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ABSTRACT

With the rapid progress in pharmaceutical experiments and clinical
investigations, extensive knowledge of drug transporters (DTs)
has accumulated, which is valuable data for the understanding of
drug metabolism and disposition. However, such data are largely
dispersed in the literature, which hampers its utility and signifi-
cantly limits its possibility for comprehensive analysis. A variety of
databases have, therefore, been constructed to provide DT-related
data, and they were reviewed in this study. First, several knowledge
bases providing data regarding clinically important drugs and their
corresponding transporters were discussed, which constituted
the most important resources of DT-centered data. Second, some
databases describing the general transporters and their func-
tional families were reviewed. Third, various databases offering

transporter information as part of their entire data collection were
described. Finally, customized database functions that are avail-
able to facilitate DT-related research were discussed. This review
provided an overview of the whole collection of DT-related data-
bases, which might facilitate research on precision medicine and
rational drug use.

SIGNIFICANCE STATEMENT

A collection of well established databases related to drug trans-
porters were comprehensively reviewed, which were organized
according to their importance in drug absorption, distribution,
metabolism, and excretion research. These databases could col-
lectively contribute to the research on rational drug use.

Introduction

Drug efficacy and safety are largely determined by multiple processes
(absorption, distribution, metabolism, and excretion) that regulate phar-
macokinetics (Terada et al., 2015). A variety of endogenous molecules
(mostly proteins) are determinants of these processes (Giacomini et al.,
2010). Typical examples of these molecules include drug-metabolizing
enzymes that transform parent drugs to metabolites of very different

physicochemical and pharmacological properties (Yu and Zhong, 2016;
Yu et al., 2017; Hitchings and Kelly, 2019), and drug transporters
(DTs) that mediate the uptake of endo/exogenous substances into cells
as well as their efflux (Rodieux et al., 2016; To et al., 2017; Shu et al.,
2019). Among these molecules, DTs are capable of 1) determining the
pharmacokinetic profile of drugs by regulating their absorption, distribu-
tion, and excretion or indirectly modifying their metabolism (DeGorter
et al., 2012; Yang et al., 2019), 2) affecting drug pharmacodynamics by
delivering them to proper target sites, controlling differential drug con-
centrations among tissues or altering their interactions with other mole-
cules (Hu et al., 2015), 3) inducing drug toxicity through DT’s
vulnerability to drug-drug interaction (DDI) or leading to drug resis-
tance by reducing its concentration in targeted cells (Zhang and Hagen-
buch, 2019), and 4) facilitating target discovery and rational use of the
drug by revealing the mechanism of DDI, identifying the potential
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therapeutic target or improving the treatment of specific disease (Garib-
singh and Schlessinger, 2019). Due to the essential role of DTs in drug
efficacy and safety, it is necessary to acquire as much DT-centered
knowledge as possible (Li et al., 2017; Zhu et al., 2019; Tang et al.,
2020; Wang et al., 2021; Zhou et al., 2021).
With the advancement of experimental analysis (Li et al., 2018a) and

clinical investigation (Stopfer et al., 2016), an extensive amount of DT
knowledge has accumulated and mainly involves five types of DT-cen-
tered information: 1) expression, distribution, and function (Lin et al.,
2015), 2) epigenetic modification (Hirota et al., 2017), 3) structural con-
formation and variation (Zheng et al., 2018), 4) exogenous regulation
(Li et al., 2018a), and 5) genetic polymorphism (Peng et al., 2016). Par-
ticularly, the data regarding DT’s expression, distribution and function
demonstrate its disease-differential expression (Evers et al., 2018),
organism-dependent abundance (Durmus et al., 2015), tissue-specific
distribution (Nixon et al., 2016), transporting functional family (Shen et
al., 2017), and so on; the data of epigenetic modification on DT describe
the DNA/histone methylation and acetylation (Liu et al., 2016), noncod-
ing RNA regulation (Yu et al., 2019), and so on; the data of DT’s con-
formation and structural variations involve species-specific evolution
(Dias and Sa-Correia, 2014), the structures of the entire transporter
(Penmatsa et al., 2013) and functional conserved/substrate-binding
domain (Xue et al., 2016), and so on; the data of DT’s exogenous regu-
lation discuss the clinical drug-drug interactions (Kosa et al., 2018), reg-
ulatory substrate, inhibitor and inducer (Muller et al., 2018), and so on;
the data describing DT’s genetic polymorphisms provide the cytoge-
netic locations (Lewis and Girisha, 2020), disease indication induced by
hereditary factor (Karimian et al., 2020), genetic variant and frequency
(Veldic et al., 2019), and so on. The above knowledge is valuable for
understanding the drug ADME process (Nigam, 2015; Ye et al., 2019),
which is thus essential for current research on drug metabolism (Li et
al., 2020b; Wang et al., 2020a; He et al., 2021) and disposition (Bai et
al., 2016; Kawahara et al., 2020).
However, such valuable knowledge is largely dispersed in the literature,

which hampers its utility and significantly limits its possibility for compre-
hensive analysis (Li et al., 2018b; Yang et al., 2020b). Therefore, a variety
of databases have been constructed to offer DT-related data (Wang et al.,
2020c; Yin et al., 2020; Saier et al., 2021). Some of them offer explicit
information on drugs together with their corresponding transporters, and
give special emphasis on DT variability (Yin et al., 2020); some others
describe general transporters together with their (phylogenetic) classifica-
tions, and specifically highlight the ones of human origin (Elbourne et al.,
2017); the remaining databases aim to provide general data on various
transporters as a part of their data collection (UniProt, 2021). These data-
bases guarantee the accessibility to DT-related knowledge, which is antici-
pated to be the key data resource for current ADME studies.
Therefore, a comprehensive review of these popular databases was con-

ducted. First, the databases providing the data of clinically important drugs
together with their corresponding transporters were discussed, which consti-
tuted the most important resources for DT-centered data. Second, several
databases describing the general protein transporters and their functional
families were reviewed, which were crucial for any study requiring trans-
porter (especially DT) classification. Finally, the databases offering general
transporter information as a part of their data collection were described,
which could be adopted as essential complements to other available data-
bases. The overview of these various types of databases were shown in
Table 1.

Databases Providing Drugs and Their Corresponding Transporters
As estimated, approximately 10% (�2,000) of all proteins in the

human genome are functionally associated with the transporting of endo

or exogenous molecules (Hediger et al., 2013). However, regarding the
transporting of clinically important drugs, the total number of involved
DTs is still under debate (Yin et al., 2020). The valuable data of DTs
together with their transporting drugs have been described in a variety of
databases (Fig. 1), and the characteristic groups of data covered by differ-
ent databases were comprehensively reviewed and discussed in Table 2.
Pairing Data between Drug Transporter and Pharmaceutical

Agent. Several databases are providing the pairing data between DTs
and pharmaceutical agents. As the most widely used data resources of
pharmaceutical agents, Therapeutic Target Database [https://idrblab.org/
ttd/, (Wang et al., 2020d)], DrugBank [https://go.drugbank.com/,
(Wishart et al., 2018)], ChEMBL [https://www.ebi.ac.uk/chembl/,
(Mendez et al., 2019)], IUPHAR/BPS guide to pharmacology [https://
www.guidetopharmacology.org/, (Armstrong et al., 2020)], KEGG
DRUG [https://www.kegg.jp/kegg/drug/, (Kanehisa et al., 2019)], and
Metabolism and Transport Database [http://www-metrabase.ch.cam.ac.
uk/, (Mak et al., 2015)] offered millions of molecules that were paired
with the ADME-associated proteins. As shown in Fig. 1, all these data-
bases focused on the data of exogenous substances and their regulation
(colored in green), especially the data of regulatory substances and the
inhibitors/inducers of a studied DT (as shown in Table 2). Moreover, all
the databases described the DTs of the approved/clinical trial drugs, and
the number of DTs covered by these six databases varied greatly (from
�10 to over 100, as shown in Table 1). Among these databases, the
Therapeutic Target Database and Metrabase were the only two describ-
ing the tissue-specific distribution of DTs, and such data could facilitate
the critical analysis of distribution-induced adverse drug reactions
(Yang et al., 2016).
PharmGKB [https://www.pharmgkb.org/, (Barbarino et al., 2018)] is a

worldwide resource for pharmacogenomics knowledge that provides the
alteration data of drug pharmacokinetics and pharmacodynamics that
originate from genetic polymorphism. It focuses on the alterations in
drug response and the effects on their clinical phenotypes and contains
�1,000 drugs related to the genetic variations on �100 DTs. As shown
in Fig. 1, in addition to the exogenous regulation data, PharmGKB
offered additional DT data on expression/distribution/function and genetic
polymorphism. Compared with the databases above, PharmGKB offered
many diverse groups of DT data (Table 2) by describing functional fam-
ily, cytogenetic location, disease/phenotype induced by the hereditary fac-
tor together with the genetic variant and frequency.
UCSF-FDA TransPortal [https://transportal.compbio.ucsf.edu/, (Mor-

rissey et al., 2012)] and Transformer [http://bioinformatics.charite.de/
transformer, (Hoffmann et al., 2014)] were two popular databases pro-
viding important drug transporters together with the exogenous sub-
stance and regulation, which contain 31 and 60 DTs for transporting
approved or in clinical trial drugs, respectively. As demonstrated in
Fig. 1 and Table 2, UCSF-FDA TransPortal described the tissue-spe-
cific distribution information of DTs, whereas Transformer offered
distinctive data on species-specific structural evolution and the
three-dimensional crystal structure of the entire transporter. More-
over, as shown in Table 2, these two databases are distinguished in
covering the data of clinical DDI and are therefore applied to pre-
dict potential adverse drug reactions based on their DDI data
(Cesar-Razquin et al., 2018; Carrascal-Laso et al., 2020). It is
important to emphasize that the latest update of UCSF-FDA Trans-
Portal was in 2012.
As a recently constructed pharmaceutical database, VARIDT [https://

idrblab.org/varidt/, (Yin et al., 2020)] offered the most comprehensive
set of DTs that were confirmed by the transporting drugs (either
approved or clinical trial). As shown in Fig. 1, this database contained
the most diverse types of DT-related data (with the only exception of
structure-based data). As described in Table 2, the data for all data
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groups under four different types were collected and provided. More-
over, the total number of DTs covered in this database was the largest
compared with those knowledge bases in Fig. 1. In particular, a compre-
hensive literature review of all drugs approved by the FDA and �1,100

clinical trial drugs were first conducted. Then, a total of �180 DTs
were confirmed to transport approved drugs, and �150 DTs were to
transport clinical trial ones, which were substantially different from
the relatively small numbers of DTs shown in available databases

TABLE 1

Summary of the data completeness of DT and its corresponding drugs, data availability, developer, updating frequency of the databases included in this review
The “*” in the first column indicated that the data provided in the corresponding databases were primarily based on computational calculation or simulation,
whereas the databases without “*” represented that their data were manually collected from scientific literatures that were based on experimental validations.

Database
Year of Latest/First

Release No. of DTs (Drugs) Developer Updating Frequency
Data Batch
Download

Official Website of the
Database

Databases with Its First Version Published in Recent Five Years

ABCA4 database 2017 / 2017 1 (0) Jack Brockhoff
Foundation

(first version) NO http://www.sbl.unisi.it/
abca4/

iMusta4SLC* 2018 / 2018 �220 (0) BINDS (first version) YES http://cib.cf.ocha.ac.jp/
slc/

PPTdb* 2019 / 2019 �80 (0) Chang Gung
University

(first version) YES http://pptdb.cgu.edu.tw

VARIDT 2020 / 2020 266 (886) Zhejiang University (first version) YES https://idrblab.org/
varidt/

Databases Published before and Keeping Update in Recent Five Years

ABCMdb 2017 / 2012 36 (0) Hungarian Academy
of Science

5 Years NO http://abcm2.hegelab.
org/

ChEMBL 2019 / 2012 124 (�800) EMBL-EBI 2 Years YES https://www.ebi.ac.uk/
chembl/

DrugBank 2018 / 2006 136 (�800) Genome Alberta 2 Years YES (need
registration)

https://go.drugbank.
com/

EBI Expression
Atlas

2020 / 2010 �250 (0) EMBL-EBI 4 Years YES https://www.ebi.ac.uk/
gxa/

EncoMPASS 2019 / 2018 �40 (�10) NINDS/NIH 1 Year YES http://encompass.ninds.
nih.gov

FINDbase 2020 / 2007 25 (0) GoldenHelix
Fundtion

3 Years NO http://www.findbase.org

IUPHAR/BPS 2020 / 2009 22 (�70) NC-IUPHAR 2 Years YES https://www.
guidetopharmacology.

org/
KEGG DRUG 2019 / 1999 14 (�150) Kyoto University 1 Year NO https://www.kegg.jp/

kegg/drug/
OMIM 2019 / 1995 �200 (0) NHGRI 1 Year YES (need

registration)
https://omim.org/

PDB 2021 / 2000 �60 (�20) NSF/NIH 1 Year YES https://www.rcsb.org/
PharmGKB 2018 / 2002 �100 (�800) NIH/NHGRI/

NICHD
6 Years YES https://www.pharmgkb.

org/
MemProtMD* 2019 / 2015 �20 (0) University of

Oxford
4 Years YES http://memprotmd.

bioch.ox.ac.uk/
TCDB 2021 / 2006 266 (0) NIH 5 Years YES https://www.tcdb.org/
TransportDB* 2017 / 2004 �250 (0) Macquarie

University
10 Years YES http://www.

membranetransport.org/
TTD 2020 / 2002 �100 (�700) Zhejiang University 2 Years YES https://idrblab.org/ttd/
UniProt 2021 / 2004 266 (�100) NIH 1 Year YES https://www.uniprot.

org/

Databases Published before 2016 and without Any Update in Recent Five Years

ALD Info 2001 / 2001 1 (0) University of
Amsterdam

(first version) YES https://
adrenoleukodystrophy.

info/
CFMD 2011 / 2011 1 (0) US CF Foundation (first version) NO http://www.genet.

sickkids.on.ca/cftr/
dbSNP 2001 / 1999 �250 (0) NLM 1 Year YES https://www.ncbi.nlm.

nih.gov/snp/
Metrabase 2015 / 2015 20 (�500) University of

Cambridge
(first version) YES http://www-metrabase.

ch.cam.ac.uk/
METscout 2013 / 2013 �200 (0) Max Planck Society (first version) NO http://metscout.mpg.de/
SLC TABLES 2013 / 2013 �220 (0) University of Bern (first version) NO http://slc.bioparadigms.

org/
The Human

Protein Atla
2015 / 2015 �250 (0) Knut and Alice

Foundation
(first version) YES https://www.

proteinatlas.org/
Transformer 2014 / 2010 60 (�250) Universit€atsmedizin

Berlin
4 Years NO http://bioinformatics.

charite.de/transformer
UCSF-FDA

TransPortal
2012 / 2012 31 (�480) FDA Critical Path

Initiative
(first version) NO https://transportal.

compbio.ucsf.edu/

BINDS, basis for supporting innovative drug discovery and life science research; EMBL-EBI, European bioinformatics institute; NC-IUPHAR, nomenclature and standards committee of
international union of clinical pharmacology; NHGRI, national human genome research institute; NIH, National Institutes of Health; NICHD, National Institute of Child Health and Human
Development; NINDS: National Institute of Neurologic Disorders and Stroke; NLM, National Library of Medicine; NSF, National Science Foundation; US CF Foundation: Cystic fibrosis
foundation.
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(Table 2). Due to the huge amount of accumulated DT data, the
VARIDT is expected to provide strong support to the optimiza-
tion of clinical treatment.
Diverse Data Illustrating Various Aspects of DT Variability.

The variability data of DTs are essential for the determination of the
interindividual variations in drug response and side effects (Yee et al.,
2018; Nie et al., 2020). Besides the variabilities in exogenous regula-
tion and genetic polymorphism explicitly discussed in the 2.1 section,
two additional aspects of variability (varied protein abundances and
diverse epigenetic regulation) should be considered for DTs because
of their importance in bridging the preclinical investigations with clin-
ical trials (Durmus et al., 2015) and leading to multidrug resistance in
complex disease (Zhou et al., 2020), respectively. Therefore, current
databases available for providing these two additional variability data
were explicitly described in this review as follows.
The protein abundance of DTs plays an important role in several

aspects of drug research, such as clinical toxicity analysis, clinical
pharmacokinetics research, and adverse reaction evaluation (Lin et
al., 2015; Safar et al., 2019). There are three kinds of variability of
DT abundances: 1) organism-specific expressions (Durmus et al.,
2015), 2) tissue-differential distributions (Nixon et al., 2016), and 3)
disease-dependent abundances (Evers et al., 2018). As provided in
Table 2, the tissue-differential distribution data have been provided
by multiple databases, such as TTD, PharmGKB, UCSF-FDA Trans-
Portal, Metrabase, and VARIDT, which further demonstrate the criti-
cal roles of such variability in drug disposition (Kawahara et al.,
2020). For the remaining two kinds of variability data, VARIDT is
the only knowledge base of such information, and the differential
expression patterns are provided for 108 diseases and 3 model
organisms.
Epigenetic regulation of DT genes has emerged as an important

mechanism of individualized drug responses (Peng and Zhong, 2015;
Hirota et al., 2017). Few epigenetic regulation data of DTs (Table 2)
are provided by currently available knowledge bases, and the VAR-
IDT is currently the only resource describing such variability. Particu-
larly, it provided epigenetic regulation data on 1) epigenetic types
(DNA methylation, non-coding RNA regulation, histone acetylation/
methylation, etc.), 2) prevalence of occurrence, 3) locations, 4)
description of the epigenetic phenomenon, 5) experimental methods,

Fig. 1. Ten representative databases providing the information of drugs
together with the corresponding DTs. Five types of DT-related data were
shown in the circles with various colors, including 3D structure, endogenous
substrates, expression/distribution/function, polymorphism, and epigenetic-
related data.
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and 6) materials adopted for validating each phenomenon. In total, over
20,000 DNA methylations, �100 histone modifications, and over 7,000
noncoding RNA regulations were collected and comprehensively pro-
vided in the latest VARIDT.

Databases Describing Transporters and Transporter Families
Membrane transporters play critical roles in discovering new drugs

and elucidating disease mechanisms (Nigam, 2018), which can be
divided into channels, carriers, electron flow carriers, group transloca-
tors, and pumps for determining the molecular composition and energy
state of cells (Cook et al., 2014; Saier et al., 2021). The identified drug
uptake/efflux transporters may constitute only a small fraction of all
these general transporters, but these general transporters are of great
importance for elucidating drug metabolism (Wang et al., 2020b) and
disposition (Kawahara et al., 2020). Thus, the databases available for
describing general transporters and transporter families are valuable
treasures for current DT research.
These databases include TCDB (Saier et al., 2021), METscout

(Geffers et al., 2013), CFMD (Sosnay et al., 2011), iMusta4SLC (Higu-
chi et al., 2018), ABCMdb (Tordai et al., 2017), ALD info (Kemp et
al., 2001), ABCA4 DataBase (Trezza et al., 2017), TransportDB
(Elbourne et al., 2017), and SLC Tables (Hediger et al., 2013), which
contain the data on classifying general transporters or describing a spe-
cific class of proteins. Such data provided the resources for the expan-
sion of DT-related knowledge, which was described in many databases
(as illustrated in Fig. 2), and a variety of distinct data groups covered by
these popular databases were also comprehensively reviewed and dis-
cussed in Table 3.
Systematic Classification of the General Protein Transporters.

TCDB [https://www.tcdb.org/, (Saier et al., 2021)] is a well established
database for classifying general protein transporters. It contains trans-
porter information of diverse species and describes the general trans-
porter in terms of structure, function, mechanism, evolution, disease/
medicine, and related endogenous compounds (Fig. 2 and Table 3). Col-
lectively, this database covered over 20,000 transporters classified into
thousands of nonredundant function families, and it enables the assess-
ments of the family members, the discovery of their evolutionary rela-
tionships, and inference of substrate and molecular functions. It has
been adopted recently for optimizing experimental designs (Hong et al.,
2020; Wang et al., 2020b; Yang et al., 2020a; Graf et al., 2021; Peng et
al., 2021).
TransportDB [http://www.membranetransport.org/transportDB2/, (El-

bourne et al., 2017)] is a functional annotation database containing
information on a wide range of transporters derived from diverse spe-
cies. Particularly, it annotates membrane transporters from �2,000
genomes and results in �800,000 transporters grouped into �160 fami-
lies. As shown in Fig. 2, this database contained the data of expression,
distribution, function, and endogenous substrates for general transporter,
which gives functional family, transporter phylogenetic classification,
and structure of endogenous compounds (Table 3). TransportDB was
suggested to be adopted for characterizing transporters of specific func-
tions (Frioux et al., 2020; Bernstein et al., 2021).
Knowledge Bases Describing a Specific Transporter Family.

SLC Tables [http://slc.bioparadigms.org/, (Hediger et al., 2013)] is a
database with specific data on �400 absolute carriers (SLCs) classified
into 52 functional families. This database is popular for describing
detailed data on the functional family, endogenous substances, and tis-
sue-differential distribution (Fig. 2 and Table 3). Because of its specific
scope of describing the SLC transporter family, it has been frequently
used to facilitate SLC-related studies (Girardi et al., 2020). As another
SLC-centered database, the METscout [http://metscout.mpg.de/,
(Geffers et al., 2013)] provides the metabolic pathway and gene

expression landscape, which describe where in an organism each meta-
bolic reaction takes place and where the SLCs transport the metabolites.
It contains �350 SLCs and covers almost all components within the
mouse metabolic network. As illustrated in Fig. 2, it provides the func-
tional family, organism-specific abundance, tissue-differential distribu-
tion of transporters, together with the scRNA sequencing atlas
(described in Table 3).
Other databases for a specific transporter family include: ABCMdb

[http://abcm2.hegelab.org/, (Trezza et al., 2017)] and iMusta4SLC
[http://cib.cf.ocha.ac.jp/slc/, (Higuchi et al., 2018)]. Both knowledge
bases focus on providing the genetic mutation information for a particu-
lar family of transporters (shown in Fig. 2). ABCMdb has 45 ABC tran-
scripts classified into 5 families, and iMusta4SLC provides 573 SLC
transcripts classified into 52 families. Both databases can predict poten-
tial disease liability based on the mutations in a general transporter and
can help to develop extensive disease knowledge networks for improv-
ing disease management (Verkman et al., 2013; Tracewska et al., 2019;
Chien et al., 2021).
Knowledge Bases Describing a Specific Transporter. A number

of additional knowledge bases were constructed to describe genetic poly-
morphisms for specific transporter, which included CFMD [http://www.
genet.sickkids.on.ca/cftr/, (Sosnay et al., 2011)], ALD Info [https://
adrenoleukodystrophy.info/, (Kemp et al., 2001)], and ABCA4 DataBase
[http://www.sbl.unisi.it/abca4/abcr_mainlist.php, (Trezza et al., 2017)]. As
indicated by their name, these knowledge bases contain information on
only a single transporter, such as CFTR1, ABCD1, and ABCA4. Particu-
larly, they provided comprehensive disease data that were associated with
the sequential/structural polymorphism of a transporter. As illustrated in
Fig. 2 and Table 3, CFMD contains the data of cytogenetic locations and
genetic variants and frequency, ALD Infor provides the data of geneti-
cally induced disease indications, and ABCA4 DataBase includes the
data of genetically correlated phenotypes.

Databases Providing Transporters as Part of Their Data Collection
With the advancement of next-generation sequencing techniques

(Lane et al., 2016; Yin et al., 2021), many protein-coding genes have
been successfully characterized. In addition to the databases discussed
above, some knowledge bases describing the whole protein atlas were
also available. Within these databases, the transporters were described
as a part of their entire data collection. Specifically, these databases
included: dbSNP, EBI Expression Atlas, EncoMPASS, FINDbase,
Human Protein Atlas, OMIM, PDB, PPTdb, membrane proteins embed-
ded in lipid bilayers database, and UniProt. These databases focus on

Fig. 2. Nine representative databases describing the information of transporters
and transporter families. Four types of transporter-related data were shown in the
circles with various colors, including endogenous substrates, expression/distribu-
tion/function, structure, and polymorphism-related data.
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macroscopic and comprehensive descriptions of all proteins, and the
information on all transporters is therefore provided in a generally
described manner.
As shown in Fig. 3, three types of transporter-related data were pro-

vided in these databases. For the data of genetic polymorphism, three
databases were available, which included: dbSNP [https://www.ncbi.
nlm.nih.gov/snp/, (Sherry et al., 2001)], FINDbase [http://www.
findbase.org, (Kounelis et al., 2020)], and OMIM [https://omim.org/,
(Amberger et al., 2019)]. As described in Table 4, all three databases
illustrated the genetic variant and frequency information of the studied
transporters, with OMIM being the only source for tissue-specific distri-
bution, genetically correlated phenotype, and cytogenetic location. For
the data of expression, distribution, and function, three popular databases
were available, which included: UniProt [https://www.uniprot.org/, (Uni-
Prot, 2021)] and the Human Protein Atlas [https://www.proteinatlas.org/,
(Uhlen et al., 2015)] together with EBI Expression Atlas [https://www.
ebi.ac.uk/gxa/home, (Papatheodorou et al., 2020)]. Based on the descrip-
tions in Table 4, all three databases focus on tissue-differential distribution
and organism-specific abundance. UniProt provided the comprehensive
information on functional families and transporter sequences, whereas EBI
Expression Atlas places more emphasis on disease-varied expression.
Among these three databases, the Human Protein Atlas has the widest
coverage on the transporter data groups as described in Table 4. For the
data of structural conformation, four reputable databases were available,
which included: PDB [https://www.rcsb.org/, (Burley et al., 2021)],
EncoMPASS [http://encompass.ninds.nih.gov, (Sarti et al., 2019)], mem-
brane proteins embedded in lipid bilayers database [http://memprotmd.
bioch.ox.ac.uk/, (Newport et al., 2019)], and PPTdb [http://pptdb.cgu.edu.
tw, (Lee et al., 2019)]. As described in Table 4, all four databases provided
structural conformation for the entire transporter (if available). As the
most comprehensive database for protein crystal structures, PDB also
described the substrate-binding domain of transporter with relatively high
resolution. PPTdb had more data groups (Table 4) and gave the unique
data on species-specific evolution and the structure of functionally con-
served domain.

Customized Database Functions Facilitating DT-related Research
Besides the valuable DT-related data, a variety of customized func-

tions facilitating DT-related research were also provided in several
databases. These functions included sequence-based DT similarity
screening (Elbourne et al., 2017), structure-based similarity screening
for transported drug (Mendez et al., 2019), disease/tissue-specific dif-
ferential expression analysis (Uhlen et al., 2015), interplay analysis
among multiple DT variabilities (Yin et al., 2020), functional analysis
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Fig. 3. Ten representative databases providing transporter information as part of
their data collections. These databases included the transporter information of
three types which were shown by the circles of different colors, including expres-
sion/distribution/function data, polymorphism data, and 3D structure.
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based on signaling pathways (Kanehisa et al., 2019), DT annotation
and classification (Saier et al., 2021), and so on. Based on these valu-
able functions together with their comprehensive DT-related informa-
tion, the available databases provided much-enhanced power in the
research of drug metabolism and disposition. As shown in Table 5,
these functions facilitated the structure-based drug design/identifica-
tion (Yu et al., 2016), discovery of target drugability based on DT
sequence (Frioux et al., 2020), disease/tissue-specific differential
expression analysis (Yu et al., 2020), structure similarity search by the
transported drug (Sakai et al., 2021), interplay analysis among multi-
ple DT variabilities (Wang et al., 2021), functional analysis based on
the signaling pathways (Sakil et al., 2017), functional annotation and
systematic classification of DTs (Peng et al., 2021), prediction of
potential DDIs (Carrascal-Laso et al., 2020), drug safety assessment
and toxicity discovery (Zhou et al., 2020), and identification of poten-
tial drug resistance (Hlav�a�c et al., 2020). Overall, these customized
database functions are very diverse, which are capable of promoting
DT-based research on the drug ADME process.

Summary and Prospect.
Based on the above discussions, the available databases are useful for

translating experimental results into clinical evidence, which can enable
clinicians to formulate appropriate medications for a specific patient and
provide qualified solutions for drug discovery. Recent studies showed
that there is an increasing interest in the variability of DTs, which
emphasized the importance of 1) epigenetic regulation and genetic poly-
morphism of DT, 2) species-, tissue-, and disease-specific DT abundan-
ces, and 3) exogenous factors modulating DT activity (Yin et al., 2020).
These data have been provided by some available databases, such as
PharmaGKB (Barbarino et al., 2018), UCSF-FDA TransPortal (Morris-
sey et al., 2012), and Transformer (Hoffmann et al., 2014), and each
database focuses on one particular aspect of DT variability.
Recent studies revealed the urgent necessity of conducting interplay

analysis among multiple aspects of DT variability (Chen et al., 2016;
Genovese et al., 2017; Ye et al., 2018; Yang et al., 2020b, 2020c). Tak-
ing the multidrug resistance as an example, the impaired uptake of
organic cation transporter 1 (hOCT1) was found responsible for the che-
moresistance of sorafenib in treating the cholangiocarcinoma. The
decrease of the hOCT1 mRNA level was identified to be correlated
with the hypermethylation status of its promoter, and treatment of chol-
angiocarcinoma cells with decitabine (a demethylating agent) was found
to be able to restore hOCT1’s expression and increase the uptake of sor-
afenib (Lozano et al., 2019). This example explicitly demonstrates an
interplay between (1) epigenetic regulation of DT and (2) exogenous
regulation modulating DT activity.
Similar to hOCT1, organic anion transporter 2 (hOAT2) is another

hotspot in current research, and its aberrant expression was reported to
lead to insufficient intracellular drug accumulation, which is responsible
for the failure of chemotherapy in the patient with hepatocellular carci-
noma. The transcriptional repression of hOAT2 is associated with his-
tone deacetylations, and the activation of hOAT2’s transcription and
enhanced uptake of the OAT2 substrate zidovudine can thus be achieved
by histone deacetylases inhibitor Vorinostat (Wang et al., 2021). All in
all, the joint consideration of multiple DT variabilities (in this situation,
epigenetic regulation and exogenous chemicals) can help to discover
potential chemo-sensitization strategies for treating cancers. Such valu-
able information has been provided in the latest version of VARIDT.
Finally, with the advent of the big-data era, the available pharmaceuti-

cal knowledge bases are expected to be fully connected to avoid the prob-
lem of “information isolated islands” (Fu et al., 2020). A careful review
of all those discussed databases above-identified several reputable data-
bases that were fully connected with other available knowledge bases,
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such as: ChEMBL, DrugBank, Therapeutic Target Database, PharmGKB,
VARIDT, and so on. However, there are still some databases that are not
fully linked to other information resources. To promote the publicity of
these databases and truly demonstrate the capacity of big-data analysis,
the global scientific community should strive together to build a compre-
hensive database that includes integral information on DTs and their vari-
abilities. This comprehensive database may facilitate the discovery of the
correlation between disease/adverse drug reaction and the studied DT.
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