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ABSTRACT

Drug-metabolizing enzymes (DMEs) are critical de-
terminant of drug safety and efficacy, and the inter-
actome of DMEs has attracted extensive attention.
There are 3 major interaction types in an interactome:
microbiome–DME interaction (MICBIO), xenobiotics–
DME interaction (XEOTIC) and host protein–DME in-
teraction (HOSPPI). The interaction data of each type
are essential for drug metabolism, and the collective
consideration of multiple types has implication for
the future practice of precision medicine. However,
no database was designed to systematically pro-
vide the data of all types of DME interactions. Here,
a database of the Interactome of Drug-Metabolizing
Enzymes (INTEDE) was therefore constructed to of-
fer these interaction data. First, 1047 unique DMEs
(448 host and 599 microbial) were confirmed, for the
first time, using their metabolizing drugs. Second,
for these newly confirmed DMEs, all types of their
interactions (3359 MICBIOs between 225 microbial
species and 185 DMEs; 47 778 XEOTICs between
4150 xenobiotics and 501 DMEs; 7849 HOSPPIs be-
tween 565 human proteins and 566 DMEs) were com-
prehensively collected and then provided, which en-
abled the crosstalk analysis among multiple types.
Because of the huge amount of accumulated data,
the INTEDE made it possible to generalize key fea-
tures for revealing disease etiology and optimizing
clinical treatment. INTEDE is freely accessible at:
https://idrblab.org/intede/

GRAPHICAL ABSTRACT

INTRODUCTION

Drug-metabolizing enzymes (DMEs) transform the parent
drug to a metabolite with substantially different physico-
chemical and pharmacological properties, and are critical
determinants of drug safety and efficacy (1,2). The inter-
actome of DMEs has therefore attracted considerable at-
tention (3–12). There are three major types of interactions:
(i) microbiome–DME interactions (MICBIOs) determin-
ing the dynamic nature (5) and interpersonal variability
(6) of drug metabolism; (ii) host protein–DME interactions
(HOSPPIs) essential for predicting in vivo efficacy or clear-
ance based on in vitro result (7) and revealing the mecha-
nism underlying drug resistance (8) or adverse drug reaction
(9); (iii) xenobiotics–DME interactions (XEOTICs) that are
the key factor of metabolism-based drug–drug interaction
(5) and a constant inspiration of clinical treatment opti-
mization (10). Because the metabolism of drugs is collec-
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Figure 1. INTEDE statistics of (i) the DMEs, and their corresponding drug(s) and tissue/disease specific protein abundances (orange) and (ii) three types
of DME interactions: MICBIOs (green), HOSPPIs (blue) and XEOTICs (red). MICBIO determines the evolving and dynamic nature of metabolizing
capacity and the interpersonal variability of drug metabolism; HOSPPI is essential for predicting in vivo efficacy/clearance based on the in vitro data, and
revealing the mechanisms underlying drug resistance and toxicity; XEOTIC is one of the leading factors of the metabolism-based drug-drug interaction
and the constant inspiration of clinical treatment optimization.

tively determined by multiple types of interactions, the ac-
cumulation of DME interactome data may give vital insight
into the prediction of clinical consequences (7) and will have
implication for the future practice of precision medicine (5).

Moreover, because of its dynamic evolvements (5), wide
distribution (13), and rich repository of enzymes (14), the
microbiome and its DMEs are found to be not only as crit-
ical as human DMEs in drug metabolism (10), but also
key in the study of individual or tissue-specific metabolism
of drugs (13,14) and the discovery of novel therapeutics
targeting microbial protein (10). As a result, there was an
explosive growth of interest in studying the interactome
of microbial DME (15–19). Particularly, the MICBIO be-
tween actinobacteria Eggerthella lenta and microbial DME
tyrosine decarboxylases was found to collectively regulate
the metabolism of levodopa (10); the HOSPPI between
host UDP-glucuronosyltransferases and microbial DME
beta-glucuronidases could lead to an adverse drug reac-
tion of irinotecan (20); the XEOTIC between antibiotic

ciprofloxacin and bacterial DME cytidine deaminase was
discovered to abrogate the resistance of gemcitabine (21).
Thus, it is important to collect these interactome data, and
collectively analyze the multiple types of interactions for not
only human but also microbial DMEs (7,10,15).

Nowadays, various databases have been developed to
provide DME-related data, the majority of which are freely
accessible and remain active. Some of these databases (such
as DrugBank (22), PDB (23), PharmGKB (24), Protein At-
las (25), TTD (26) and UniProt (27)) provide the enzyme
or DME information as part of a broader collection of
biological/pharmacological data, and some others (includ-
ing BRENDA (28), KEGG (29), MetaCyc (30), Reactome
(31), SMPDB (32) and VMH (33)) contain the general enzy-
matic classifications or metabolic reaction/pathway data for
a comprehensive set of enzymes. Since all these databases
do not include DME interactome data, some databases
have been designed to provide the interactions between
∼2800 xenobiotics and ∼190 DMEs (including CTD (34),
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T3DB (35) and Transformer (36)). However, no database
has been designed to describe the key role of microbial
DME in drug metabolism, and the interaction data of nei-
ther microbiome (MICBIO) nor host protein (HOSPPI),
that alter drug metabolism by affecting human/microbial
DME, are provided in any available knowledge base. As
the crosstalk among interaction types is crucial for drug
metabolism (7,10,15), it is critical to construct a database
that comprehensively describes all three types of DME
interactions.

Here, a newly developed database, Interactome of Drug-
Metabolizing Enzyme (INTEDE) was therefore intro-
duced. First, a comprehensive literature review of all
(>1900) drugs approved by U.S. FDA and >3000 drugs in
clinical trial or preclinical research was performed. Differ-
ent from the small amount of DMEs (∼30) that were of-
ficially described in the U.S. FDA guidance (37,38), 553
DMEs (241 and 312 from human and microbiome, respec-
tively) were confirmed in INTEDE to metabolize approved
drugs, 421 DMEs (188 from human and 233 from micro-
biome) were to metabolize the drug in clinical or preclin-
ical test, and 494 DMEs (208 from human and 286 from
microbiome) were to metabolize the pharmaceutically in-
vestigative agents. Second, for all these newly confirmed
DMEs, INTEDE comprehensively provided all three types
of their interactions (MICBIOs, HOSPPIs and XEOTICs,
as shown in Figure 1), which allowed the crosstalk among
multiple interaction types (7,10,15) and could thus facilitate
the study of disease etiology and the optimization of clini-
cal treatment. All in all, since such crosstalk is key for drug
metabolism, the INTEDE is expected to have implications
for the future practice of precision medicine.

FACTUAL CONTENT AND DATA RETRIEVAL

Confirmation and collection of human/microbial DMEs

The DMEs collected in INTEDE were first confirmed
by the drugs of clinical importance (either approved or
clinical/preclinical/investigative). Particularly, a compre-
hensive literature review of all drugs approved by FDA
(1921 in total, collected from the U.S. FDA official site),
2958 drugs in clinical trial (data from the ClinicalTrial.gov
(39) and TTD (40)) and 10 213 pharmaceutically inves-
tigative agents (obtained from the TTD (40)), was per-
formed to confirm their corresponding DMEs by search-
ing the PubMed (41) using such keyword combinations as
“Drug Name’ + drug metabolizing enzyme’, “Drug Name’
+ metabolism’, “Drug Name’ + enzyme’, “Drug Name’
+ drug metabolism’ and “Drug Name’ + metabolized’.
Moreover, to facilitate the discovery of microbial DMEs,
>2000 microbial species (from bacteria, fungi, metamon-
ada, amoebozoa and archaea (3,42,43)) colonizing through-
out the human body (such as bladder, blood, eye, gut, lung,
oral cavity, skin, stomach, urethra and vagina (44–46)) were
collected, and the microbial DMEs were then discovered by
the literature review of PubMed (41) using such keyword
combinations as “Species Name’ + ‘Drug Name”, “Species
Name’ + drug metabolism’, “Species Name’ + drug metab-
olized’ and “Species Name’ + metabolizing enzyme’.

As a result, 553 DMEs (241 host and 312 microbial) were
identified to metabolize 924 approved drugs, 421 DMEs

(188 host and 233 microbial) were to metabolize 560 drugs
in preclinical and clinical, and 494 DMEs (208 host and
286 microbial) were to metabolize 405 pharmaceutically in-
vestigative agents. In total, there were 1047 unique DMEs
in INTEDE (448 from human and 599 from microbes).
On one hand, 448 human DMEs were grouped to di-
verse enzymatic families (43 families in total defined by
the second level of the Enzyme Commission (EC) nomen-
clature (28)), and the Top-5 popular DME families were:
Paired Donor Oxidoreductase (EC: 1.14, 67 DMEs), CH-
OH Donor Oxidoreductase (EC: 1.1, 47 DMEs), Ester Bond
Hydrolase (EC: 3.1, 41 DMEs), Glycosyltransferase (EC:
2.4, 34 DMEs) and Kinase (EC:2.7, 32 DMEs). On the other
hand, 599 microbial DMEs also belonged to diverse en-
zymatic families (29 families in total defined by the sec-
ond level of EC nomenclature), and the Top-5 popular
DME families were: Carbon-Nitrogen Hydrolase (EC: 3.5,
99 DMEs), Glycosylase (EC: 3.2, 91 DMEs), Paired Donor
Oxidoreductase (EC: 1.14, 33 DMEs), CH-NH Donor Oxi-
doreductase (EC: 1.5, 31 DMEs), and Acyltransferase (EC:
2.3, 20 DMEs). Experimentally assessed kinetic parame-
ters (Km) and catalytic efficiencies (Kcat/Km) between 235
drugs and 190 human/microbial DMEs were also offered.
As shown in Figure 2, a full list of drugs metabolized by
certain DME were displayed in INTEDE.

Tissue and disease specific protein sbundances of DMEs

Tissue and disease specific DME abundances are critical
for the mitigation of drug toxic reaction (47) and alter-
ation of drug pharmacokinetics (48). In particular, tis-
sue specific DME abundances can not only maintain the
functional homeostasis of drug, but also mitigate their
tissue-dependent adverse reactions, such as cardiotoxic-
ity, nephrotoxicity and neurotoxicity (47); the variations
in DME abundances among different disease indications
(such as infection, immunodeficiency and inflammation)
can significantly affect hepatic/renal clearance, and there-
fore reduce drug efficacy or aggravate adverse drug reac-
tion (48). Since these tissue/disease-dependent variations
in DME abundances were expected to provide new ther-
apeutic strategies (49–52), the relevant data should be ac-
cumulated and further analyzed to promote modern drug
discovery.

Disease specific DME abundance data were collected as
follows, the detailed procedure of which was illustrated in
Supplementary Method S1. First, 5304 series records from
the same microarray platform (Affymetrix HGU133 Plus
2.0) were gathered from the Gene Expression Omnibus
(53). Second, the collected records were sequentially pro-
cessed by data normalization, transformation, integration,
perfect match correction, quantile, robust multiarray aver-
age and median polish (54). Third, the differential expres-
sion analysis (55) was conducted by comparing the DME
abundance among sample groups (defined in Supplemen-
tary Method S1). Fourth, the violin-plot describing the dif-
ferential expression pattern of the studied DMEs among
sample groups was drawn (shown in Supplementary Fig-
ure S1). Furthermore, tissue specific DME abundances data
were collected using the following procedure, and the de-
tailed process was elaborated in Supplementary Method S1.
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Figure 2. A typical INTEDE page providing the details of DME, which included: (i) the general information (DME name, EC nomenclature, taxonomy
lineage, hyperlink to detailed interactome and molecular or functional data); (ii) the full list of drugs metabolized by this DME (categorized based on
clinical status: FDA approved, clinical, preclinical, investigative and discontinued. By clicking on each category, the detail information of each drug can be
viewed); (iii) the tissue and disease specific protein abundance of the DME (the differential abundance profiles of 394 DMEs in 60 tissues and 106 diseases,
and the expression profiles of 348 DMEs across 36 human tissues).

First, a benchmark dataset that contained the protein ex-
pression data across 36 human tissues (56) was collected.
Second, the intensities of each DME were processed via
data integration and scaling. Third, the expression bar plot
of studied DME across 36 tissues was drawn (Supplemen-
tary Figure S2). Overall, the differential abundance profile
of 394 DMEs in 20,663 patients and healthy individuals of
60 tissues and 106 diseases, and the expression profile of 348
DMEs across 36 human tissues were provided in and down-
loadable from the website. As shown in Figure 2, the tissue
and disease specific DME abundances were described.

The interactome of human and microbial DMEs

INTEDE comprehensively provided all three types of
DME interaction data (as shown in Figure 1) for those
1047 unique DMEs (448 from human and 599 from

microbe) confirmed in previous section. These interac-
tion data included: (i) microbiome–DME interactions
(MICBIOs); (ii) host protein–DME interactions (HOSP-
PIs) and (iii) xenobiotics–DME interactions (XEOTICs).

Interactions between microbiome and DMEs. The micro-
bial manipulation of drug metabolism by interacting with
DME is characterized by (i) the vast diversity of involved
microbial species (including various bacteria or fungi from
dozens of taxonomic phyla (6,10,20,21,57–59)) and (ii) the
wide distribution of these species throughout the human
body (not only in gut, but also in skin, vagina, and many
other sites (17,21,44,60–62)). Since the microbiome-DME
interactions (MICBIOs) are key in determining the dy-
namic feature (5) and interpersonal variability (6) of drug
metabolism, it is very essential to have the MICBIOs data
for understanding the controls/effects of the circadian tim-
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ing system (63) and individualized microbiota compositions
(21,61) on the metabolism of certain medication (Figure 1).

Because the MICBIOs data were largely dispersed in lit-
eratures, PubMed database (41) was first searched to find
the interactions between microbiome and human/microbial
DMEs. In particular, the keyword combinations of “Mi-
crobial Species Name’ + ‘DME Name”, “Species Name’
+ ‘Drug Name” and “Species Name’ + drug metabolism’
were used in literature reviews, and the discovered publica-
tions were manually assessed for retrieving any MICBIOs-
related information. Moreover, due to the collective deter-
mination by multiple factors present in a drug delivery route
(64), the metabolism of a drug should be assessed by simul-
taneously considering its DME(s) and the colonizing mi-
crobes, if both DME and microbe are involved in the same
route (64). Therefore, additional literature reviews were then
conducted using the keyword combination of “Microbial
Species Name’ + ‘DME Name’ + ‘Drug Name”. The stud-
ies that describe the DME and microbe that metabolized the
same drug and present in the same delivery route were iden-
tified, and these publications were also manually evaluated
for retrieving the MICBIOs-related data.

As a result, the collected data included the taxonomic lin-
eage of each microbe (kingdom, phylum, class, order, fam-
ily, genus and species), the human body site distributed by
each microbe (bladder, blood, eye, gut, lung, oral cavity,
skin, stomach, urethra and vagina), the list of drugs affected
by the interaction between microbial species and DME, and
the mechanism of how drug metabolism is influenced by the
corresponding interactions. All in all, the latest version of
INTEDE contained 3359 MICBIOs between 225 microbes
and 185 human/microbial DMEs. These microbes came
from 3 kingdoms, 19 phyla, 31 classes, 40 orders, 69 families
and 107 genera as defined by the NCBI Taxonomy database
(65), and colonized in 10 different human body sites (such
as: bladder, blood, eye, gut, lung, oral cavity, skin, stomach,
urethra and vagina). The MICBIOs data can be assessed
and retrieved by various search strategies in both the Home
page and the subpage entitled ‘Microbiome-DME interac-
tion’ of INTEDE (as shown in Figure 3).

Interactions between host proteins and DMEs. Host
protein–DME interactions (HOSPPIs) were frequently en-
countered in drug metabolism, and widely acknowledged to
be critical determinant of drug safety and efficacy (7–9,66–
69). A variety of HOSPPIs were of great interest in recent
metabolic study, which included (i) oligomerizations that
are essential for predicting in vivo drug efficacy or clearance
based on the in vitro results (7), (ii) transcription factor reg-
ulations that are critical for revealing the mechanisms un-
derlying drug resistance (8) and metabolic variation (70,71),
(iii) epigenetic regulations (like DNA methylations, his-
tone modifications and non-coding RNA regulations) that
lead to inter-individual variability in drug responses and
adverse reactions, and highlight the implications for per-
sonalized medicine (9,72,73). Furthermore, the effects of
HOSPPIs on altering the drug metabolisms varied between
healthy and pathological condition, and differed among dis-
ease indications (74). It was therefore essential to collect
HOSPPIs to facilitate the prediction of clinical consequence
(Figure 1).

The HOSPPIs data was identified by literature search
using different keyword combinations. For example, when
searching for the oligomerization of a DME, “DME Name’
+ oligomer’, “DME Name’ + oligomerization’, “DME
Name’ + dimer’, “DME Name’ + trimer’, “DME Name’
+ dimerization’, “DME Name’ + trimerization’ and “DME
Name’ + protein-protein interaction’ were used; when dis-
covering the transcription factor regulations on a DME,
‘transcription factor + ‘DME Name” and ‘transcriptional
regulation + ‘DME Name” were reviewed; when finding the
DNA methylations of a DME, “DME Name’ + methyla-
tion’, “DME Name’ + epigenetics’ and “DME Name’ +
methylate’ were searched. Moreover, the additional DNA
methylation data for all DMEs in INTEDE were further
collected using the following processes. First, 1377 series
records of a very popular microarray platform (Illumina
HumanMethylation450 BeadChip) were collected from the
Gene Expression Omnibus (53), and 136 series records with
both patients and healthy individuals data were selected,
which contained 16 256 samples of 86 disease indications.
Second, all these collected records were sequentially pro-
cessed by quality control, normalization and batch effect
correction (75–78), and differential methylations were dis-
covered by calculating both P-values and delta-beta values
(79,80). According to the definition in previous reports, the
threshold of P-values was set to 0.05 (P-value < 0.05 was
considered to be statistically significant (79)), and the cut-
off of delta-beta values was set to 0.2 and 0.3 (the abso-
lute value of delta-beta >0.3 was considered as ‘significant
methylation’ (79), and 0.3 ≥ |delta-beta| >0.2 was reported
as ‘moderate methylation’ (80)). Third, the above differen-
tial methylations were discovered among four different sam-
ple groups, which included: (i) DME methylation in the nor-
mal tissue adjacent to the disease tissue of patients (blue), (ii)
DME methylation in the disease tissue of patients (red), (iii)
DME methylation in the normal tissue of healthy individual
(green) and (iv) DME methylation in the tissue other than
the disease tissue of patients (yellow). Fourth, the methyla-
tion plot across samples was drawn using ggplot2 in R envi-
ronment, and the violin plots of methylation variation be-
tween two studied groups was generated using ggplot2 and
ggbeeswarm in R. All plots can be viewed online (Supple-
mentary Figure S3) and downloaded from the website.

Consequently, the HOSPPI information included the in-
teraction types (oligomerization, transcription factor reg-
ulation, DNA methylation and drug co-metabolism), the
studied diseases (95 diseases standardized in a latest ver-
sion of International Classification of Diseases (81), ICD-
11), the targeted cell lines (289 cell lines, such as A549,
Caco-2, HEK293, HepG2 and MCF-7), the levels of DNA
methylation (significant or moderate) together with the cor-
responding P-value and delta-beta value, the drugs which
metabolism was affected by studied HOSPPIs, the de-
tailed mechanism of a HOSPPI on drug metabolism, and
the violin/bar plots illustrating the differential methyla-
tion between different sample groups. All in all, INTEDE
contained 7849 HOSPPIs between 565 host proteins and
566 DMEs: oligomerization (homo-/hetero-), transcription
factor regulation (activation/repression), DNA methyla-
tion (hypo-/hyper-), drug co-metabolism (direct/indirect).
HOSPPIs data can be assessed in INTEDE (Figure 4).
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Figure 3. A typical INTEDE page offering the data of microbiome-DME interaction (MICBIO). The INTEDE contained 3359 MICBIOs between 225
microbes and 185 DMEs. These microbes came from 3 kingdoms, 19 phyla, 69 families and 107 genera, and colonized in 10 different host body sites
(bladder, blood, eye, gut, lung, oral cavity, skin, stomach, urethra and vagina).

Interactions between xenobiotics and DMEs. The activ-
ity or expression of DMEs could be inhibited or induced
by xenobiotics, which, in turn, affected the hepatic clear-
ance of drug and led to the reduced efficacy and ther-
apeutic failure (82–85). These xenobiotics included: (i)
pharmaceutical agents (FDA approved, clinical, preclinical,
patented and investigative), (ii) health toxicants (biotoxin,
carcinogen, environmental pollutant, mycotoxin, and neu-
rotoxin), (iii) natural substances (biological extract, natu-
ral product/mixture and traditional medicine), (iv) agricul-
tural chemicals (fungicides, herbicides and insecticide), (v)
additive agents (food additives and cosmetic additives) and
(vi) proteins/peptides. Since all these xenobiotics are one of
the leading factors of the metabolism-based drug–drug in-
teractions (5) and the constant inspiration of clinical treat-
ment optimizations (10), it was essential to collect those
xenobiotics-DME interactions (XEOTICs), and clarify the
effects of an XEOTIC on modulating the activity or expres-
sion of human/microbial DMEs.

Therefore, the XEOTIC data were systematically
searched by literature review in PubMed based on the key-
word combinations between ‘DME Name’ and ‘biotoxin’,
‘environmental pollutant’, ‘extract’, ‘fungicides’, ‘inducer’,
‘inhibitor’, ‘insecticides’, ‘nature product’ and ‘pesticides’.
Those discovered literatures were evaluated manually to
identify the xenobiotics affecting DMEs. The collected
data included the name of xenobiotics, the modulation
types (inducer and inhibitor), the xenobiotic classifications
(additive, agricultural chemical, health toxicant, natural
substance, and pharmaceutical agent), the modulation
activity (measured by MIC/IC50/Ki values), and the
affected cell system (choriocarcinoma, hamster ovary,
and high five). All in all, the INTEDE provided 47,778
XEOTICs between 4150 xenobiotics and 501 human or
microbial DMEs. These miscellaneous xenobiotics cover
all the xenobiotic types described in the previous paragraph
(from (i) pharmaceutical agents to (vi) proteins/peptides).
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Figure 4. A typical INTEDE page offering the data of host protein-DME interactions (HOSPPIs). The INTEDE contained 7849 HOSPPIs between
565 host proteins and 566 DMEs. Various types of HOSPPI were in the INTEDE, which included: oligomerization (homo-/hetero-), transcription factor
regulation (activation/repression), and DNA methylation (hypo-/hyper-).

All XEOTICs can be assessed in the subpage of INTEDE
entitled ‘Xenobiotics-DME Interaction’ (Figure 5).

Data standardization, access and retrieval

To make the access and analysis of INTEDE data con-
venient for all users, the collected raw data were care-
fully cleaned up and then were systematically standardized,
which included the disease standardization, EC classifica-
tion, unit unification, structure availability and crosslink
to various reference databases. Detailed description on the
way to clean and standardize data was provided in Sup-
plementary Method S2. Furthermore, INTEDE has been
smoothly running for months, and tested from different
sites around the world. All data could be viewed, accessed,
and downloaded (Supplementary Figure S4). Currently, the
INTEDE is freely assessed without login requirement by all
users at: https://idrblab.org/intede/.

INTERACTION CROSSTALK AND PERSPECTIVES

Although the data of each type of DME interaction in
INTEDE were essential for current clinical studies, the

crosstalk among different interaction types had emerged
to be increasingly important due to the extremely complex
mechanisms underlying drug metabolism (10,20,57,86,87).
Taking the primary medication for treating Parkinson’s
disease––levodopa––as an example, it must enter the brain
and be converted there by the human DME aromatic amino
acid decarboxylase (AADC) to its active form––dopamine.
However, the delivery of levodopa to blood–brain bar-
rier is greatly restricted by its intestinal metabolisms of
both human and gut microbiome (10). Particularly, the
host intestinal AADC and gut microbes Enterococcus fae-
calis and Eggerthella lenta can convert levodopa into a dif-
ferent chemical before it reaches the brain, which causes
unwanted side effects (10). Therefore, levodopa should
be co-administrated with other drug by collectively con-
sidering multiple DME interactions: (i) the MICBIO be-
tween the above microbes and brain DME AADC; (ii) the
XEOTIC between xenobiotics carbidopa (inhibitor of in-
testinal AADC) and AADC (10). In other words, the
crosstalk between the MICBIO and XEOTIC of human
DME AADC inspired a new strategy that combines AFMT
(a microbe inhibitor) and carbidopa (a DME inhibitor)

https://idrblab.org/intede/
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Figure 5. A typical INTEDE page offering the data of xenobiotics-DME interaction (XEOTIC). The INTEDE provided 47 778 XEOTICs between
4150 xenobiotics and 501 DMEs, which were diverse. Particularly, the types of xenobiotics included (i) pharmaceutical agents (FDA approved, clinical,
preclinical and investigative), (ii) health toxicants (biotoxin, carcinogen, environmental pollutant, mycotoxin and neurotoxin), (iii) natural substances
(biological extract, natural product and traditional medicine), (iv) agricultural chemicals (fungicides, herbicides and insecticide), (v) additive agents (food
additive and cosmetic additive) and (vi) proteins /peptides.

with levodopa, for effectively overcoming the serious side
effects of anti-Parkinson drug (10).

Similarly, the HOSPPI between host protein car-
boxylesterase and DME CYP3A4 was found as the leading
cause of drug resistance, which could therefore be reversed
by the XEOTIC between xenobiotics vitamin D and
DME CYP3A4 (87); the HOSPPI between host protein
UGT1A1 and microbial DME beta-glucuronidase was
reported to cause diarrhea, which needed be relieved by the
XEOTIC between xenobiotic amoxapine and the microbial
DME beta-glucuronidase (20,57). Thus, the multiple types
of DME interaction in INTEDE might keep inspiring
new strategies for dealing with drug resistances and side
effects.

To make the crosstalk analysis of each DME possible, the
data of multiple interaction types were systematically col-
lected. As a result, 453 (43.3%) out of 1047 DMEs were de-
scribed in INTEDE with multiple interaction types. More-
over, the number of interaction data for each type was

from thousands to tens of thousands, which made it highly
possible to identify the differential features or generalize
the common characteristics from these DME-related big
data. Meanwhile, because of the lack of multiple interac-
tion types for the remaining 56.7% DMEs, it is essential to
continue drug metabolism studies for a further extension of
our knowledge on DME interactome.

In summary, INTEDE is unique in: (i) providing the
largest number of DMEs that are manually curated and sys-
tematically confirmed based on their metabolizing drug(s),
(ii) covering the novel DME data of diverse microbes (par-
asitizing in different sites of human body) together with
their metabolizing drug(s), (iii) describing the comprehen-
sive interactome data from three perspectives for both hu-
man and microbial DMEs and (iv) enabling the crosstalk
analysis among various types of DME interaction. With
the extensive efforts made on describing DME interactome
(3–10) and revealing the crosstalk among interaction types
(10,20,57,86,87), those immense, connected and structural-
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ized data provided in INTEDE are expected to have im-
plications for the future practice of clinical treatment op-
timization (88–92) and personalized medicine (93–96).
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