284]. In the context of phar-
macometabonomics studies, Reactome seeks to offer bioinfor-
matics tools for visualizing, interpreting as well as analyzing
pathway information to advance physiological and biomedical
research [285].

WikiPathways is a free collaborative repository containing
biological pathway patterns for data visualization and analysis
[286]. Recent works have focused on adding more metabolite
information to the database and provided more detailed knowl-
edge of interactions to improve the identification of metabolites
and corresponding pathways, which make WikiPathways to be
a powerful and popular database on metabolic pathways [287].
Although we have gained quite deepness of understanding of
drug metabolizing enzymes, the number of available biotrans-
formation pathway maps is limited and difficult for researchers
to use for visualization of multi-omics data. WikiPathways was
thus constructed to provide us with the ability of directly visu-
alizing biotransformation pathway maps of expression changes
associated with drug metabolism [288].

MetaCyc is an open-access integrated database of metabolic
enzymes and pathways, with the majority of MetaCyc pathways
being experimentally identified small molecule metabolic path-
ways [289]. It contains 2749 pathways from more than 60 000
literatures and is the most comprehensive set of metabolic path-
ways [290]. The convergence of genome sequencing and bioinfor-
matics has produced many metabolic databases for describing
known and predicted metabolism in a variety of organisms,
with a focus on the MetaCyc family of metabolic databases
containing experimentally elucidated pathways. Therefore, the
MetaCyc provides users with both reliable basis for the predic-
tion of metabolic pathways and crucial resource in the fields of
toxicology, metabolic profiling, drug discovery [291].

The Small Molecule Pathway Database (SMPDB) is an exhaus-
tive, highly interactive and entirely searchable database with the
capacity of visualizing metabolic pathways of signals, diseases
as well as drugs [292]. Containing more than 600 pathways, it
provides exhaustive metabolic information within the human
body, such as information about tissues, organelles and subcel-
lular compartments. Transporter proteins and much biological
information about target organs, tissues and reaction compart-
ments are involved in the latest version of SMPDB [293]. Used in
conjunction with other tools, SMPDB could obtain information
about miRNAs and their target genes, clarify relevant pathways
and elucidate miRNA regulatory mechanisms [294].

Conclusions
As the research and development (R&D) of novel drugs require
huge investments of time and funds, it is non-trivial for the phar-
maceutical industry to enhance the speed and success rate of
this process by using advanced technologies. Given the potential

of ‘omics’ showed in the new drug R&D, such as the discovery
of promising targets and the prediction of drug effets, pharma-
cometabonomics which focused on pharmacokinetic and phar-
macodynamic properties, was thus proposed and developed
in recent years. It is worth noting that the exsitence of vari-
ous strategies and methods for processing pharmacometabo-
nomics data posed challenges for proper selection and appli-
cation on the specific dataset analyzed [295]. Therefore, this
review provided guidance for researchers engaged in pharma-
cometabonomics and metabolomics, and it would promote the
wide application of metabolomics in drug research and person-
alized medicine.

Key Points
• Recent progress on pharmacometabonomics shed

lights on the individualized treatment and precision
medicine from the sight of PK and PD.

• Rapid development of analytical techniques rein-
forced the urgent need to review their strengths and
weaknesses, as well as corresponding applications in
pharmacometabonomics.

• As a crucial prerequisite for complicated analysis of
pharmacometabonomics data, appropriate utilization
of data processing methods with different underlying
theories requires extensive considerations for distinct
dataset analyzed.

• The emergence of various novel statistical
analysis strategies and algorithms as well as
numerous metabolomic-related databases posed
challenges for proper selection and application
of them with respect to specific high-throughput
pharmacometabonomics data.
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