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ABSTRACT: The triple reuptake inhibitors (TRIs) class is a class of effective
inhibitors of human monoamine transporters (hMATs), which includes
dopamine, norepinephrine, and serotonin transporters (hDATs, hNETs, and
hSERTs). Due to the high degree of structural homology of the binding sites of
those transporters, it is a great challenge to design potent TRIs with fine-tuned
binding profiles. The molecular determinants responsible for the binding
selectivity of TRIs to hDATs, hNETs, and hSERTs remain elusive. In this
study, the solved X-ray crystallographic structure of hSERT in complex with
escitalopram was used as a basis for modeling nine complexes of three
representative TRIs (SEP225289, NS2359, and EB1020) bound to their
corresponding targets. Molecular dynamics (MD) and effective post-trajectory
analysis were performed to estimate the drug binding free energies and
characterize the selective profiles of each TRI to hMATs. The common binding
mode of studied TRIs to hMATs was revealed by hierarchical clustering analysis of the per-residue energy. Furthermore, the
combined protein−ligand interaction fingerprint and residue energy contribution analysis indicated that several conserved and
nonconserved “Warm Spots” such as S149, V328, and M427 in hDAT, F317, F323, and V325 in hNET and F335, F341, and V343
in hSERT were responsible for the TRI-binding selectivity. These findings provided important information for rational design of a
single drug with better polypharmacological profiles through modulating multiple targets.
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■ INTRODUCTION

Polypharmacology including multitarget drugs and combina-
tion therapies have been developed to achieve a more
therapeutic effect for complex diseases such as psychiatric
disorders, cancer, infections, and so on.1 The tailorability of
multitarget drugs in modulating the relevant pathways of
complex diseases2 is of critical importance for minimizing drug
resistance issues, mitigating the adverse events of drug−drug
interactions, and improving medication adherence among
patients.3,4 In recent years, the value of drugs against multiple
targets is increasingly recognized by pharmaceutical research as
their greater efficacy,5−8 while designing a multitarget drug
with fine-tuned properties in modulating two or more targets
remains a challenge for medicinal chemists in drug discovery.9

In particular, the design becomes more challenging when the
protein belongs to the same family, such as G-protein coupled
receptors (GPCRs),10,11 kinases,12 and transporters,13 which
are the causative mechanisms and therapeutic targets to the
diseases.14−16

Human monoamine transporters (hMATs), including the
dopamine transporter (hDAT), norepinephrine transporter
(hNET), and serotonin transporter (hSERT), are secondary
active transporters that belong to the solute carrier 6 (SLC6)

family.17,18 hDAT, hNET, and hSERT share great homology,
with more than 50% sequence identity overall, and more than
70% homology within the transmembrane (TM) domains
(Figure S1). The three closely related transporters are
responsible for regulating neurotransmission via the reuptake
of dopamine (DA), norepinephrine (NE), and serotonin (5-
HT) from the extra-neuronal regions.19 Thus, hDAT, hNET,
and hSERT have been pharmacological targets for several
neuropsychiatric and neurodegenerative disorders caused by
dysfunction of neurotransmitter homeostasis in the brain.19−21

For single- or dual-target antidepressants, it is estimated that,
for more than 60% of patients who suffered from major
depressive disorder (MDD), the antidepressants are inad-
equate to achieve a satisfactory therapeutic effect due to the
low remission rate and delayed therapeutic onset.22,23

Nevertheless, alternative novel therapies (listed in Table S1)
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from clinical trials revealed that simultaneously inhibiting the
DA, NE, and 5-HT reuptake could rapidly increase the
extracellular levels of neurotransmitter in different brain
regions,24 leading to better efficacy and safety and less
tolerance against patients with MDD or other diseases such
as attention deficit hyperactivity disorder, binge eating
disorder, and cocaine addiction.24−27

Interestingly, the early design of TRIs were evolved from
single or dual reuptake inhibitors of hMATs by simplifying the
chemical structures,28 which makes it so the scaffolds of the
TRIs are very close to the native substrates DA, NE, or 5-HT
(Figure 1A). Such a structural similarity has given rise to
speculation that the central binding site of the transporters
(Figure S1), which can be occupied by small molecules with
different sizes (Figure 1A), have the strong ability of plasticity
to function.29 Herein, SEP225289, NS2359, and EB1020 were
selected as the representative TRIs in current studies25 by
comprehensively considering the scaffold (substrate structure)
similarity and substituent group diversity. The three TRIs
exhibited excellent binding affinities against each protein of
hMATs.25 Importantly, the phase 2 or 3 clinical trials indicated
that the polypharmacology profiles (for example the protein−
ligand binding mode and the variation of drug inhibition ratio
to different targets) may be responsible for their improved
therapeutic effects.25,26,30 However, there is a lack of
understanding regarding the profiles of TRI polypharmacology
pose restrictions on multitarget antidepressant develop-
ment.2,28,31,32

In this study, to fill the aforementioned gap, a computational
study was performed to predict the binding of SEP225289,
NS2359, and EB1020 to the central site of hDAT, hNET, and
hSERT at atomic levels. The structures of hDAT and hNET
were constructed via homology modeling technique using the
available X-ray crystal structure of hSERT in an outward-open
conformation33 as a template. The binding affinity of each TRI

to the corresponding target protein was estimated through
molecular mechanics generalized Born surface area (MM/
GBSA) method34 based on the sampled binding modes
derived from molecular dynamics (MD) simulation. Per-
residue energy decomposition and molecular interaction
fingerprint analysis provided important insights into the
variation of the inhibition ratio that trigger differentiated
treatment effects.24,25

■ RESULTS AND DISCUSSION
Docking Poses of TRIs at the Central Binding Site of

hMATs. Like other classical antidepressants, such as
escitalopram,33 TRIs were developed as competitive inhibitors
preventing the substrates (DA, NE, and 5-HT) from binding
to hDAT, hNET, and hSERT.25 To investigate the
polypharmacology of TRIs as novel therapies at the atomic
level, the complexes of SEP225289, NS2359, and EB1020
bound to their targets (Figure 1B−D) were predicted by
docking them into the central binding sites of the highest
quality structures of the three transporters in outward-open
conformations so far. See details for the evolution of the
modified hSERT crystal structure and hDAT and hNET
homology models in the Supporting Information (Results and
Discussion section).
Figure 1B−D displays the superimposed binding pose of

each drug in the central binding site of the same target. The
central binding site of hMATs is primarily surrounded by
transmembrane (TM) helices 1, 3, 6, and 8 and can be further
divided into three subsites (A, B, and C).17 As shown, all the
three drugs’ positively charged nitrogen moieties occupied the
regions of subsite A and form salt bridge interactions with the
negatively charged side chains of the conserved aspartic acid in
the targets (D79 in hDAT; D75 in hNET and D98 in hSERT),
which plays a crucial role in ligand recognition.18,22 In subsite
B, the 1,2,3,4-tetrahydronapthalene of SEP225289, the

Figure 1. (A) Structures of the TRIs SEP225289, NS2359, and EB1020 as well as the substrates dopamine, norepinephrine, and serotine in this
study. The scaffold of the structures were highlighted in red. (B) Superimposition of the docked poses of SEP225289 (orange), NS2359 (green),
and EB1020 (blue) in the structure of hDAT (cyan stick). (C) Superimposition of the docked poses of SEP225289 (cyan), NS2359(green), and
EB1020 (orange) in the structure of hNET (blue stick). (D) Superimposition of the docked poses of SEP225289 (blue), NS2359 (cyan), and
EB1020 (orange) in the structure of hSERT (green stick). SEP225289, NS2359, and EB1020are represented by the ball and stick model. Locations
of subsite A, subsite B, and subsite C are indicated by red, orange, and green dashed lines, respectively. Two Na+ and one Cl− ions are represented
by the blue and green spheres, respectively.
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methoxymethyl of NS2359, and the [3, 3, 0] hexane of EB1020
moiety interacts with aromatic residues (F320 and F326 in
hDAT; F317 and F323 in hNET; F335 and F341 in hSERT)
of the TM3 domain via hydrophobic interactions. For subsite
C, the phenyl group of the drugs was enclosed in a
hydrophobic pocket formed by the side chains of residues in
TM3 and TM8 (V152, Y156, S422, A423 in hDAT; V148,
Y152, S419, S420 in hNET; I172, Y176, S438, T439, and L443
in hSERT). The results cover most of the interaction features
in the cocrystallized structure of escitalopram-hSERT,33 which
verified the rationality of the docking poses. Meanwhile, there
are obvious differences between the TRI-binding and
substrate-binding modes in three transporters by docking
due to the headgroup of positive nitrogen of DA, NE, and 5-
HT, which are far away from the TM6 in comparison with
TRIs bound to hDAT, hNET, and hSERT, respectively, and
the three substrates occupy the central binding site in three
hMAT structures with a chemical space smaller than the
regions of subsite B in TRI-binding complexes from the
docking model (Figure S6). In addition, Figure 1B−D shows
the ability of the hDAT, hNET, and hSERT central binding
site to accommodate drugs with varying size; however, the
plasticity of the pocket was not fully considered in the docking
calculation.35 In this regard, further MD simulation is
necessary to characterize the structural dynamic behavior of
the obtained nine binding complexes.35−37

Conformational Sampling of the TRI-Binding Com-
plexes. Starting from the docking poses, unbiased MD
simulations of the complexes in explicit solvent sampled the
protein−ligand conformations, and all systems basically
achieved convergence after 50 ns of simulations (Figure S7).
To monitor the conformational states of the TRI-binding
complexes, two pairs of gating residues (Arg85-Asp476 and
Tyr156-Phe320 of hDAT; Arg81-Phe473 and Tyr152-Phe317
of hNET; Arg104-Glu493 and Tyr176-Phe335 of hSERT) in
the external gate were picked out to calculate the distances
between α carbon atoms of gating residues of three hMATs
along each MD trajectory. Figure S8 shows that the TRIs
binding in the central site of three hMATs primarily favor an
outward-open conformation during MD simulations. The
backbone atoms of the whole proteins are accompanied by
an average value of ∼3.0 Å RMSD fluctuation with respect to
the docked poses in all simulation systems. In comparison, the
heavy atoms of a ligand in each system and the backbone
atoms of residues around the ligand binding site gave an
RMSD fluctuation from the initial structure of ∼0.5 and ∼1 Å,
respectively. To get an overall view of the binding mode before
and after MD simulations, the representative snapshots of

SEP225289, NS2359, and EB1020 binding to hDAT, hNET,
and hSERT derived from equilibrated trajectories were
superimposed onto the corresponding initial docking con-
formations (Figure S9). The details of the protein−ligand
interaction features from MD simulations were analyzed in the
following section. Figure S9 indicated that, in addition to the
most well-preserved key interactions such as the salt bridge,
there are some structural rearrangements by adjusting the
orientation of the active site residues’ side chain. For example,
the flip of the residues F320, F326, V152, S422, and M427 in
hDAT; F317, L319, F323, and S419 in hNET; and F335,
F341, T431, and S438 in hSERT were found during the
simulations. These results are consistent with the conclusion
that MD simulations are essential for assessing and
corroborating the predicted binding modes from docking
calculations.38

Binding Free Energy of TRIs to Multiple Targets. The
reliability of the predicted binding modes by MD simulations
can be further judged by comparing the calculated binding free
energies (ΔGCAL) with experimental values (ΔGexp).

39 Table 1
lists the results of ΔGCAL and the details of the energy terms
estimated by the MM/GBSA method34 together with ΔGexp
and experimental IC50.

25 The values of ΔGCAL were in the
range −49.11 kcal/mol (NS2359-hNET) to −36.50 kcal/mol
(EB1020-hSERT). The correlation coefficient between the
calculation and experiment was 0.84 (Figure 2). These values
underline the reliability of the simulations.40 As shown in
Table 1, the major contributors to the nine binding complexes

Table 1. Binding Affinities of the Studied Ligands from Calculation and Experiment (Energy in kcal/mol and IC50 in nM)

drug target ΔEele ΔEVDW ΔGGB ΔGGBSUR ΔGCAL
a ΔGexp

b IC50
c

NS2359 hDAT −70.51 −44.24 71.65 −5.01 −48.11 −11.34 10
hNET −55.57 −45.57 56.63 −4.99 −49.11 −12.33 2
hSERT −22.01 −40.45 23.71 −4.66 −43.42 −11.34 10

SEP225289 hDAT −84.33 −40.82 82.43 −4.94 −47.65 −12.33 2
hNET −55.76 −40.53 56.07 −4.85 −45.07 −11.90 4
hSERT −39.61 −37.96 38.26 −4.71 −44.03 −11.13 14

EB1020 hDAT −87.08 −35.21 88.41 −4.27 −40.00 −10.51 38
hNET −52.44 −36.62 52.29 −4.11 −40.88 −11.65 6
hSERT −23.72 −35.51 26.94 −4.21 −36.50 −10.03 84

aCalculated binding free energy using MM/GBSA method34 in this work. bExperimental binding free energy calculated using ΔGexp = RTln(IC50).
cIC50 values were from the experimental literature.25

Figure 2. Comparison between the experimental and calculated
binding affinities from the computational simulation using the data
listed in Table 1. The correlation coefficient between the values of
ΔGCAL and ΔGexp is 0.84. The calculated binding energy error bars
represent the standard error.
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were the electrostatic energy (ΔEELE) and the van der Waals
energy (ΔEVDW) terms, whereas the polar solvation energy
(ΔGGB) was unfavorable for the interactions. Therefore, it
could be concluded that the optimization of van der Waals and
electrostatic interactions may improve the inhibitor binding
affinities.
Tables S2−S4 list the per-residue energies for the nine

complexes. According to previous studies of the similar
system,41,42 the binding free energy was dominated primary
by the “Hot Spots” (per-residue absolute energy contribution
value ≥ 1.5 kcal/mol) and “Warm Spots” (0.5 kcal/mol ≤
absolute energy contribution value < 1.5 kcal/mol) residues.
Therefore, the energy contribution of −0.50 kcal/mol was used
as a cut off, and the 17, 18, and 17 favorable contributors were
characterized as important ones in the central binding sites of
hDAT (Figure 3A), hNET (Figure 3B), and hSERT (Figure
3C), respectively. Figure 4 displays the molecular interactions
between each TRI and the corresponding identified residues.
The detailed descriptions of the binding modes can be found
in the Supporting Information (Results and Discussion
section). Among the characterized important residues, there
were several “Hot Spots” (with favorite contributions more
than −2.00 kcal/mol) identified in the binding sites; for
example, D79 in hDAT contributes −3.68, −2.99, and −3.25
kcal/mol for SEP225289, NS2359, and EB1020 recognition
(Table S2), respectively. F72 was one of the largest
contributors (−4.10 kcal/mol) in the hNET−EB1020 complex
(Table S3), and D98 in hSERT contributed more binding
energy for SEP225289 (−2.89 kcal/mol) than for NS2359
(1.12 kcal/mol) and EB1020 (−1.20 kcal/mol) (Table S4). In
addition, there are some “Warm Spots” (with favorite
contributions from −0.50 to −2.00 kcal/mol) which were

identified in the central binding sites interacting with different
substituted moieties of the inhibitors. Previous studies have
shown that “Warm Spots” play important roles in regulating
the behaviors of ligands binding to protein subtypes,42 which
will be further discussed in the next section.

Understanding the Polypharmacology of TRIs. Profil-
ing the Common Binding Mode of TRIs. To understand the
polypharmacology mechanism of TRIs, it is essential to profile
the common binding mode of TRIs. Based on the data of per-
residue energy, hierarchical cluster analysis was performed to
get an overview of the energy profiles of each residue in the
binding sites contributing to different drugs binding to their
corresponding targets (Figure 5). The drugs analyzed include
two single-target inhibitors42 (Escitalopram and Talopram),
one dual-target inhibitor42 (Ligand 10), and four triple
reuptake inhibitors (Amitifadine,22 SEP225289, NS2359, and
EB1020), which have different binding affinities to hDAT,
hNET, or hSERT.
As shown in Figure 5, a total of 48 residues in the central

binding site of the three target proteins were mainly clustered
into categories A, B, and C. From the columns of the heatmap,
the clustering result shows that the 12 residues in cluster A and
B contributed much more than the other to the binding of all
the drugs. Furthermore, the contribution of the residues in
categories A and B demonstrated that their interactions with
TRIs are weaker compared with that of the single- and dual-
target bound complexes; this is because of the relatively small
size of the TRI chemical structure. However, from the rows of
the heatmap, except for EB1020-hNET and Escitalopram-
hNET, all of the single- and dual-target drug bound complexes
are mainly clustered into group I. Meanwhile, all of the TRI
bound complexes were clustered into group II.

Figure 3. Per-residue energy profiles for SEP225289, NS2359, and EB1020 binding in hDAT, hNET, and hSERT. For the nine simulated systems,
the central site residues with a favorite energy contribution of more than 0.50 kcal/mol are displayed. The black dotted lines represent the cut off of
−0.50 kcal/mol.
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Inspired by the figures shown in clustering analysis (Figure
5) and interaction modes (Figure 4), the common binding
mode of EB1020, SEP225289, and NS2359 in the central
binding sites of hDAT, hNET, and hSERT was profiled in
Figure 6. As shown, the amine group of TRIs (R1) engaged in
hydrogen interaction or electrostatic interaction with con-
served aspartic acid (D79 in hDAT, D75 in hNET, and D98 in
hSERT). The phenyl moiety of TRIs (R3) extends into the
hydrophobic pocket shaped by TM3 and TM8 residues S149,
V152, Y156, S422, A423, and G426 in hDAT; A145, V148,
Y152, S419, S420, and G423 in hNET; and Y95, A169, I172,
Y176, S438, T439, and G442 in hSERT. In addition, the R2
substituent also established hydrophobic interactions with the
side chains of F320, S321, and F326 in hDAT; F317, S318, and
F323 in hNET; and S336, F335, and F341 in hSERT.
Moreover, the protein−ligand pharmacophore models of the
nine representative structures illustrated that hydrophobic
interactions and hydrogen bond interactions are the predom-
inant features for the three target proteins (Figure 7). In
addition, there are some distinctive features which are also
found here; for example, in the hDAT bound complex, the
aromatic amino acid Y156 formed one π−π interaction, one
CH−π interaction, and one T-shaped interaction with
SEP225289, NS2359, and EB1020, respectively (Figure 7A−

C). In hNET bound complexes, the side chain of Y152 formed
hydrogen bonds with NS239 and EB1020, respectively. (Figure
7D−F). In hSERT bound complexes, one CH−π interaction
was formed with SEP225289. The three drugs’ positively
charged nitrogen moiety mainly participated in hydrogen
bonding in TM1 and TM6 regions (Figure 7G−I). The
pharmacophore models of the nine simulated complexes were
consistent with the identified common binding features in the
central binding site for TRIs. The profiles of the common
binding mode and protein−ligand pharmacophore not only
suggested that electric and hydrophilic interactions are the
main thermodynamic driving forces for the formation of TRI
binding complexes, which also provided useful information for
the design or optimization of TRI analogues with improved
selectivity.

Identifying the Interaction Features Underlying TRI
Inhibitory Ratios. It is well-known that the stabilization of a
ligand binding to its target protein is through the
conformation-dependent recognition mechanism,43 which
means that structural changes of the protein or ligand can
lead to the variation of their binding affinities. On the basis of
this concept, it would become feasible to further decipher the
molecular mechanism of the TRI inhibitory ratio to the
different targets using the obtained binding mode of the

Figure 4. Binding modes of the studied TRIs in the central site of targets derived from MD simulations. The ligands in the binding site are shown
as sticks and mesh. Proteins hDAT, hNET, and hSERT are represented in pink, green, and blue cartoons, respectively. (A−C) The ligands (red)
SEP225289, NS2359, and EB1020 in the hDAT binding site. (D−F) The ligands (dark green) NS2359, EB1020, and SEP225289 in the hNET
binding site. (G−I) The ligands (dark blue) NS2359, EB1020, and SEP225289 in the hSERT binding site. Two Na+ ions and one Cl− ion are
represented by the pink and blue spheres, respectively.
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binding complexes. Thus, the interaction features that
determine the relative binding affinities of TRIs to hDAT,
hNET, and hSERT were identified by comparisons of the
modes of interaction.
Comparison of the Interactions of Specific TRIs among

hDAT, hNET, and hSERT. The superimposition for each drug
in the central sites of hDAT, hNET, and hSERT indicated the
conformational varieties of both conserved and nonconserved
residues (Figure 8A−C). To quantitatively determine those
differences, the molecular fingerprint of interactions which was
calculated with more than 50% probability interactions was
depicted in Figure 8D−F. The details of the protein−ligand
interaction types were listed in Tables S5−S7. Although the
interactions between F76 (hDAT) and F72 (hNET) with
SEP225289 and between D98 (hSERT) with NS2359 and
EB1020 are weaker than those of other complexes (Figure 5),
the two conserved residues (D79 and Y156 in hDAT, D75 and
Y152 in hNET, and D98 and Y176 in hSERT) and the one
nonconserved residue (F76 in hDAT, F72 in hNET, and Y95
in hSERT) are mainly responsible for the drug recognition in
the binding sites and interact with the three TRIs in a similar
way (Figure 8).
In addition, several residues located in the equivalent

positions of TM3, TM6, and TM8 domains of the multiple
binding sites which form unique interactions with the drugs
were identified. For SEP225289, the unique interaction
residues are V152, G153, S321, F326, S422, and M427 in
hDAT; V148, G149, S318, F323, S419, M424, and V449 in

hNET; and A173, I172, S336, F341, S438, and L443 in hSERT
(Figure 3 and Figure 8D). For example, the phenyl group of
SEP225289 mainly embedded into the TM3 and TM8 regions,
and the nonconserved “Warm Spot” residues (V152, G153,
and M427 in hDAT; V148, G149, and M424 in hNET; and
I172, A173, and L443 in hSERT) have significant difference
conformations (Figure 8A). The TM6a region in hDAT and
hSERT was found to be located closer to the nitrogen group of
SEP225289 based on the superposition-based methods, and
per-residue energy decomposition results further suggested
that there are stronger hydrogen bond interactions between
the “Warm Spots” (S321 in hDAT, S336 in hSERT) and the
positively charged nitrogen of SEP225289 as compared to
“Warm Spot” S318 in hNET. Meanwhile, the residue F326 in
hDAT undergoes significant structural rearrangements for a
favorable conformation during the MD simulation, which form
a stronger interaction with the 1,2,3,4-tetrahydronaphthalene
moiety of SEP225289 with respect to the ligand bound to
F323 in hNET and F341 in hSERT. The phenyl moiety of
SEP225289 bound to hNET stays closer to the TM3 and TM8
regions (G149 and M424), compared to the ligand bound to
hDAT (G153 and M427) and hSERT (A173 and L443).
Furthermore, compared to the “Warm Spots” V152 in hDAT
and V148 in the hNET bound complex, the per-residue energy
contribution of the residue I172 has the higher contribution to
the binding of SEP225289 to hSERT. By comparison of the
interactions of SEP225289 binding to hDAT, hNET, and
hSERT, these results suggest that there is the central binding

Figure 5. Hierarchical clustering and heatmap analysis of per-residue energy contribution for ligands binding to hDAT, hNET, or hSERT. The
ligands include two single-target inhibitors (escitalopram, talopram), one dual-target inhibitor (Ligand 10), and four triple reuptake inhibitors
(amitifadine, NS2359, EB1020, and SEP225289). Rows represent the 18 protein−ligand complexes, and columns represent the 15 residues in the
central binding site.
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site “Warm Spots” within hMAT domains that exhibit unique
interactions, which plays an important part in determining the
SEP225289 inhibitor selectivity.
Figure 8E shown that residues V152, S321, F326, V328,

S422, G426, M427, and I484 in hDAT; V148, S318, F323,
V325, S419, G423, and M424 in hNET; and I172, S336, G338,
F341, V343, S438, G442, and L443 in hSERT form unique
interactions with NS2359. In three NS2359 bound complexes,
the tropane moiety of NS2359 undergoes a large conforma-
tional change relative to its initial structure (Figure S9).
Compared to hSERT-NS2359, the nitrogen group of NS2359
is slightly closer to the TM6a region and forms additional
hydrogen bond interactions with “Warm Spots” S336 in hDAT
and S318 in hNET, respectively. Meanwhile, the methox-
ymethyl group of NS2359 extends into the TM6 region,
forming hydrogen bond interactions with the conserved
“Warm Spots” F326, F323, and F341 corresponding to
hDAT, hNET, and hSERT, respectively, and the interaction
energy for residue F323 is higher than that of residues F326 in
hDAT and F341 in hSERT. In addition, we also found that the
interactions of NS2359 and residues (S438, G442, and L443)
in hSERT are subtly higher than those of residues (S422, G426
and M427) in hDAT and those of residues (S419, G423 and
M424) in hNET (Figure 3 and Figure 8B), while the residue
S438 in hSERT forms hydrogen interactions with SEP225289.
The residues identified to form unique interactions with

EB1020 are V152, F320, S321, V328, A423, G426, and M427
in hDAT; V148, F317, S318, V325, S420, G423, and M424 in
hNET; and I172, F335, S336, V343, T439, G442, and L443 in

hSERT (Figure 8F). The positively charged nitrogen of
EB1020 participated in two or three hydrogen bond
interactions with TM1 and TM6 regions, where the interaction
of the “Warm Spots” S336 in hSERT and the group is weaker
in the per-residue energy contribution than the corresponding
residue S321 in the hDAT bound complex and S318 in the
hNET bound complex. Similarly, the 3-azabicyclo[3,1,0]
hexane group of EB1020 contacts with TM6 regions, and
the per-residue interaction energies of the “Warm Spots” F317
in hSERT are significantly lower than those of the
corresponding “Warm Spots” F320 in hDAT and F335 in
hNET. By comparing with the representative snapshots of
hDAT-EB1020 and hNET-EB1020, we also found that the tail
naphthyl group of EB1020 in hSERT moves closer to the TM8
region than to the EB1020−hDAT and EB1020−hNET
complexes (Figure 3 and Figure 8C) and, thus, makes
relatively stronger hydrophobic interactions with several
“Warm Spots” (M424, T439, and L443 in hSERT).
Moreover, those residues were also found to respond to the

structural modifications of TRIs to improve their potency and
selectivity toward hDAT, hNET, and hSERT. NS2359 belongs
to the NeurSearch series,44 in which the tropane moiety was
maintained as a cocaine scaffold (Figure 9B). As shown, the
modifications of the R1 position with a methyl (−CH3) group
or hydrogen atoms (−H) at the periphery have a minor
influence on the binding affinity to hDAT, hNET, and hSERT.
However, the substituents at R2 in tropane analogues not only
slightly tweak the inhibition ratio but also reduce side effects,
which afforded these analogues with a lower abuse potential.44

Figure 6. Analysis of TRIs in the presence of a common scaffold (black). The three major substituents R1, R2, and R3 working as a pharmacophore
were highlighted in red, orange, and green, respectively. The residues possess the same spatial position in the binding sites of hDAT, hNET, and
hSERT and directly interact with the pharmacophores of TRIs, which were labeled in the same color.
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As a member of the 4-aryl-1,2,3,4-tetrahydronaphthalene
series, SEP225289 originates from cis-sertraline (Figure 9A).
The potency of SEP225289 to hDAT and hNET was
significantly enhanced when the core R1 position of cis-
sertraline was substituted by an amino (−NH2) group.
Therefore, it could be concluded that the selectivity could be
drastically altered with different R1 groups, and the amino
group at R1 plays a crucial role for the binding affinities to
hDAT and hNET. Compared to SEP225289, the other ligands’
activities to hDAT, hNET, and hSERT were decreased when
an N-methyl or an amino group is placed in the R2 or R3
position.
EB1020 was derived from the 1-aryl-3-azabicyclo[3,1,0]

hexane series by modifying the aryl ring to improve the binding
affinities (Figure 9C).45,46 Compared with the structure and
pharmacological profiles of bicifadine, the 3,4-dichlorophenyl
or 2-naphthyl groups at the R2 position are aromatic
substituents, and the substituents at R1 are mainly groups of
hydrogen atoms or methyls.
Comparison of the Interactions of Each Target with

SEP225289, NS2359, and EB1020. For TRIs-hDAT com-
plexes, according to the calculated per-residue energy (Table
S5), 15 residues (F76, D79, I148, S149, V152, Y156, F320,
F326, V328, S422, A423, M427, V430, A480, and I484) mainly

participated in three types of interactions including ionic (salt
bridge), hydrogen bond, and hydrophobic contacts (Figure
10D). For example, the “Hot Spot” F76 engaged in the
hydrophobic interaction with EB1020 and NS2359 (Figure
10A,D), and the calculated energies were −3.81 and −2.47
kcal/mol (Figure 3A and Table S2), respectively. Moreover,
the “Warm Spots” in hDAT have a distinct difference in their
interactions with EB1020, SEP225289, and NS2359. For
example, the interactions between four “Warm Spots” (S149,
V152, Y156, F326, and A423) with NS2359 and SEP225289
were preserved better than that of EB1020, mainly due to the
molecular size (R2 substituent) of NS2359 and SEP225289,
which are larger than the cyclopropyl ring of EB1020.
In the central binding site of hNET, the tetrahydronaptha-

lene moiety of SEP225289 interacts with the aromatic residues
Y152 and F317 through π−π and hydrophobic interactions
(Table S6) with the corresponding energies of −3.16 and
−2.08 kcal/mol (Figure 3B), respectively. Likewise, the
methoxymethyl group of NS3259 forms an important
hydrophobic interaction with residues F317 and F323 (Table
S6 and Figure 3B). In addition, the tropane moiety of NS2359
undergoes a significant rotation relative to its initial docking
pose due to the hindrance of Y152 (hNET), whose aromatic
side chain group causes a shift of the ester group toward Y152

Figure 7. Pharmacophore models of SEP225289, NS2359, and EB1020 with hDAT(A−C), hNET (D−F), and hSERT (G−I), respectively. The
ligands in the binding site are shown as green sticks. The cyan spheres mean the excluded volume shell.
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(Figure S9). Compared with SEP225289 and NS2359, the
nitrogen group of EB-1020 moves toward TM1 regions
including residues F72 and D75 (Figure 10E). In particular,
F72 contributes −4.10 kcal/mol to EB1020 binding (Figure
3B), indicating that the important scaffold of EB-1020
(azabicyclo[3.1.0]hexane) plays a significant role in the
binding affinity. In addition, four “Warm Spots” (F317,
V325, S420, and F323) show a distinct difference in their

frequency of interaction with EB1020, SEP225289, and
NS2359. For SEP225289, residues F317 and S420 form a
more stable interaction than that of the NS2359 and EB1020.
On the contrary, the EB1020 interaction with V325 and the
NS2359 interaction with F323 form more stable hydrophobic
interactions than the SEP225289, because the aromatic rings in
EB1020 and NS2359 are closer to the TM6 region (Figure
10B).

Figure 8. Comparison of the structural complexes of the same drug such as (A) SEP225289, (B) NS2359, and (C) EB1020 binding to hDAT
(red), hNET (green), and hSERT (blue). The protein structures are represented as a cartoon with the “Warm Spots” shown as lines. The ligands
are as displayed as sticks. (D−F) The molecular fingerprint with more than 50% probability interactions between proteins and ligands.

Figure 9. SAR analysis of the three series TRIs with three representative drugs (SEP225289, NS2359, and EB1020) studied in this work. (A)
Chemical structures of 4-aryl-1,2,3,4-tetrahydronaphthalene series. (B) Chemical structures of selected NeurSearch series. (C) Chemical structures
of 1-aryl-3-azabicyclo[3,1,0] hexane series.
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As for hSERT bound complexes, the naphthyl group of
EB1020 forms hydrophobic interactions with F341 and F335.
However, stronger contacts were found for the corresponding
methoxymethyl group of NS2359 with G338, F341, and V343
and for the tetrahydronapthalene group of SEP225289 with
S336, L337, G338, and F335 (Figure 10C and Figure 3C).
Combined with the per-residue energy result, the molecular
interaction fingerprint analysis revealed that the interactions
between three “Warm Spots” (A169, V343, and V501) and
NS2359 were stronger than that of EB1020 and SEP225289.
Compared with NS2359 and EB1020, SEP225289 forms more

stable interactions with another three “Warm Spots” (F335,
F341, and T439) (Figure 10F and Figure 3C).
In addition, superimposition of the conformations from

docking from the MD simulation showed that ligands binding
to hDAT and hNET undergo relatively large conformational
changes, and the porcupine plot analysis implied that the
plasticity of the binding pocket in two target proteins is more
flexible (Figures S9 and S10).
The combined binding modes and structure activity

relationship (SAR) analysis clearly showed that the residues,
which form unique interactions with a ligand, play a key role in

Figure 10. Comparison of the structural complexes of different drugs SEP225289 (green), NS2359 (red), and EB1020 (maroon) binding to the
same target such as (A) hDAT, (B) hNET, and (C) hSERT. The protein structures are represented as a cartoon with the binding site residues
shown as lines. The ligands are displayed as a ball-and-stick model. (D−F) The molecular fingerprint between proteins and ligands. The numbers
0−1 in the radar chart indicate the probability of interactions between the ligands and a certain residue based on 500 snapshots from the last 50 ns
equilibrated trajectories.
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regulating the binding affinity. Interestingly, the per-residue
energy hierarchical clustering analysis (Figure 5) demonstrated
that all of them belong to the “Warm Spots”. Therefore, the
observed selectivity of TRIs to hDAT, hNET, and hSERT is
primarily due to the specific role of conserved and non-
conserved residues distributed on TM3, TM6, and TM8
domains of the binding sites.

■ CONCLUSION
The present study employs a combined computational
approach to understand the binding modes and selectivity
underlying the polypharmacology of TRIs. Results show that
EB1020, SEP225289, and NS2359 share a common binding
mode in the central binding sites of hDAT, hNET, and
hSERT. The estimated binding free energies indicated that the
contributions from the hydrophobic interaction and electric
primary dominate the binding affinities of TRIs to their targets.
The identified 10 “Warm Spots” (V152, S321, F320, G323,
F326, V328, S422, A423, G426, and M427) in hDAT, 9
“Warm Spots” (V148, G149, F317, S318, F323, V325, S419,
S420, and M424) in hNET, and 8 “Warm Spots” (F335, S336,
G338, F341, S438, T439, G442, and L443) in hSERT located
in TM3, TM6, and TM8 domains of the multiple binding sites
have a pronounced effect on the inhibitors’ selectivity. The
results in this study provided useful information for under-
standing the polypharmacological profiles of TRIs to hDAT,
hNET, and hSERT, which are important to the rational design
of new TRIs for better therapeutics.

■ MATERIALS AND METHODS
Preparation of Ligand and Protein Structures. The 3D

structures of the studied TRIs (SEP225289, NS2359, and EB1020)
were obtained from PubChem47 with the corresponding CIDs
9947999, 11408320, and 16095349. The ligands were then minimized
by the LigPrep48 with the OPLS3 force field49 to generate the low
energy conformations, and the ionized state was realized by Epik50 at
a pH value of 7.0 ± 2.0 for docking.
The sequences of hNET and hDAT were taken from UniPort

(Entries: P23975 and Q01959), and the crystal structure of the
hSERT mutant (Y110A-I291A-T439S) was taken from the Protein
Data Bank (PDB code: 5I7133). To generate the native structure of
hSERT, the Protein Mutation and Modification tool in Schrödinger51

was used to mutate the three mutations back in 5I71,33 and the
modified structure was preprocessed by the Protein Preparation
Wizard tool in Schrödinger51 with the OPLS3 force field.52 The
homology models of hDAT and hNET were built by MODELLER53

using the native structure of hSERT as a template (Figure S5A). The
sequence alignment was performed using ClustalW254 and visualized
by ESPript355 (Figure S1). The cocrystallized escitalopram and two
functional Na+ in hSERT were manually fitted into the ion binding
sites of hNET and hDAT through the align module in PyMOL56 to
generate the escitalopram−hDAT and escitalopram−hNET com-
plexes (Figure S5).
Ligand Docking. The Glide57 standard precision (SP) mode was

chosen for molecular docking. The docking grid box for hDAT,
hNET, and hSERT were defined by centering on the escitalopram as
reference in bound complexes using the Receptor Grid Generation in
Glide.57 The reasonable docked poses of SEP225289, NS2359, and
EB1020 binding in hDAT, hNET, and hSERT were selected
according to the orientation of escitalopram in the complex structures
as well as the interactions, which are essential for TRI binding.22,42

Simulation Systems Setups. The nine predicted complexes were
obtained through docking and the PPM server58 for determining the
orientation of the membrane transporter. Then, the transmembrane
segments were inserted into the explicit hydrated POPC membrane
bilayer with ∼195 lipids, forming a periodic cell (95 Å × 95 Å × 118

Å) of each system, and of ions were added to neutralize the charges of
the system in approximately 0.15 M NaCl (containing ∼55 Na+ and
∼55 Cl− ions) by using the CHARMM-GUI Membrane Builder.59

The TIP3P60 water thickness of 20 Å was placed at the top and
bottom of the protein with ∼19 668 water molecules, with the overall
system containing ∼93 800 atoms (Table S8). We employed the
program LEaP tool in AMBER1661 to generate the topology and
coordinate files for each simulated system. The parameters of protein
and lipid were obtained by ff14SB and Lipid14,62 respectively. The
Joung/Cheathamion parameters were used to characterize the ion
parameters. AMBER force field 2 (gaff2) parameter sets for the
ligands and the partial charges were derived from RESP63 calculation
using an HF/6-31G* electrostatic potential calculated by Gaus-
sian09.64

MD Simulation. GPU-accelerated AMBER1661 was adopted for
all MD simulations. The first energy minimization step was to apply a
harmonic restraint on the lipid and the solute atom (force constant =
10 kcal mol−1 Å−2) and then to release all atoms to move freely in the
second step. In each step, the entire system was minimized for 10 000
steps followed by an energy minimization of 5000 steps using the
Steepest Descent algorithm and the conjugate gradient method.
Subsequently, a two-step equilibration was performed, each system
was heated from 0 K to approximately 100 K and then gradually to
310 K with the protein and lipid restrained over 100 ps in the NVT
ensembles. Then, all the simulated complexes were repeated for 10
times unconstrained NPT dynamics (5 ns) at 310 K and 1 atm.
Finally, the PMEMD were carried out for 100 ns MD production
simulation durations in the NPT ensemble at 310 K and 1 atm using
the periodic boundary condition. The temperature and pressure were
maintained using a Langevin thermostat and a Monte Carlo barostat,
respectively. Electrostatic interactions with a distance cutoff of 10 Å
were calculated using particle mesh Ewald (PME) method.65 The
SHAKE algorithm66 was used to keep all-bonds constraints, and the
time step was set as 2.0 fs.

Thermodynamics Analysis. To investigate the thermodynamic
properties of protein−ligand interactions, based on the system
stability determined by the fluctuation of root-mean-square deviations
(RMSDs), 500 snapshots were extracted from the last 50 ns of MD
trajectories with a time interval of 100 ps. The binding free energy of
ligands binding to hDAT, hNET, and hSERT were calculated by the
MM/GBSA method34 in accordance with the following equation:

G E E G GCAL VDW ELE GB GBSURΔ = Δ + Δ + Δ + Δ (1)

where ΔGCAL was obtained by summing van der Waals (ΔEVDW)
energies and the electrostatic (ΔEELE), the sum of polar (ΔGGB), and
nonpolar (ΔGGBSUR) contributions, respectively. Snapshots (500)
extracted from the last 50 ns trajectory along the MD trajectory were
used for energy calculations. The per-residue energy contribution
between the ligands and proteins was calculated with the following
equation:
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per residue
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per residue
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per residue
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per residue
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where ΔGVDW
per‑residue, ΔGELE

per‑residue, and ΔGGB
per‑residue in eqn 2 are defined

with the same meanings as those of the corresponding terms in eqn 1.
The difference is that the nonpolar solvent energy (ΔGGBSUR

per‑residue) is
modeled by a recursive approximation of a sphere around an atom
starting from an icosahedron (ICOSA).

Hierarchical Clustering Analysis. The clustering heatmap of
288 residues with individual residue energy contribution (0.00−4.10
kcal/mol) to ligands binding in proteins was constructed by the
pheatmap package in R.67 Then, the data are clustered in a two-way
display of a data matrix in which the individual cells are displayed as
colored rectangles by using the Euclidean distance function68 across
these predicted systems; then, the hierarchical tree graphs were
directly output. The complete-linkage hierarchical clustering is
applied to define the distance between two clusters before merging.
The Euclidean distance was selected to calculate similarity levels
among vectors
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a b a bDistance ( , )
i

i i∑= | − |

where i represents each dimension of per-residue energies a and b.
The corresponding gradient of color sets the highest value of residue
energy contribution in the heatmap to bright red; the lowest one was
set to fade gradually to dark blue.
Intermolecular Interaction Fingerprints Analysis. Snapshots

(500) were extracted from the final 50 ns equilibrium MD run, and
the use of protein−ligand interaction fingerprint (IFP) analysis was
applied using IChem software.69 For each frame, the calculation zones
of the complex were defined as the regions within 5 Å of the ligand
mass center. During the calculation, seven important pharmacological
properties (including hydrophobic, aromatic, H-bond donor, H-bond
acceptor, positively ionizable, negatively ionizable, and meta) of the
atoms of proteins and ligands were evaluated by parsing atoms and
bond connectivity fields. In this analysis, the calculated protein−
ligand interaction fingerprints between frames of molecular dynamics
simulations were displayed via radar charts. If a particular interaction
between receptor and ligand was detected, “1” was the output;
otherwise, “0” was recorded. Finally, the calculated results were
displayed in a radar chart to clearly represent the ligand−receptor
interactions.
Pharmacophore Modeling. The 3D pharmacophore model of

TRI binding in hMATs was built on the Maestro module of
Schrodinger.70 First, the nine representative structures were obtained
from the final 50 ns MD trajectories. Second, the receptor−ligand
workspace pharmacophore of each complex was used to generate key
chemical features by manually inspecting the protein−ligand
interaction, whose features are important for binding. Then, the
receptor-based excluded volume with a scaling factor of 0.50 for van
der Waals atom radii was added. Finally, the pharmacophore of each
TRI-binding complex generated the chemical features with the
hydrogen bonds, hydrophobic interactions, and excluded volume
shell.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acschemneuro.1c00127.

List of triple reuptake inhibitors (TRIs) entered into
clinical trials; per-residue energy of residues; fingerprints
of molecular interaction between three hMATs and
three studied TRIs; summary of nine complexes for MD
simulations; sequence alignment of hSERT, hNET, and
hDAT; MolProbity Ramachandran analysis of the
modeled three hMAT structures; cartoon representation
of the modified hSERT (blue), the modeled hNET
(cyan), and hDAT (warm pink); docking poses; RMSD
of the nine simulated complexes; distances between α
carbon atoms of gating residues; structural super-
imposition between the poses of three TRIs; and
porcupine plots (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
Weiwei Xue − School of Pharmaceutical Sciences, Chongqing
Key Laboratory of Natural Product Synthesis and Drug
Research, Chongqing University, Chongqing 401331, China;
Central Nervous System Drug Key Laboratory of Sichuan
Province, Luzhou 646106, China; orcid.org/0000-0002-
3285-0574; Email: xueww@cqu.edu.cn

Feng Zhu − School of Pharmaceutical Sciences, Chongqing Key
Laboratory of Natural Product Synthesis and Drug Research,
Chongqing University, Chongqing 401331, China; College of
Pharmaceutical Sciences, Zhejiang University, Hangzhou

310058, China; orcid.org/0000-0001-8069-0053;
Email: zhufeng@zju.edu.cn

Authors
Gao Tu − School of Pharmaceutical Sciences, Chongqing Key
Laboratory of Natural Product Synthesis and Drug Research,
Chongqing University, Chongqing 401331, China

Tingting Fu − School of Pharmaceutical Sciences, Chongqing
Key Laboratory of Natural Product Synthesis and Drug
Research, Chongqing University, Chongqing 401331, China;
College of Pharmaceutical Sciences, Zhejiang University,
Hangzhou 310058, China

Fengyuan Yang − School of Pharmaceutical Sciences,
Chongqing Key Laboratory of Natural Product Synthesis and
Drug Research, Chongqing University, Chongqing 401331,
China; College of Pharmaceutical Sciences, Zhejiang
University, Hangzhou 310058, China

Jingyi Yang − School of Pharmaceutical Sciences, Chongqing
Key Laboratory of Natural Product Synthesis and Drug
Research, Chongqing University, Chongqing 401331, China

Zhao Zhang − School of Pharmaceutical Sciences, Chongqing
Key Laboratory of Natural Product Synthesis and Drug
Research, Chongqing University, Chongqing 401331, China

Xiaojun Yao − State Key Laboratory of Applied Organic
Chemistry and Department of Chemistry, Lanzhou
University, Lanzhou 730000, China; orcid.org/0000-
0002-8974-0173

Complete contact information is available at:
https://pubs.acs.org/10.1021/acschemneuro.1c00127

Author Contributions
W.X. and F.Z. designed the experiments. G.T. performed
computational simulations. G.T., T.F., F.Y., J.Y., Z.Z., X.Y.,
W.X., and F.Z. analyzed the data. G.T., W.X., and F.Z. wrote
the paper. All authors approved the final version of the
manuscript.
Funding
This work was supported by National Natural Science
Foundation of China (21505009, 81872798), Technology
Innovation and Application Demonstration Project of
Chongqing (cstc2018jscx-msybX0287), Fundamental Research
Funds for Central Universities (2019CDYGYB005), and Open
Project of Central Nervous System Drug Key Laboratory of
Sichuan Province (200019-01SZ).
Notes
The authors declare no competing financial interest.

■ ABBREVIATIONS
TRIs, triple reuptake inhibitors; hMATs, human monoamine
transporters; hDAT, human dopamine hNET, human
norepinephrine transporter; hSERT, human serotonin trans-
porter; MD, molecular dynamics; MDD, major depressive
disorder; MM/GBSA, molecular mechanics generalized born
surface area; IFPs, interaction fingerprints analysis; TM,
transmembrane domains; SAR, structure activity relationship

■ REFERENCES
(1) Bolognesi, M. L., and Cavalli, A. (2016) Multitarget Drug
Discovery and Polypharmacology. ChemMedChem 11, 1190−1192.
(2) Ramsay, R. R., Popovic-Nikolic, M. R., Nikolic, K., Uliassi, E.,
and Bolognesi, M. L. (2018) A perspective on multi-target drug
discovery and design for complex diseases. Clinical and translational
medicine 7, 3.

ACS Chemical Neuroscience pubs.acs.org/chemneuro Research Article

https://doi.org/10.1021/acschemneuro.1c00127
ACS Chem. Neurosci. 2021, 12, 2013−2026

2024

https://pubs.acs.org/doi/10.1021/acschemneuro.1c00127?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acschemneuro.1c00127/suppl_file/cn1c00127_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Weiwei+Xue"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-3285-0574
http://orcid.org/0000-0002-3285-0574
mailto:xueww@cqu.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Feng+Zhu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8069-0053
mailto:zhufeng@zju.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gao+Tu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tingting+Fu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fengyuan+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jingyi+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhao+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaojun+Yao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-8974-0173
http://orcid.org/0000-0002-8974-0173
https://pubs.acs.org/doi/10.1021/acschemneuro.1c00127?ref=pdf
https://doi.org/10.1002/cmdc.201600161
https://doi.org/10.1002/cmdc.201600161
https://doi.org/10.1186/s40169-017-0181-2
https://doi.org/10.1186/s40169-017-0181-2
pubs.acs.org/chemneuro?ref=pdf
https://doi.org/10.1021/acschemneuro.1c00127?rel=cite-as&ref=PDF&jav=VoR


(3) Talevi, A. (2015) Multi-target pharmacology: possibilities and
limitations of the “skeleton key approach” from a medicinal chemist
perspective. Front. Pharmacol. 6, 205.
(4) Sikazwe, D. (2012) The multi-target drug design era is here,
consider it. Drug Des.: Open Access 1, 1000−1001.
(5) Chaudhari, R., Tan, Z., Huang, B., and Zhang, S. (2017)
Computational polypharmacology: a new paradigm for drug
discovery. Expert Opin. Drug Discovery 12, 279−291.
(6) Fathima, A. J., Murugaboopathi, G., and Selvam, P. (2018)
Pharmacophore Mapping of Ligand Based Virtual Screening,
Molecular Docking and Molecular Dynamic Simulation Studies for
Finding Potent NS2B/NS3 Protease Inhibitors as Potential Anti-
dengue Drug Compounds. Curr. Bioinf. 13, 606−616.
(7) Chen, J., Wang, J., Yin, B., Pang, L., Wang, W., and Zhu, W.
(2019) Molecular Mechanism of Binding Selectivity of Inhibitors
toward BACE1 and BACE2 Revealed by Multiple Short Molecular
Dynamics Simulations and Free-Energy Predictions. ACS Chem.
Neurosci. 10, 4303−4318.
(8) Chen, J., Yin, B., Wang, W., and Sun, H. (2020) Effects of
Disulfide Bonds on Binding of Inhibitors to beta-Amyloid Cleaving
Enzyme 1 Decoded by Multiple Replica Accelerated Molecular
Dynamics Simulations. ACS Chem. Neurosci. 11, 1811−1826.
(9) Anighoro, A., Bajorath, J., and Rastelli, G. (2014) Poly-
pharmacology: challenges and opportunities in drug discovery. J. Med.
Chem. 57, 7874−7887.
(10) Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H.
B., and Gloriam, D. E. (2017) Trends in GPCR drug discovery: new
agents, targets and indications. Nat. Rev. Drug Discovery 16, 829−842.
(11) Sokouti, B., Rezvan, F., and Dastmalchi, S. (2017) GPCRTOP
v.1.0: One-Step Web Server for Both Predicting Helical Trans-
membrane Segments and Identifying G Protein-Coupled Receptors.
Curr. Bioinf. 12, 80−84.
(12) Li, Y. H., Wang, P. P., Li, X. X., Yu, C. Y., Yang, H., Zhou, J.,
Xue, W. W., Tan, J., and Zhu, F. (2016) The Human Kinome
Targeted by FDA Approved Multi-Target Drugs and Combination
Products: A Comparative Study from the Drug-Target Interaction
Network Perspective. PLoS One 11, No. e0165737.
(13) Lin, L., Yee, S. W., Kim, R. B., and Giacomini, K. M. (2015)
SLC transporters as therapeutic targets: emerging opportunities. Nat.
Rev. Drug Discovery 14, 543−560.
(14) Wang, Y., Zhang, S., Li, F., Zhou, Y., Zhang, Y., Wang, Z.,
Zhang, R., Zhu, J., Ren, Y., Tan, Y., et al. (2019) Therapeutic target
database 2020: enriched resource for facilitating research and early
development of targeted therapeutics. Nucleic Acids Res. 48, D1031−
D1041.
(15) Avram, S., Halip, L., Curpan, R., and Oprea, T. I. (2020) Novel
drug targets in 2019. Nat. Rev. Drug Discovery 19, 300.
(16) Khan, A., Zahra, A., Mumtaz, S., Fatmi, M. Q., and Khan, M. J.
(2020) Integrated In-silico Analysis to Study the Role of microRNAs
in the Detection of Chronic Kidney Diseases. Curr. Bioinf. 15, 144−
154.
(17) Kristensen, A. S., Andersen, J., Jorgensen, T. N., Sorensen, L.,
Eriksen, J., Loland, C. J., Stromgaard, K., and Gether, U. (2011) SLC6
neurotransmitter transporters: structure, function, and regulation.
Pharmacol. Rev. 63, 585−640.
(18) Navratna, V., and Gouaux, E. (2019) Insights into the
mechanism and pharmacology of neurotransmitter sodium symport-
ers. Curr. Opin. Struct. Biol. 54, 161−170.
(19) Cheng, M. H., and Bahar, I. (2019) Monoamine transporters:
structure, intrinsic dynamics and allosteric regulation. Nat. Struct. Mol.
Biol. 26, 545−556.
(20) Xue, W., Fu, T., Zheng, G., Tu, G., Zhang, Y., Yang, F., Tao, L.,
Yao, L., and Zhu, F. (2020) Recent Advances and Challenges of the
Drugs Acting on Monoamine Transporters. Curr. Med. Chem. 27,
3830−3876.
(21) Srivastava, N., Mishra, B. N., and Srivastava, P. (2019) In-Silico
Identification of Drug Lead Molecule Against Pesticide Exposed-
neurodevelopmental Disorders Through Network-based Computa-
tional Model Approach. Curr. Bioinf. 14, 460−467.

(22) Xue, W., Wang, P., Tu, G., Yang, F., Zheng, G., Li, X., Li, X.,
Chen, Y., Yao, X., and Zhu, F. (2018) Computational identification of
the binding mechanism of a triple reuptake inhibitor amitifadine for
the treatment of major depressive disorder. Phys. Chem. Chem. Phys.
20, 6606−6616.
(23) Xue, W., Yang, F., Wang, P., Zheng, G., Chen, Y., Yao, X., and
Zhu, F. (2018) What Contributes to Serotonin-Norepinephrine
Reuptake Inhibitors’ Dual-Targeting Mechanism? The Key Role of
Transmembrane Domain 6 in Human Serotonin and Norepinephrine
Transporters Revealed by Molecular Dynamics Simulation. ACS
Chem. Neurosci. 9, 1128−1140.
(24) Lane, R. M. (2015) Antidepressant drug development: Focus
on triple monoamine reuptake inhibition. J. Psychopharmacol. 29,
526−544.
(25) Subbaiah, M. A. M. (2018) Triple Reuptake Inhibitors as
Potential Therapeutics for Depression and Other Disorders: Design
Paradigm and Developmental Challenges. J. Med. Chem. 61, 2133−
2165.
(26) Sharma, H., Santra, S., and Dutta, A. (2015) Triple reuptake
inhibitors as potential next-generation antidepressants: a new hope?
Future Med. Chem. 7, 2385−2406.
(27) Skolnick, P. (2012) Triple-Uptake Inhibitors (Broad-Spectrum
Antidepressants). Polypharm. Drug Discovery, 363−382.
(28) Marks, D. M., Pae, C. U., and Patkar, A. A. (2008) Triple
reuptake inhibitors: the next generation of antidepressants. Curr.
Neuropharmacol. 6, 338−343.
(29) Wang, K. H., Penmatsa, A., and Gouaux, E. (2015)
Neurotransmitter and psychostimulant recognition by the dopamine
transporter. Nature 521, 322−327.
(30) Richelson, E. (2013) Multi-modality: a new approach for the
treatment of major depressive disorder. Int. J. Neuropsychopharmacol.
16, 1433−1442.
(31) Li, P., Wang, J., Wang, X., Ding, Q., Bai, X., Zhang, Y., Su, D.,
Zhang, W., Zhang, W., and Tang, B. (2019) In situ visualization of
ozone in the brains of mice with depression phenotypes by using a
new near-infrared fluorescence probe. Chem. Sci. 10, 2805−2810.
(32) Margret, A. A., and Arumugam, G. K. (2018) A Therapeutic
Paradigm to Appraise the Competence of Chitosan Oligosaccharide
Lactate Targeting Monoamine Oxidase-A and P-Glycoprotein to
Contest Depression by Channeling the Blood Brain Barrier. Curr.
Bioinf. 13, 273−279.
(33) Coleman, J. A., Green, E. M., and Gouaux, E. (2016) X-ray
structures and mechanism of the human serotonin transporter. Nature
532, 334−339.
(34) Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S.,
Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., et al. (2000)
Calculating structures and free energies of complex molecules:
combining molecular mechanics and continuum models. Acc. Chem.
Res. 33, 889−897.
(35) Durrant, J. D., and McCammon, J. A. (2011) Molecular
dynamics simulations and drug discovery. BMC Biol. 9, 71.
(36) Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H., and Yao, X. (2018)
Molecular dynamics simulations and novel drug discovery. Expert
Opin. Drug Discovery 13, 23−37.
(37) Guo, Y., Peng, Z., Liu, J., Yuan, N., Wang, Z., and Du, J. C.
(2019) Systematic Comparisons of Positively Selected Genes between
Gossypium arboreum and Gossypium raimondii Genomes. Curr.
Bioinf. 14, 581−590.
(38) Zhao, H., and Caflisch, A. (2015) Molecular dynamics in drug
design. Eur. J. Med. Chem. 91, 4−14.
(39) Kitamura, K., Tamura, Y., Ueki, T., Ogata, K., Noda, S.,
Himeno, R., and Chuman, H. (2014) Binding free-energy calculation
is a powerful tool for drug optimization: calculation and measurement
of binding free energy for 7-azaindole derivatives to glycogen synthase
kinase-3beta. J. Chem. Inf. Model. 54, 1653−1660.
(40) Kenny, P. W. (2017) Comment on The Ecstasy and Agony of
Assay Interference Compounds. J. Chem. Inf. Model. 57, 2640−2645.
(41) Fu, T. T., Tu, G., Ping, M., Zheng, G. X., Yang, F. Y., Yang, J.
Y., Zhang, Y., Yao, X. J., Xue, W. W., and Zhu, F. (2020) Subtype-

ACS Chemical Neuroscience pubs.acs.org/chemneuro Research Article

https://doi.org/10.1021/acschemneuro.1c00127
ACS Chem. Neurosci. 2021, 12, 2013−2026

2025

https://doi.org/10.3389/fphar.2015.00205
https://doi.org/10.3389/fphar.2015.00205
https://doi.org/10.3389/fphar.2015.00205
https://doi.org/10.4172/2169-0138.1000e101
https://doi.org/10.4172/2169-0138.1000e101
https://doi.org/10.1080/17460441.2017.1280024
https://doi.org/10.1080/17460441.2017.1280024
https://doi.org/10.2174/1574893613666180118105659
https://doi.org/10.2174/1574893613666180118105659
https://doi.org/10.2174/1574893613666180118105659
https://doi.org/10.2174/1574893613666180118105659
https://doi.org/10.1021/acschemneuro.9b00348
https://doi.org/10.1021/acschemneuro.9b00348
https://doi.org/10.1021/acschemneuro.9b00348
https://doi.org/10.1021/acschemneuro.0c00234
https://doi.org/10.1021/acschemneuro.0c00234
https://doi.org/10.1021/acschemneuro.0c00234
https://doi.org/10.1021/acschemneuro.0c00234
https://doi.org/10.1021/jm5006463
https://doi.org/10.1021/jm5006463
https://doi.org/10.1038/nrd.2017.178
https://doi.org/10.1038/nrd.2017.178
https://doi.org/10.2174/1574893611666160901122236
https://doi.org/10.2174/1574893611666160901122236
https://doi.org/10.2174/1574893611666160901122236
https://doi.org/10.1371/journal.pone.0165737
https://doi.org/10.1371/journal.pone.0165737
https://doi.org/10.1371/journal.pone.0165737
https://doi.org/10.1371/journal.pone.0165737
https://doi.org/10.1038/nrd4626
https://doi.org/10.1093/nar/gkz981
https://doi.org/10.1093/nar/gkz981
https://doi.org/10.1093/nar/gkz981
https://doi.org/10.1038/d41573-020-00052-w
https://doi.org/10.1038/d41573-020-00052-w
https://doi.org/10.2174/1574893614666190923115032
https://doi.org/10.2174/1574893614666190923115032
https://doi.org/10.1124/pr.108.000869
https://doi.org/10.1124/pr.108.000869
https://doi.org/10.1016/j.sbi.2019.03.011
https://doi.org/10.1016/j.sbi.2019.03.011
https://doi.org/10.1016/j.sbi.2019.03.011
https://doi.org/10.1038/s41594-019-0253-7
https://doi.org/10.1038/s41594-019-0253-7
https://doi.org/10.2174/0929867325666181009123218
https://doi.org/10.2174/0929867325666181009123218
https://doi.org/10.2174/1574893613666181112130346
https://doi.org/10.2174/1574893613666181112130346
https://doi.org/10.2174/1574893613666181112130346
https://doi.org/10.2174/1574893613666181112130346
https://doi.org/10.1039/C7CP07869B
https://doi.org/10.1039/C7CP07869B
https://doi.org/10.1039/C7CP07869B
https://doi.org/10.1021/acschemneuro.7b00490
https://doi.org/10.1021/acschemneuro.7b00490
https://doi.org/10.1021/acschemneuro.7b00490
https://doi.org/10.1021/acschemneuro.7b00490
https://doi.org/10.1177/0269881114553252
https://doi.org/10.1177/0269881114553252
https://doi.org/10.1021/acs.jmedchem.6b01827
https://doi.org/10.1021/acs.jmedchem.6b01827
https://doi.org/10.1021/acs.jmedchem.6b01827
https://doi.org/10.4155/fmc.15.134
https://doi.org/10.4155/fmc.15.134
https://doi.org/10.1002/9781118098141.ch18
https://doi.org/10.1002/9781118098141.ch18
https://doi.org/10.2174/157015908787386078
https://doi.org/10.2174/157015908787386078
https://doi.org/10.1038/nature14431
https://doi.org/10.1038/nature14431
https://doi.org/10.1017/S1461145712001605
https://doi.org/10.1017/S1461145712001605
https://doi.org/10.1039/C8SC04891F
https://doi.org/10.1039/C8SC04891F
https://doi.org/10.1039/C8SC04891F
https://doi.org/10.2174/1574893612666171006154833
https://doi.org/10.2174/1574893612666171006154833
https://doi.org/10.2174/1574893612666171006154833
https://doi.org/10.2174/1574893612666171006154833
https://doi.org/10.1038/nature17629
https://doi.org/10.1038/nature17629
https://doi.org/10.1021/ar000033j
https://doi.org/10.1021/ar000033j
https://doi.org/10.1186/1741-7007-9-71
https://doi.org/10.1186/1741-7007-9-71
https://doi.org/10.1080/17460441.2018.1403419
https://doi.org/10.2174/1574893614666190227151013
https://doi.org/10.2174/1574893614666190227151013
https://doi.org/10.1016/j.ejmech.2014.08.004
https://doi.org/10.1016/j.ejmech.2014.08.004
https://doi.org/10.1021/ci400719v
https://doi.org/10.1021/ci400719v
https://doi.org/10.1021/ci400719v
https://doi.org/10.1021/ci400719v
https://doi.org/10.1021/acs.jcim.7b00313
https://doi.org/10.1021/acs.jcim.7b00313
https://doi.org/10.1038/s41401-020-00541-z
pubs.acs.org/chemneuro?ref=pdf
https://doi.org/10.1021/acschemneuro.1c00127?rel=cite-as&ref=PDF&jav=VoR


selective mechanisms of negative allosteric modulators binding to
group I metabotropic glutamate receptors. Acta Pharmacol. Sin., 1
DOI: 10.1038/s41401-020-00541-z.
(42) Zheng, G., Yang, F., Fu, T., Tu, G., Chen, Y., Yao, X., Xue, W.,
and Zhu, F. (2018) Computational characterization of the selective
inhibition of human norepinephrine and serotonin transporters by an
escitalopram scaffold. Phys. Chem. Chem. Phys. 20, 29513−29527.
(43) Klebe, G. (2015) Protein-ligand interactions as the basis for
drug action. In Multifaceted Roles of Crystallography in Modern Drug
Discovery, pp 83−92, Springer.
(44) Chen, Z., Yang, J., and Skolnick, P. (2007) The Design,
Synthesis and Structure−Activity Relationship of Mixed Serotonin,
Norepinephrine and Dopamine Uptake Inhibitors. In Transporters as
Targets for Drugs, pp 131−154, Springer.
(45) Micheli, F., Cavanni, P., Andreotti, D., Arban, R., Benedetti, R.,
Bertani, B., Bettati, M., Bettelini, L., Bonanomi, G., Braggio, S., et al.
(2010) 6-(3,4-dichlorophenyl)-1-[(methyloxy)methyl]-3-azabicyclo-
[4.1.0]heptane: a new potent and selective triple reuptake inhibitor.
J. Med. Chem. 53, 4989−5001.
(46) Micheli, F., Cavanni, P., Arban, R., Benedetti, R., Bertani, B.,
Bettati, M., Bettelini, L., Bonanomi, G., Braggio, S., Checchia, A., et al.
(2010) 1-(Aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes and 6-
(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes: a new series of
potent and selective triple reuptake inhibitors. J. Med. Chem. 53,
2534−2551.
(47) Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q.,
Shoemaker, B. A., Thiessen, P. A., Yu, B., et al. (2019) PubChem
2019 update: improved access to chemical data. Nucleic Acids Res. 47,
D1102−D1109.
(48) LigPrep, Version 2.3, Schrödinger, LLC: New York, NY, 2009.
(49) Price, D. J., and Brooks, C. L., 3rd. (2005) Detailed
considerations for a balanced and broadly applicable force field: a
study of substituted benzenes modeled with OPLS-AA. J. Comput.
Chem. 26, 1529−1541.
(50) Epik, Version 2.0, Schrödinger, LLC: New York, NY, 2009.
(51) Release, S. (2018) 4: BioLuminate, Schrödinger, LLC, New
York.
(52) Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., X iang, J.
Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., et al. (2016)
OPLS3: A Force Field Providing Broad Coverage of Drug-like Small
Molecules and Proteins. J. Chem. Theory Comput. 12, 281−296.
(53) Webb, B., and Sali, A. (2016) Comparative Protein Structure
Modeling Using MODELLER. Curr. Protoc. Protein Sci. 86, 291−
2937.
(54) Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R.,
McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm,
A., Lopez, R., Thompson, J. D., et al. (2007) Clustal W and Clustal X
version 2.0. Bioinformatics 23, 2947−2948.
(55) Robert, X., and Gouet, P. (2014) Deciphering key features in
protein structures with the new ENDscript server. Nucleic Acids Res.
42, W320−324.
(56) PyMOL Molecular Graphics System, Version 1.3, Schrödinger,
LLC.
(57) Glide, Version 5.5, Schrödinger, LLC: New York, NY, 2009.
(58) Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I., and
Lomize, A. L. (2012) OPM database and PPM web server: resources
for positioning of proteins in membranes. Nucleic Acids Res. 40,
D370−376.
(59) Wu, E. L., Cheng, X., Jo, S., Rui, H., Song, K. C., Davila-
Contreras, E. M., Qi, Y., Lee, J., Monje-Galvan, V., Venable, R. M.,
et al. (2014) CHARMM-GUI Membrane Builder toward realistic
biological membrane simulations. J. Comput. Chem. 35, 1997−2004.
(60) van der Spoel, D., and van Maaren, P. J. (2006) The Origin of
Layer Structure Artifacts in Simulations of Liquid Water. J. Chem.
Theory Comput. 2, 1−11.
(61) AMBER, Version 16, University of California: San Francisco,
CA, 2016.

(62) Dickson, C. J., Madej, B. D., Skjevik, A. A., Betz, R. M., Teigen,
K., Gould, I. R., and Walker, R. C. (2014) Lipid14: The Amber Lipid
Force Field. J. Chem. Theory Comput. 10, 865−879.
(63) Wang, J., Wang, W., Kollman, P. A., and Case, D. A. (2006)
Automatic atom type and bond type perception in molecular
mechanical calculations. J. Mol. Graphics Modell. 25, 247−260.
(64) Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M.,
Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., and Petersson,
G. (2009) Gaussian 09, Gaussian, Inc., Wallingford, CT.
(65) Petersen, H. G. (1995) Accuracy and efficiency of the particle
mesh Ewald method. J. Chem. Phys. 103, 3668−3679.
(66) Springborg, M., and Kirtman, B. (2007) Efficient vector
potential method for calculating electronic and nuclear response of
infinite periodic systems to finite electric fields. J. Chem. Phys. 126,
104107.
(67) Tippmann, S. (2015) Programming tools: Adventures with R.
Nature 517, 109−110.
(68) Hu, L. Y., Huang, M. W., Ke, S. W., and Tsai, C. F. (2016) The
distance function effect on k-nearest neighbor classification for
medical datasets. SpringerPlus 5, 1304.
(69) Da Silva, F., Desaphy, J., and Rognan, D. (2018) IChem: A
Versatile Toolkit for Detecting, Comparing, and Predicting Protein-
Ligand Interactions. ChemMedChem 13, 507−510.
(70) Maestro, Version 9.0, Schrödinger, LLC: New York, NY, 2009.

ACS Chemical Neuroscience pubs.acs.org/chemneuro Research Article

https://doi.org/10.1021/acschemneuro.1c00127
ACS Chem. Neurosci. 2021, 12, 2013−2026

2026

https://doi.org/10.1038/s41401-020-00541-z
https://doi.org/10.1038/s41401-020-00541-z
https://doi.org/10.1038/s41401-020-00541-z?ref=pdf
https://doi.org/10.1039/C8CP06232C
https://doi.org/10.1039/C8CP06232C
https://doi.org/10.1039/C8CP06232C
https://doi.org/10.1021/jm100481d
https://doi.org/10.1021/jm100481d
https://doi.org/10.1021/jm901818u
https://doi.org/10.1021/jm901818u
https://doi.org/10.1021/jm901818u
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.1002/jcc.20284
https://doi.org/10.1002/jcc.20284
https://doi.org/10.1002/jcc.20284
https://doi.org/10.1021/acs.jctc.5b00864
https://doi.org/10.1021/acs.jctc.5b00864
https://doi.org/10.1002/cpps.20
https://doi.org/10.1002/cpps.20
https://doi.org/10.1093/bioinformatics/btm404
https://doi.org/10.1093/bioinformatics/btm404
https://doi.org/10.1093/nar/gku316
https://doi.org/10.1093/nar/gku316
https://doi.org/10.1093/nar/gkr703
https://doi.org/10.1093/nar/gkr703
https://doi.org/10.1002/jcc.23702
https://doi.org/10.1002/jcc.23702
https://doi.org/10.1021/ct0502256
https://doi.org/10.1021/ct0502256
https://doi.org/10.1021/ct4010307
https://doi.org/10.1021/ct4010307
https://doi.org/10.1016/j.jmgm.2005.12.005
https://doi.org/10.1016/j.jmgm.2005.12.005
https://doi.org/10.1063/1.470043
https://doi.org/10.1063/1.470043
https://doi.org/10.1063/1.2711202
https://doi.org/10.1063/1.2711202
https://doi.org/10.1063/1.2711202
https://doi.org/10.1038/517109a
https://doi.org/10.1186/s40064-016-2941-7
https://doi.org/10.1186/s40064-016-2941-7
https://doi.org/10.1186/s40064-016-2941-7
https://doi.org/10.1002/cmdc.201700505
https://doi.org/10.1002/cmdc.201700505
https://doi.org/10.1002/cmdc.201700505
pubs.acs.org/chemneuro?ref=pdf
https://doi.org/10.1021/acschemneuro.1c00127?rel=cite-as&ref=PDF&jav=VoR

