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Abstract

Large-scale metabolomics is a powerful technique that has attracted widespread attention in biomedical studies focused on identifying
biomarkers and interpreting the mechanisms of complex diseases. Despite a rapid increase in the number of large-scale metabolomic
studies, the analysis of metabolomic data remains a key challenge. Specifically, diverse unwanted variations and batch effects in
processing many samples have a substantial impact on identifying true biological markers, and it is a daunting challenge to annotate a
plethora of peaks as metabolites in untargeted mass spectrometry-based metabolomics. Therefore, the development of an out-of-the-
box tool is urgently needed to realize data integration and to accurately annotate metabolites with enhanced functions. In this study, the
LargeMetabo package based on R code was developed for processing and analyzing large-scale metabolomic data. This package is unique
because it is capable of (1) integrating multiple analytical experiments to effectively boost the power of statistical analysis; (2) selecting
the appropriate biomarker identification method by intelligent assessment for large-scale metabolic data and (3) providing metabolite
annotation and enrichment analysis based on an enhanced metabolite database. The LargeMetabo package can facilitate flexibility and
reproducibility in large-scale metabolomics. The package is freely available from https://github.com/LargeMetabo/LargeMetabo.
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Introduction
Metabolomic profiling of complete sets of metabolites in biolog-
ical samples has been widely applied for identifying biomarkers
in the diagnosis and prediction of disease [1]. Numerous sam-
ples are essential in metabolomics to increase statistical power
and to address crucial issues related to heterogeneity in disease
biology [2, 3]. Because it is such a powerful technique, large-scale
metabolomics has attracted widespread attention and is applied
to measure hundreds of compounds simultaneously in large-scale
studies, involving thousands of samples or more [4]. Large-scale
metabolomics can capture the ‘fingerprints’ of specific biolog-
ical processes critical to precise medical applications, such as
studying complicated disease mechanisms and discovering new
therapeutic targets [5–7]. Several large-scale cohort studies have
been conducted using metabolomic analyses. For example, the
Consortium of Metabolomics Studies comprised 47 cohorts and
>136 000 blood samples collected from 1985 to 2017 for tracking
and analyzing metabolomic data [8].

Despite a rapid increase in the number of large-scale
metabolomic studies, the analysis of metabolomic data is
increasingly vital to achieving consistent results [9, 10]. Because
of the need to analyze massive numbers of samples, all

samples are divided into multiple batches, spanning months to
years of sample collection [11]. However, in sequential studies,
the accurate measurement of biochemical signals drifts over
extended sampling periods, and intra-batch or inter-batch
variations inevitably occur. Thus, such unwanted variations
in large-scale metabolomics have a substantial impact on
downstream analytics in attempting to identify true biological
markers [12]. Therefore, large-scale metabolomic studies are
seriously hampered by the inefficiency of integrating data from
separate batches of samples or analytical experiments [13].
Moreover, it is fundamentally necessary for mass spectrometry
(MS) peaks of interest to be recognized and linked to biological
functions. However, it has been reported that <2% of the
peaks detected in untargeted MS-based metabolomics can be
annotated accurately [14]. Therefore, the foremost challenge for
meaningful metabolite annotation requires the ability to decipher
raw peak features into patterns of specific metabolites with
biologically interpretable functions in large-scale metabolomics
[15, 16].

Several tools and applications have been designed and devel-
oped for analyzing metabolomic data. As shown in Supplemen-
tary Table S1, available online at http://bib.oxfordjournals.org/,
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hRUV [5], metaX [17], MMEASE [18], MetaboAnalyst [19], MRMkit
[9], Norm ISWSVR [20], Workflow4Metabolomics [21] and XCMS
online [22, 23] can realize data integration based on the
embedded sample replicates, quality control samples, pathway-
level integration, peak pooling by combining complementary
measurements and shared metabolic features. The result is
that using these tools can involve limitations, such as the loss
of specific metabolites, and data integration must rely on the
embedded quality control samples, internal standards or exact
feature names. In addition, the use of online servers comes with
inherent limitations. For example, it is difficult to reproduce the
same results when re-analyzing the dataset using an online
server. The upload speed and calculation speed are severely
limited by the online server when handling large-scale or long-
term datasets. To address the problems of reproducibility and
flexibility, developing a stand-alone tool is highly necessary
for large-scale metabolomics [24–26]. Moreover, when peaks
are annotated as specific metabolites, it is essential to identify
the precise functions in the complex matrix of untargeted
metabolomics [27]. Several tools, including the metaP-server [28],
metaX, MMEASE, MetaboAnalyst, Workflow4Metabolomics and
XCMS online, provide annotation functions for metabolites, but
there is little functional annotation information in these tools.
Along with the rapid accumulation of metabolites, it is feasible to
significantly enhance the metabolite annotation and enrichment.
Therefore, for large-scale metabolomics to succeed, there is an
urgent need to develop a new and effective tool that is able to
realize data integration from multiple analytical experiments
with significantly enhanced functions in accurately annotating
metabolites.

In this study, the LargeMetabo package based on R code was
developed for processing and analyzing large-scale metabolomic
data. Compared to the existing tools and packages, there are
three factors of functional improvement to tackle the challenges
of large-scale metabolomics in the LargeMetabo package. First,
one of the greatest challenges is how to effectively integrate the
metabolites in hundreds/thousands of samples when there are
no embedded quality control samples and internal standards.
The LargeMetabo package can integrate multiple datasets from
different experiments based only on aligning the metabolites
using mass and retention time (RT). The detailed validation for
data integration using the metabolic data is shown in case study
1. Second, one of the greatest challenges is that it is difficult
to select an appropriate one from various methods of marker
identification in large-scale metabolomics. In the LargeMetabo
package, the most appropriate method can be discovered based on
the performance assessment of the classification model. Based on
the metabolic data, the detailed application for selecting marker
identification method is shown in case study 2. Third, one of
the greatest challenges is that there are few functional annota-
tions in the existing tools for metabolomics. The LargeMetabo
package can significantly enhance metabolite annotation and
enrichment using a new metabolite database. The detailed appli-
cation for functional annotations of metabolites is shown in case
study 3.

The LargeMetabo package is unique in processing and analyz-
ing large-scale metabolomic data because it is capable of (1) inte-
grating multiple datasets from different analytical experiments
based on mass and RT to effectively boost the power of statistical
analysis if there are no quality control samples, internal stan-
dards and exact feature names; (2) discovering the most appro-
priate method based on the performance assessment of classifi-
cation among various biomarker identification methods and (3)

providing enhanced metabolite annotation and enrichment anal-
ysis based on a new metabolite database. The LargeMetabo pack-
age can facilitate flexible and reproducible analysis in large-scale
metabolomic studies. The LargeMetabo package is freely available
from https://github.com/LargeMetabo/LargeMetabo.

Materials and methods
The development version of the LargeMetabo package is hosted
on GitHub, and the stable release will soon be available as an
R package on CRAN. It builds upon the R code with extensive
modifications to ensure the accurate identification of functions.
Several R packages are utilized in the background processes,
including AUC, CluMSID, corrplot, d3heatmap, dplyr, e1071, fac-
toextra, FSelector, genefilter, ggfortify, ggplot2, igraph, magrittr,
MASS, mixOmics, readr, ropls, sampling, siggenes, SOMbrero and
varSelRF. The analytical workflow in this study, including five
operational steps, is shown in Figure 1.

Methods for data integration and batch effect
removal
Large-scale metabolomics can effectively boost the power of sta-
tistical analysis and can accurately identify biological markers. In
large-scale metabolomic studies, hundreds/thousands of samples
are used and frequently separated into multiple experiments
[11]. In step 1 of the LargeMetabo package, multiple datasets
from different analytical experiments can be integrated into a
combined dataset, and three methods are provided to remove
unwanted variations and batch effects.

To integrate multiple datasets, a useful strategy for data inte-
gration was applied in this study by permitting tolerance of RT
and mass-to-charge ratio (m/z) for specific metabolite peaks [29].
The detailed description and sketch map of this strategy for data
integration are shown in Figure 2. Using this strategy, the peaks
in all samples of multiple datasets can be aligned as a metabolite
if both the differences in their RT values are small enough and
the differences in their m/z values are also small enough. There
were three steps in this strategy. First, a peak with the strongest
intensity was set as peak reference 1, and other peaks in all
samples were placed in an aligned group if the differences in
values (both RT and m/z) between these peaks and peak reference
1 were in the first tolerance setting. Second, the peak with the
median RT value in the aligned group was then set as peak
reference 2. The peaks were selected in the second group if the
differences of values (both RT and m/z) between these peaks and
the peak reference 2 were in the second tolerance setting. These
selected peaks in the second group were aligned as the same
metabolite. Third, other unaligned peaks for the metabolites can
be aligned by repeating the above stepwise process similarly.

In the process of data integration, various unwanted variations
and batch effects resulted from different experimental conditions
in multiple datasets. It was essential to remove these unwanted
variations for the integrated data from different analytical exper-
iments [30, 31]. After data integration, the methods of batch
effect removal can be applied to the integrated data directly
rather than to each dataset independently. This application can
ensure the removal of the batch effects among different datasets.
There were three methods used for removing unwanted varia-
tions and batch effects among different analytical experiments
in the LargeMetabo package. These methods used for removing
batch effects included batch mean-centering (BMC/PAMR) [32],
the empirical Bayes method (ComBat/EB) [33] and global normal-
ization (GlobalNorm) [34].
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Figure 1. The analytical workflow of the LargeMetabo package. There are five major functions: (A) data integration, (B) sample separation, (C) biomarker
identification, (D) metabolite annotation and (E) enrichment analysis.

Methods for sample separation and biomarker
identification
Four sample separation methods were applied for visualizing the
clustering and separation of different samples in step 2. After data
integration and batch effect removal, sample separation methods
were used for the visualization of different samples in large-
scale metabolomics [35]. In the LargeMetabo package, four meth-
ods were provided for sample separation, including hierarchical
clustering analysis (HCA) [36], k-means clustering (KMC) [37, 38],
self-organizing map (SOM) [39] and principal component analysis
(PCA) [40, 41].

Subsequently, 13 methods of biomarker identification were
used to discover metabolic markers for the given dataset in
step 3. In the LargeMetabo package, the popular methods for
marker identification included fold change (FC) [42], partial least

squares discrimination analysis (PLS-DA) [43], orthogonal PLS-
DA (OPLS-DA) [44], Student’s t-test [45], Chi-squared test [46],
correlation-based feature selection (CFS) [47], entropy-based filter
method [47], linear models and empirical Bayes method [48],
Relief [49], random forest-recursive feature elimination (RF-RFE)
[50], significance analysis for microarrays (SAM) [51], support
vector machine-recursive feature elimination (SVM-RFE) [52]
and Wilcoxon rank sum test (WRST) [53]. Methods of sample
separation and biomarker identification are described in detail in
the Supplementary Methods.

Because there were great variations in the statistical theories
and model assumptions for biomarker identification methods,
different methods could lead to contradictory results even when
using the same dataset [54–56]. The appropriate application of
a biomarker identification method is heavily dependent on the
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Figure 2. The detailed description and sketch map of the data integration strategy for multiple datasets from different analytical experiments based on
m/z and RT.

natural properties of certain studies [57–59]. To achieve system-
atic selection, the Marker_Assess function was provided to assess
the performance of the biomarker identification methods in the
LargeMetabo package. The assessment for these methods was
performed based on the receiver operator characteristic (ROC)
curve and area under curve (AUC) values in the SVM classification
model using metabolic markers [60–62]. In the model, 2-fold cross-
validation was used due to the limited number of samples. The
classification model was constructed with the default parameters
by applying the SVM function of the e1071 package, and the AUC
value was calculated by applying the roc function of the AUC
package.

Methods for metabolite annotation and
enrichment analysis
The MS peaks of interest need to be annotated based on their
mass values, but <2% of the detected peaks can be annotated
in untargeted MS-based metabolomics [14]. Moreover, the
conversion from a raw peak into a specific metabolite with
biological interpretation remains a major challenge [15]. Herein,
the metabolites detected by MS (MS1) and tandem MS (MS/MS)
are annotated in step 4. The metabolite annotation was based on

a new metabolite database, which was constructed by systematic
literature reviews and searching from the metabolite databases,
including HMDB [63], MMCD [64], METLIN [65], LMSD [66] and
MoNA [67]. The presumptive metabolites could be annotated
using MS1 spectra with mass information, and the metabolites
could also be annotated with the MS/MS information using
the CluMSID package. In this metabolite database, information
on the name, mass and adduct list was provided for peak
annotation. Moreover, the detailed biological functions were
added for these metabolites, including the endogenous and
exogenous factors [68–71]. These factors were obtained by
performing literature reviews and searching different databases,
including CFAM [72], Drugbank [73], ECMDB [74], FooDB (www.
foodb.ca), HMDB, Kyoto Encyclopedia of Genes and Genomes
(KEGG) [75], PMDB [76], T3DB [77], TCMID [78] and YMDB [79].
The exogenous factors referred to the source of metabolites
consisting of agricultural chemicals, cosmetics, drugs, drug
metabolites, foods, microbes, plants, TCM (traditional Chinese
medicine) ingredients and environmental toxins/pollutants. For
the LargeMetabo package, one of the advantages was that it
provided metabolite annotation with significantly enhanced
functions.
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When performing metabolite annotation using MS1 spectra,
the presumptive metabolites can be annotated using mass spec-
tra based on the adducts and multiply charged ions as the popular
method. The detected peaks will be compared with the predicted
adduct ions. There were various types of adduct ions, including
[M + H]+, [M + Na]+, etc. in positive mode and [M – H]−, [M + Cl]−,
etc. in negative mode. First, the theoretical m/z values were
calculated based on the differences between the molecular weight
of the detected MS peaks and each predicted adduct ion. Second,
these theoretical m/z values were compared with the molecular
weight of metabolites in the metabolite database, and a tolerance
of 0.05 Da was set as the default. For metabolites meeting the
tolerance, the information of the input m/z, LargeMetabo ID, mass,
name and detailed biological functions was provided in the form
of a table. The results of annotation using MS1 spectra were
presumptive and were only the reference for the enquired peaks
because of a lack of the experimental validation.

Moreover, to perform metabolite annotation of MS/MS in the
LargeMetabo package, the m/z value of the parent ion and the
matrix consisting of m/z values and intensities of MS/MS were
needed. The annotation was performed to identify metabolites
by MS/MS spectral similarity and unsupervised learning methods
using the CluMSID package. The m/z value of the parent ion was
compared with the parent ions of the metabolite database using
a tolerance of 0.1 Da as the default. The m/z values of MS/MS
peaks were compared with those in the metabolite database using
a tolerance of 0.5 Da as the default. The fit value was applied to
calculate the spectral similarity for the matched metabolite, and
the largest value (fit = 1) indicated the most appropriate match for
the specific metabolite. For metabolite annotation of MS/MS, the
information of the ID, name, mass, detailed biological functions
and fit value was provided in the form of a table. The mirror
plot of the annotation result between the input spectrum and the
specific metabolite spectrum of the metabolite database is shown
in the LargeMetabo package.

In step 5 of the LargeMetabo package, there were eight cat-
egories of functional metabolites used for enrichment analy-
sis based on the metabolite database. Because metabolomics
has been demonstrated to play important roles in complex dis-
eases by altering endogenous and exogenous sources, enrich-
ment analysis could reveal the functional roles and exogenous
sources of metabolites [80–82]. The enrichment analysis in the
LargeMetabo package involved three parts: (1) biological path-
ways (including KEGG pathways and metabolic and disease path-
ways); (2) biological functions and structures (including biological
function classes and structural categories) and (3) exogenous
sources (including food components and food additives, thera-
peutic classes of traditional medicine, species taxonomy from
traditional medicine and toxins and environmental pollutants).
Specifically, these eight categories contained the information of
a large collection of metabolites, including (1) KEGG pathways
for metabolites, (2) human metabolic and disease pathways from
the SMPDB database, (3) classes of biological function to reflect
the biological roles of metabolites, (4) categories of chemical
structure in chemical families for metabolites, (5) food sources
consisting of food components and food additives, (6) therapeu-
tic classes of secondary metabolites from traditional medicine,
(7) species taxonomy from traditional medicine for metabolites
and (8) exogenous sources from toxins and environmental pol-
lutants for metabolites. All metabolites with the information
of these eight categories are open source in the LargeMetabo
package.

Example data for the input files of the
LargeMetabo package
In the LargeMetabo package, the example data of the input file
are provided in the format of RData and csv files in the Github
repository. For data integration, the MutileGroup object, including
three datasets, are the input data for the Integrate_Data function,
and these three datasets (batch_data_1.csv, batch_data_2.csv
and batch_data_3.csv) and a data list (MutileGroup.RData),
including these three datasets, can be downloaded as the
input files for users. In the step of batch effect removal for
multiple datasets, the MutileAlign object is the integrated dataset
and it can be as the input data for Removal_Batch function,
and the files (MutileAlign.csv and MutileAlign.RData) can be
downloaded for users. In the step of sample separation and
biomarker identification for large-scale metabolomic data, the
MarkerData object is a data list consisting of the metabolite
intensities and sample labels, which can be as the input data
for the Sample_Separation, Marker_Identify and Marker_Assess
functions. The files (MarkerData.RData and MarkerData.csv),
including the metabolite intensities and sample labels, can be
downloaded for users correspondingly. For metabolite annotation,
from the AnnotaData list (AnnotaData.RData), the AnnotaMS
object (including the peak list of m/z values) is provided for
MS1, and the ParentMass object (including the m/z value of
parent ion) and TandomData object (including the matrix of m/z
values and intensities of MS/MS) are provided for MS/MS. For
enrichment analysis, from the EnrichData list (EnrichData.RData),
the sampleDatakegg object is the input file of enrichment of KEGG
pathways, and sampleDatacas and enrichDB object are provided
for other categories of enrichment analysis.

Results and discussion
To test the usability and flexibility of the LargeMetabo package,
three case studies were performed using the example data in
this study. These case studies included (1) case study 1: data
integration from three analytical experiments; (2) case study 2:
sample separation and biomarker identification for metabolomic
data and (3) case study 3: metabolite annotation and enrichment
analysis for the specific metabolite.

Case study 1: data integration from three
analytical experiments
In the LargeMetabo package, multiple datasets from different
analytical experiments can be integrated into a comprehensive
dataset. As the input, the csv files of the feature-by-sample matrix
were needed for data integration. There were four essential parts,
including the metabolite names, peak intensities, mass and RT
in the columns. The metabolite names must be kept in the
first column and the sample names must be kept in the first
row. The sample labels indicating different sample groups (case
versus control) were placed in the second row. Using the example
data provided in the LargeMetabo package, the result after data
integration is shown in Supplementary Table S2 available online
at http://bib.oxfordjournals.org/. After data integration, three
methods were provided to remove batch effects among different
analytical experiments, including BMC/PAMR, ComBat/EB and
GlobalNorm. Using the example data provided in the LargeMetabo
package, the result after data integration and batch effect
removal is shown in Supplementary Table S3 available online
at http://bib.oxfordjournals.org/.
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Table 1. The number (No.) of metabolites and true markers in the benchmark dataset MTBLS59; in this dataset, each spike-in
compound generated one or more features defined as the intensity of the MS-signals (peaks) identified by RT and m/z values; the
markers were identified using the PLS-DA and Student’s t-test methods with the cut-off of VIP >1 and adjusted P-value <0.05; the true
markers referred to the spike-in compounds

The No. of peaks of all
metabolites

The No. of peaks of
markers

The No. of peaks of true
markers

The No. of spike-in
compounds

Dataset 1 649 13 6 2
Dataset 2 641 2 2 2
Dataset 3 648 14 2 2
Integrated dataset 612 46 12 6

The function of data integration was tested by the benchmark
dataset (MTBLS17) [83] from MetaboLights [84]. In this benchmark
dataset, 78 hepatocellular carcinoma (HCC) patients and 184
cirrhotic (CIR) controls were detected by metabolomic profiling.
The changes in the metabolite levels of HCC and CIR samples
were compared using ultra-performance liquid chromatography-
MS (UPLC–MS). All samples were divided into three analytical
experiments. There were 129 CIR controls and 60 HCC patients in
the first experiment, 50 CIR controls and 13 HCC patients in the
second experiment and 5 CIR controls and 5 HCC patients in the
third experiment. The datasets from three analytical experiments
were integrated using the data integration function. After data
integration, the BMC/PAMR method was applied for batch effect
removal. After integrating three datasets and removing batch
effects, these comprehensive data were used for the downstream
analysis.

As shown in Figure 3A and B, boxplots were applied to visualize
the m/z and RT values of the raw data from different analytical
experiments. As shown, there were specific variations in the m/z
and RT values among the separate datasets, especially for the
third dataset. After data integration, the boxplots of the intensities
in each sample before and after batch effect removal are shown
in Figure 3C and D, respectively. The intensities of the samples
ranged from 4 to 8 before removing batch effects, while the
range distribution was from −4 to 0 after removing batch effects.
From these two boxplots, the range distribution could be signifi-
cantly reduced by batch effect removal. The PCA plots of samples
before and after batch effect removal are shown in Figure 3E and
F, respectively. PCA plots were applied to visualize the sample
separation from different datasets before and after batch effect
removal. From the PCA plots, the samples in different datasets
were separated from each other before batch effect removal, while
the samples in different datasets could be clustered together after
removing batch effects. The dendrograms of the samples in three
different datasets before and after batch effect removal are shown
in Figure 4A and B, respectively. The samples in different datasets
are colored red, green and blue. The samples of the integrated
dataset colored in the same color before batch effect removal
were clustered together (Figure 4A). After batch effect removal
using the BMC/PAMR method, the samples in the same color were
dispersed in the whole dendrogram (Figure 4B). Therefore, most
of the batch effects were removed from the integrated data from
the PCA plots and dendrograms.

To validate the effectiveness of the data integration method,
a benchmark spike-in dataset (MTBLS59) [85] was applied in
this study. Herein, a real metabolomic dataset was measured by
spiking 10 out of 40 apple samples with a mixture of nine known
compounds using UPLC–MS. This dataset consisted of 10 control
samples and three spiked sets of the same size, where naturally

occurring compounds were added at different concentrations. In
this dataset, each spike-in compound generated one or more fea-
tures defined as the intensity of the MS-signals (peaks) identified
by RT and m/z value. This benchmark dataset can serve as a test
bed to assess the performance of the new algorithm. The peak
table of raw data (CDF file) was obtained using the xcms package
with the default parameters. An integrated dataset was combined
from three datasets using the Integrate_Data function in the
LargeMetabo package. As shown in Table 1, the number of peaks
of all metabolites was 649, 641, 648 and 612 for dataset 1, dataset
2, dataset 3 and integrated dataset, respectively. The metabolic
markers were identified using both PLS-DA and Student’s t-test
methods with the cut-off of variable importance in the projection
(VIP) >1 and adjusted P-value < 0.05. As a result, there were 13,
2, 14 and 46 peaks of markers for dataset 1, dataset 2, dataset
3 and the integrated dataset, respectively. Among these peaks of
markers, the number of peaks of true markers was 6, 2, 2 and
12 for these four datasets, respectively. In these peaks of true
markers, there were 2, 2, 2 and 6 spike-in compounds for these
four datasets, respectively. The number of peaks of true mark-
ers and spike-in compounds was significantly increased based
on the integrated dataset. Therefore, the effectiveness of the
data integration strategy was validated based on the benchmark
dataset.

Case study 2: sample separation and biomarker
identification for metabolomic data
After integrating three analytical experiments and removing
batch effects for the benchmark dataset MTBLS17, a combined
dataset consisting of 78 HCC patients and 184 CIR controls
was obtained. The separation of all samples for this combined
dataset could be visualized using four methods. When applying
all metabolites in this dataset, the samples might be gathered
and not be separated distinctly. Therefore, the markers were
identified with a cut-off of VIP >1 for the PLS-DA method. Fifty-
nine markers were applied for the separation of all samples for
sample separation. The dendrograms of the samples in different
groups (case versus control) before and after batch effect removal
are shown in Figure 4C and D, respectively. Before batch effect
removal, the samples of different groups colored in the same
color were dispersed in the whole dendrogram (Figure 4C). After
batch effect removal using the BMC/PAMR method, a majority of
samples from the same group using the markers were clustered
together (Figure 4D). Therefore, the differences in samples from
different groups can be captured after removing batch effects.

For sample separation, fifty-nine markers were applied using
different methods. As shown in Figure 4E, hierarchical cluster-
ing for the samples and metabolites was performed using the
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Figure 3. The data integration for three analytical experiments in the benchmark dataset MTBLS17. The boxplots were applied to visualize the raw data
for (A) m/z and (B) RT values in three analytical datasets. Boxplots of intensities in each sample were used for integrated datasets (C) before and (D)
after batch effect removal. PCA plots were applied to visualize the distribution of samples using all metabolites in different analytical datasets (E) before
and (F) after batch effect removal.

parameter (clusters = 3) of HCA for separating the samples of
the case group (HCC patients) and the control group (CIR con-
trols). The lowest and highest values are shown in orange and
blue, respectively, and the others are shown in gradient color.
There were three clusters in rows for all samples; the samples
in the green and blue clusters were mainly HCC patients, and
the samples in the red cluster were mainly CIR controls. The
sample clusters for KMC and SOM in different groups (case versus
control) using the parameter (clusters = 2) are shown in Figure 4F
and G, respectively. As shown in Figure 4H, the samples were

separated using a PCA plot, and samples in two groups (case ver-
sus control) were divided into two clusters. Moreover, the results
of the example data embedded in the LargeMetabo package are
shown in Supplementary Figure S1, available online at http://bib.
oxfordjournals.org/, using four sample separation methods.

Moreover, 13 biomarker identification methods were provided
to discover metabolic markers for the integrated dataset in the
LargeMetabo package. These methods have been widely used
in identifying markers for metabolomic data [86–88]. As shown
in Table 2, the top 20 metabolites with the highest VIP values
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Figure 4. The sample separation of all samples in different datasets or different groups (case versus control) from the benchmark dataset MTBLS17.
The dendrograms were applied for different datasets including dataset 1, dataset 2 and dataset 3 (A) before and (B) after batch effect removal. Using
metabolic metabolites, the dendrograms were applied for case group and control group (C) before and (D) after batch effect removal. (E) Based on
metabolic markers, sample separation in different groups was performed using HCA with parameters (clusters = 3 for samples and clusters = 2 for
metabolites). Sample clustering in different groups was performed by (F) KMC and (G) SOM using parameter (clusters = 2). (H) Sample separation for
the case group and control group was performed using PCA.
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Table 2. Thirteen methods of biomarker identification were applied to discover metabolic markers; the top 20 metabolites with the
highest VIP values using the PLS-DA method were included; herein, the results of other biomarker identification methods are also
provided; PLS-DA, FC, OPLS-DA, CFS, correlation coefficient (Cor), Relief, RF-RFE, mean decrease accuracy (ACC), WRST, SAM, linear
models and empirical Bayes (LMEB), Chi-squared test (CHIS), importance (Import), entropy-based filter method (ENTROPY), InfGain
Order (InfGain), SVM-RFE

MZ/RT PLS-DA
VIP

FC
FC

OPLS-DA
VIP

t-test
P-value

CFS
Cor

Relief
VIP

RF-RFE
ACC

WRST
P-value

SAM
P-value

LMEB
P-value

CHIS
Import

ENTROPY
InfGain

SVM-RFE
Order

448.31/202.65 2.21 −0.76 3.29 0.02 −0.25 2.21 0.00 0.00 0.00 0.00 0.28 0.00 85
467.31/203.39 2.20 −0.71 3.24 0.02 −0.26 2.20 0.00 0.00 0.00 0.00 0.30 0.00 41
134.01/21.24 2.20 0.13 1.77 0.36 0.15 2.20 0.00 0.02 0.04 0.37 0.00 0.00 6
327.05/19.13 2.08 0.14 1.69 0.67 0.19 2.08 0.00 0.00 0.05 0.42 0.00 0.00 187
449.31/202.74 2.07 −0.62 3.07 0.02 −0.24 2.07 0.00 0.00 0.00 0.01 0.32 0.00 166
271.97/23.07 1.98 0.21 2.01 0.22 0.18 1.98 0.00 0.00 0.01 0.19 0.00 0.00 88
466.31/204.05 1.93 −0.72 2.90 0.03 −0.24 1.93 0.00 0.00 0.00 0.01 0.27 0.00 43
431.30/202.71 1.91 −0.67 2.89 0.04 −0.22 1.91 0.00 0.00 0.00 0.01 0.28 0.00 127
430.30/202.73 1.81 −0.68 2.78 0.06 −0.22 1.81 0.00 0.00 0.00 0.02 0.29 0.00 78
144.10/24.25 1.71 −0.70 2.40 0.08 −0.18 1.71 0.00 0.00 0.00 0.07 0.00 0.00 163
412.28/202.74 1.66 −0.65 2.52 0.10 −0.19 1.66 0.00 0.00 0.00 0.05 0.00 0.00 143
132.10/34.04 1.59 0.15 1.00 0.92 0.13 1.59 0.00 0.04 0.16 0.81 0.00 0.00 102
246.16/102.03 1.59 0.19 1.26 0.90 0.15 1.59 0.00 0.02 0.07 0.80 0.00 0.00 156
531.00/20.06 1.58 0.08 0.96 0.95 0.19 1.58 0.00 0.00 0.25 0.81 0.00 0.00 7
243.62/202.37 1.49 −0.43 2.38 0.09 −0.18 1.49 0.00 0.00 0.00 0.07 0.00 0.00 144
464.20/163.09 1.49 −0.54 2.20 0.13 −0.16 1.49 0.00 0.01 0.00 0.11 0.00 0.00 121
218.97/21.73 1.43 0.02 0.40 0.97 0.07 1.43 0.00 0.24 0.68 0.90 0.00 0.00 177
227.96/19.97 1.43 0.02 0.42 0.97 0.07 1.43 0.00 0.26 0.70 0.90 0.00 0.00 45
130.97/581.84 1.38 0.02 0.33 0.97 0.04 1.38 0.00 0.48 0.74 0.94 0.00 0.24 64
218.14/36.87 1.37 0.12 0.85 0.92 0.08 1.37 0.00 0.17 0.24 0.84 0.00 0.00 71

of the PLS-DA method were discovered. Herein, other methods
were also applied for biomarker identification. There were
significantly different results when using different biomarker
identification methods even for the same dataset. Therefore,
it was very important to select the most appropriate method
for a specific dataset [89]. Moreover, the plots of example data
embedded in the LargeMetabo package by applying the biomarker
identification methods are shown in Supplementary Figure S2
available online at http://bib.oxfordjournals.org/.

The appropriate application of these biomarker identification
methods was heavily dependent on the performance assessment
[90]. The performances of these methods were assessed using the
Marker_Assess function in the LargeMetabo package. The internal
data (MarkerData object) were used for the performance assess-
ment, which included 398 metabolites in samples of 21 controls
and 24 cases. Based on the discovered markers, the ROC curve
and AUC value were applied in the SVM classification model.
Considering the limited number of samples, the classification
model with 2-fold cross-validation was constructed using the SVM
function of the e1071 package and the AUC value was calculated
using the ROC function of the AUC package. As shown in Figure 5,
the AUC values were evidently different when using these 13
biomarker identification methods. In particular, the AUC value of
the classification model equaled 1 when using the markers of PLS-
DA, Chi-squared test, CFS, entropy-based filter, Relief, RF-RFE and
SVM-RFE. The AUC value was close to 1 when using the markers
of OPLS-DA, Student’s t-test, LMEB and WRST. The AUC values
were low when using the markers of FC and SAM. The appropriate
methods, including PLS-DA, Chi-squared test, CFS, entropy-based
filter, Relief, RF-RFE and SVM-RFE, were suggested to be applied
for this dataset by performance assessment.

Moreover, a benchmark dataset (the study of Xiao et al.)
[91] was applied to identify the metabolic markers of triple-
negative breast cancer. This dataset included 330 samples with
triple-negative breast cancer and 149 paired normal breast

tissues. In this study, both FC and Student’s t-test methods
were used to discover biomarkers of the raw data. The cut-off
(logFC > 1 and P-value < 0.05) was set for FC and Student’s t-test
method, respectively. As a result, there were 302 markers at the
intersection of these two methods, comprising 98 upregulated and
204 downregulated metabolites between triple-negative breast
cancer and paired normal breast tissues. The boxplots of the
top 10 most upregulated and downregulated markers are shown
in Figure 6A and B, respectively. Taking phenylalanyl-threonine
as an example, the value in samples with triple-negative breast
cancer was five times that in normal breast tissues. The value
of uridine 5′-diphosphoglucuronic acid (UDP-D-glucuronate) in
samples of normal breast tissues was five times that of samples
with triple-negative breast cancer. The scatter diagram of negative
logarithmic transformation of the adjusted P-values for each
metabolite using Student’s t-test is shown in Figure 6C. The points
in red indicate the metabolites with adjusted P-values < 0.05
between the two sample groups (triple-negative breast cancer
versus paired normal breast tissues). These metabolic markers
can be used for the downstream analysis in case study 3.

Case study 3: metabolite annotation and
enrichment analysis for specific metabolite
In the LargeMetabo package, the function of metabolite annota-
tion was provided based on an enhanced metabolite database.
The metabolite database was constructed by systematic litera-
ture reviews and searching various databases. Information on
the name, mass, adduct list and biological functions, including
the endogenous and exogenous factors for each metabolite, was
provided. This metabolite database was applied for enhanced
annotation of metabolites, and the metabolite data can be down-
loaded from the LargeMetabo package. For metabolite annotation
of MS1, the input data were the peak list of m/z values. For
metabolite annotation of MS/MS, the input data consisted of the
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Figure 5. The ROC curves and AUC values of the classification model using the metabolic markers identified by 13 biomarker identification methods.
The classification model was constructed using 2-fold cross-validation.

m/z value for the parent ion and the matrix, including m/z values
and intensities of MS/MS.

To validate the function of metabolite annotation, the
metabolic markers identified by both FC and Student’s t-test
method were applied based on the benchmark dataset (the study
of Xiao et al.) [91]. The top 10 most upregulated and downregulated
metabolites were annotated using the LargeMetabo package.
The annotation results of these metabolites, including the
name, logFC, adjusted P-values and biological interpretation,
are shown in Table 3. For example, the most upregulated
metabolite, phenylalanyl-threonine, was annotated as an endoge-
nous metabolite. It was reported that phenylalanyl-threonine
was one peptide in the analysis of metabolomics [92, 93].
The most downregulated metabolite, UDP-D-glucuronate, was
the endogenous substrate of uridine 5′-diphosphate (UDP)-
glucuronosyltransferase and was measured in the liver, kidney

and placenta [94, 95]. The annotated functions for UDP-D-
glucuronate consisted of drug, food, microbial metabolite and
plant. Moreover, the results of metabolite annotation using m/z
(96.95964) as the enquiry are shown in Supplementary Table S4
available online at http://bib.oxfordjournals.org/. As shown in
Supplementary Table S5 and Supplementary Figure S3, available
online at http://bib.oxfordjournals.org/, the results of metabolite
annotation were created based on the parent ion mass and
the MS/MS peak list (m/z and intensity) embedded in the
example data.

Based on this enhanced metabolite database, there were
eight categories of enrichment analysis for metabolites. Using
302 metabolic markers between triple-negative breast cancer
and paired normal breast tissues by both FC and Student’s t-
test methods, the enrichment analysis was validated based on
eight categories of metabolite enrichment. The results, including
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Figure 6. The metabolic markers for triple-negative breast cancer identified using a benchmark dataset (Cell Res. 32: 477–90, 2022). Based on the
metabolomic data between triple-negative breast cancer patients and the paired normal breast tissues, boxplots of the top 10 most (A) upregulated
and (B) downregulated markers using the FC method were used. (C) The plot of logarithmic transformation of the adjusted P-values for each metabolite
using Student’s t-test method. The points above dotted line indicate the metabolites with adjusted P-values <0.05.

KEGG pathways, metabolic and disease pathways, biological
function classes, chemical structure in chemical families, food
components and food additives, therapeutic classes of secondary
metabolites, species taxonomy and toxins and environmental
pollutants, are shown in Figure 7A–H, respectively. A chord
diagram was applied to visualize the enrichment analysis of
KEGG pathways, and a bar plot (the number of enrichment
terms > 3) or pie chart (the number of enrichment terms ≤
3) was used to visualize the results of other categories. These
pathways and biological functions may be involved in the
development of the disease studied or may result from the
disease [96, 97]. Moreover, as shown in Supplementary Figure S4
and Supplementary Table S6, available online at http://bib.
oxfordjournals.org/, the results of enrichment analysis for KEGG
pathways were created using the example data embedded in
the LargeMetabo package. Based on the example data and code,
the results of enrichment analysis for KEGG pathways were
shown in Supplementary Table S7 and Supplementary Figure S5

available online at http://bib.oxfordjournals.org/. And the results
of enrichment analysis for the classes of food components and
food additives were shown in Supplementary Figure S6 available
online at http://bib.oxfordjournals.org/.

To validate the enrichment analysis of the LargeMetabo
package, a benchmark dataset [98] of the human adult urinary
metabolic variations with age was applied in this study. Based
on the metabolic markers identified by the study of a large
cohort of 183 adults with age, the KEGG pathways were enriched.
As shown in Table 4, there were 10 KEGG pathways in this
study, including caffeine metabolism, alanine, aspartate and
glutamate metabolism, phenylalanine metabolism, tryptophan
metabolism, central carbon metabolism in cancer, arginine
biosynthesis, pantothenate and CoA biosynthesis, beta-alanine
metabolism, phenylalanine, tyrosine and tryptophan biosynthesis
and protein digestion and absorption. To validate the results of
enrichment analysis based on the enhanced metabolite database,
the relationship between pathways and variations with age was
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Figure 7. Enrichment analysis was performed based on the metabolite database using these markers by both FC and Student’s t-test for a benchmark
dataset (Cell Res. 32: 477–90, 2022). The plots of biological functions included (A) KEGG pathway, (B) SMPDB pathway, (C) biological function classes, (D)
structural categories in chemical families, (E) classes of food components and food additives, (F) therapeutic classes of traditional medicine, (G) species
taxonomy and (H) toxins and environmental pollutants.

studied based on a comprehensive literature review. Except
for central carbon metabolism in cancer, these nine pathways
have been reported to be related to variations with age. Herein,

the functions of enrichment analysis have been validated by a
literature review, but more benchmark datasets are required for
comprehensive validation in the future.
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Table 3. The results of metabolite annotation for the top 10 most upregulated and downregulated metabolites between triple-negative
breast cancer patients and the paired normal breast tissues using the LargeMetabo package

No. Metabolite logFC adj P-value Annotation

1 Phenylalanyl-threonine 5.45 2.39E-63 Endogenous
2 Glycochenodeoxycholate 4.22 1.81E-41 Endogenous; food; microbial metabolite
3 5-Amino-4-carbamoylimidazole 4.12 3.83E-13 Endogenous; food; microbial metabolite; TCM ingredient
4 D-ribose 5-phosphate 3.65 6.88E-38 Endogenous; food; microbial metabolite; plant; TCM ingredient
5 1,2-Distearoyl-sn-glycerol 3-phosphate 3.47 9.58E-36 .
6 Pyridoxine 3.35 5.40E-21 Cosmetic; drug; endogenous; food; microbial metabolite; plant; TCM

ingredient; toxins/pollutant
7 Lysyl-phenylalanine 3.19 8.78E-15 Endogenous
8 3,4-Dihydroxyhydrocinnamic acid 3.10 2.60E-27 Food; microbial metabolite; plant; TCM ingredient
9 Allantoin 3.04 2.57E-76 Carcinogenic potency; cosmetic; drug; endogenous; food; microbial

metabolite; plant; TCM ingredient; toxins/pollutant
10 Melatonin 3.02 2.04E-12 Cosmetic; drug; endogenous; food; microbial metabolite; TCM ingredient;

toxins/pollutant
11 Guanosine diphosphate mannose −8.58 8.24E-85 Endogenous; food; microbial metabolite; plant; TCM ingredient
12 Guanosine 5′-diphosphate −8.68 4.49E-149 Endogenous; food; microbial metabolite; plant
13 UDP −9.32 9.78E-112 Endogenous; food; microbial metabolite; plant; TCM ingredient
14 Uridine diphosphate glucose

(UDP-D-glucose)
−9.75 3.32E-56 Endogenous; food; microbial metabolite; plant; TCM ingredient

15 D-ribulose 1,5-bisphosphate −9.78 1.53E-60 .
16 D-alanyl-D-alanine −10.00 3.79E-100 Endogenous; food; microbial metabolite; plant; TCM ingredient
17 Glutathione disulfide −10.66 9.85E-64 Cosmetic; drug; endogenous; food; microbial metabolite; plant; TCM

ingredient
18 D-fructose 1,6-bisphosphate −10.70 1.01E-56 Endogenous; food; microbial metabolite; TCM ingredient
19 Adenosine 5′-diphosphate −10.80 5.22E-121 Endogenous; food; microbial metabolite; plant; TCM ingredient
20 UDP-D-glucuronate −12.26 7.80E-130 Drug; endogenous; food; microbial metabolite; plant

Table 4. Validation on the enrichment results of KEGG pathways using metabolic makers identified by the study of 183 adults with age
(J Proteome Res. 14: 3322–35, 2015); the relationship between KEGG pathways and variations with age is shown according to a
comprehensive literature review

No. KEGG pathways The relationship between enrichment term and variations with age

1 Caffeine metabolism Critical changes in adenosinergic neurotransmission occur with aging, and caffeine is an adenosine
receptor antagonist (Neurobiol Aging. 26: 957–64, 2005). The higher concentrations of caffeine and its
metabolites suggest an increased consumption and/or a decreased metabolic activity with age (J Proteome
Res. 14: 3322–35, 2015).

2 Alanine, aspartate and
glutamate metabolism

Aspartic acid and glutamate show significant concentration changes with age (Proc Natl Acad Sci U S A.
108: 6181–6, 2011).

3 Phenylalanine metabolism The rate of assimilation and hydroxylation of phenylalanine diminishes with age, which defines the
age-related characteristic of phenylalanine metabolism (Vopr Pitan. 1982. 4: 52–5, 1982). Phenylalanine
shows significant concentration changes with age (Proc Natl Acad Sci U S A. 108: 6181–6, 2011).

4 Tryptophan metabolism Studies in multiple organisms have implicated tryptophan metabolism as a powerful regulator of lifespan
(Trends Mol Med. 19: 336–44, 2013).

5 Central carbon metabolism in
cancer

–

6 Arginine biosynthesis The demonstrated anti-aging benefits of L-arginine show greater potential than any pharmaceutical or
nutraceutical agent ever previously discovered (J Adv Res. 1: 169–77, 2010).

7 Pantothenate and CoA
biosynthesis

Extracellular precursors, especially vitamin B5 (calcium pantothenate), is essential for eukaryotic cells to
obtain CoA, which plays key roles in aging-related neurodegeneration (Nat Chem Biol. 11: 784–92, 2015).

8 Beta-alanine metabolism The anti-aging effect of beta-alanine is shown by significantly increasing the skeletal muscle carnosine (J
Int Soc Sports Nutr. 5: 21, 2008).

9 Phenylalanine, tyrosine and
tryptophan biosynthesis

The metabolism of tyrosine and phenylalanine is significantly affected by pyridoxine which is an essential
co-factor in the body’s fight against elevated homocysteine levels. A high homocysteine level is associated
with aging-related alzheimer’s disease (Int J Pharma Bio Sci. 1: 1–17, 2010).

10 Protein digestion and
absorption

The rate of protein digestion affects protein gain differently during aging in humans (J Physiol. 549: 635–44,
2003).
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There were still some limitations for the LargeMetabo pack-
age. For large-scale metabolomics, multiple datasets from dif-
ferent analytical experiments can be combined into an inte-
grated dataset based on the mass and RT using this package.
However, only when the sample preparation and experimental
conditions in different analytical experiments are similar, these
datasets can fulfill the requests for data integration in MS-based
metabolomics. In the future, the applications of this data integra-
tion strategy can be extended to a larger scope of metabolomics.
Moreover, more experimental datasets should be applied in the
LargeMetabo package to validate the functions of processing and
analyzing large-scale metabolomic data.

Conclusion
Currently, data integration from multiple analytical experiments
and enhanced metabolite annotation are urgently needed for pro-
cessing and analyzing large-scale metabolomic data. To facilitate
the flexibility and reproducibility of data processing and analysis,
the LargeMetabo R package was developed in this study. This
package can (1) integrate multiple analytical experiments into
a combined dataset; (2) identify metabolic markers by selecting
the most appropriate method by performance assessment and
(3) conduct enhanced metabolite annotation and enrichment
analysis based on a new metabolite database. The LargeMetabo
package is freely available from https://github.com/LargeMetabo/
LargeMetabo.

Key Points

• The LargeMetabo package was developed based on
R code for processing and analyzing large-scale
metabolomic data.

• The LargeMetabo package can integrate multiple
datasets from different analytical experiments to
effectively boost the power of statistical analysis in
large-scale metabolomics.

• The appropriate method can be selected by assessment
among various biomarker identification methods for
large-scale metabolic data.

• The functions of metabolite annotation and enrichment
analysis based on an enhanced metabolite database are
provided for interpretation and biological mechanism of
disease.

Supplementary Data
Supplementary data are available online at https://academic.oup.
com/bib.

Data availability
The implemented code and experimental dataset are available
online at https://github.com/LargeMetabo/LargeMetabo.
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