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Abstract

Label-free quantification (LFQ) with a specific and sequentially integrated workflow of acquisition technique, quantification
tool and processing method has emerged as the popular technique employed in metaproteomic research to provide a
comprehensive landscape of the adaptive response of microbes to external stimuli and their interactions with other
organisms or host cells. The performance of a specific LFQ workflow is highly dependent on the studied data. Hence, it is
essential to discover the most appropriate one for a specific data set. However, it is challenging to perform such discovery
due to the large number of possible workflows and the multifaceted nature of the evaluation criteria. Herein, a web server
ANPELA (https://idrblab.org/anpela/) was developed and validated as the first tool enabling performance assessment of
whole LFQ workflow (collective assessment by five well-established criteria with distinct underlying theories), and it
enabled the identification of the optimal LFQ workflow(s) by a comprehensive performance ranking. ANPELA not only
automatically detects the diverse formats of data generated by all quantification tools but also provides the most complete
set of processing methods among the available web servers and stand-alone tools. Systematic validation using
metaproteomic benchmarks revealed ANPELA’s capabilities in 1 discovering well-performing workflow(s), (2) enabling
assessment from multiple perspectives and (3) validating LFQ accuracy using spiked proteins. ANPELA has a unique ability
to evaluate the performance of whole LFQ workflow and enables the discovery of the optimal LFQs by the comprehensive
performance ranking of all 560 workflows. Therefore, it has great potential for applications in metaproteomic and other
studies requiring LFQ techniques, as many features are shared among proteomic studies.
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Introduction

Microbial community (MC) is characterized by widely diverse
species and highly dynamic compositions [1, 2] that make it
closely associated with the pathogenesis of various diseases
(such as cancer [3], inflammatory disease [4] and metabolic
disorder [5]), the productivity of agricultural plants [6, 7], the
biogeochemical cycle of complex environmental matrices [8,
9] and so on. Investigations of the protein abundance in spe-
cific MC have enabled an unprecedented view of the adaptive
response of microbes to external stimuli or their interaction
with other organisms or host cells [10, 11]. Due to its supe-
rior ability to provide quantitative and dynamic information
on microbiome’s functional activity by directly profiling pro-
tein expression [12], metaproteomics stands out from other
OMIC (any research field of biological study ending in -omics
such as genomics, proteomics or metabolomics) techniques and
becomes popular in current MC studies [13–18]. Thus far, several
methods have been developed to quantify metaproteomic data
[19]. Due to the simplicity of its experimental design and its abil-
ity to process large sample cohorts [20], label-free quantification
(LFQ) is the most widely employed approach able to monitor
the intestinal responses to gut microbiota [21–23], decipher the
diversity and dynamics of bacterial proteome [24], reveal the
abnormal abundance of proteins [25] and so on.

However, the low precision [26], poor reproducibility [27, 28],
inaccuracy [29] and false discovery rate [30, 31] of the LFQ of
microbial proteins have emerged as the key ‘technical chal-
lenges’ in recent metaproteomic study [27–29, 32–35]. These
challenges may be attributed to (1) heterogeneity among micro-
bial samples [36], (2) vast dynamic range of protein abundance
[29], (3) highly random nature of experimental sampling [32],
(4) systematic variations among sample preparations or experi-
mental runs [12, 26, 32] and (5) enlarged search space in metapro-
teomic study [2, 30, 31]. The substantial variations in microbial
signaling or phenotypes are frequently reported to originate
from subtle changes in microbial samples [37–39], but these
changes are rarely detected if an LFQ does not perform well [27].
Thus, a variety of acquisition techniques [40, 41], quantification
tools [41, 42] and subsequent processing methods (transfor-
mation, normalization, missing value filtering and imputation)
[43, 44] have been developed and extensively used to increase
precision, enhance reproducibility and improve accuracy of LFQ
in current proteomic studies (Supplementary Table S1).

Till now, 3 acquisition techniques (2 modes of acquisition),
≥18 quantification tools (Table 1) and dozens of subsequent pro-
cessing methods (≥4 transformation, ≥16 normalization and ≥ 8
filtering/imputation) have been sequentially integrated to form
numerous LFQ workflows. As reported, different LFQ workflows
can produce considerably different or, in some cases, contra-
dictory results [45], and the suitability of a specific workflow
depends heavily on the particular data set analyzed [46]. It
is now of great interest to compare the performances among
various quantification tools [20, 33] and different label-free tech-
niques [47, 48], and the selection of the optimal workflow for
a specific data set is urgently needed [49], which is however
a very challenging task in metaproteomics. First, the feasibil-
ity of discovering the optimal LFQ workflow is severely ham-
pered by the huge number of possible combinations. Taking
the subsequent processing methods as example, there are over
500 possible combinations of transformation, normalization and
filtering/imputation approaches. Second, the criterion used to
assess LFQ’s performances is critical but also a great challenge
for selecting the optimal workflow [40, 50]. LFQ’s performance is

primarily evaluated by ‘precision’ (intragroup variations) [50], but
a variety of new criteria could also be applied [20, 51, 52]. As these
criteria complement one another, it is highly recommended to
collectively employ these criteria as a ‘thorough’ evaluation of
each workflow [46, 47, 52].

Several powerful LFQ-related tools (Supplementary Table
S2) are currently available [53–58]. Perseus [53] and Gmine [54]
integrate various processing methods in their corresponding
analysis chain, but no assessment on the performances of LFQ is
conducted. ‘LFQbench’ [20] and ‘msCompare’ [55] are recognized
as evaluating the performances of 3∼5 quantification tools [20,
55], and ‘Normalyzer’ [56], ‘SPANS’ [57] and ‘GiaPronto’ [58]
are distinguished for being able to assess 1∼8 normalization
methods [56–58]. Since a typical LFQ workflow integrates both
quantification tools and processing methods, any assessment
focusing solely on the tool or the method could not fully reflect
the overall performance of the whole workflow. Moreover,
none of the available tools could systematically evaluate the
performance, as highly recommended by previous studies [46,
47, 52], based on all those proposed criteria (each with distinct
underlying theory) [20, 47, 59–63], and it is impossible for
these tools to discover the workflows of optimal performance
by comprehensively ranking all (more than 500) possible
quantification combinations. Thus, it is essential to develop
new tools to assess the performance of the whole LFQ workflow
from multiple perspectives and identify the optimal one based
on comprehensive performance ranking.

Herein, an open access server ANPELA was constructed and
validated to enable the performance assessment of whole LFQ
workflow (18 quantification tools accompanied by the combi-
nation of 28 processing methods). Five well-established criteria
[20, 59–63] were collectively used for the first time to facilitate
comprehensive assessment from multiple perspectives. ANPELA
not only automatically detects the diverse formats of data gen-
erated by all quantification tools but also comprehensively pro-
vides the most complete set of processing methods among the
available web servers or stand-alone applications. Moreover, it
enables the identification of the optimal LFQ workflow(s) based
on a comprehensive performance ranking. To validate its ability
to (1) discover well-performing workflow(s), (2) enable assess-
ment from multiple perspectives and (3) validate LFQ accuracy
using spiked proteins, 16 benchmark data sets were collected
and 4 independent metaproteomic cases were studied. In con-
clusion, ANPELA is unique for its ability to evaluate the per-
formance of the whole LFQ workflow and enable the discovery
of the optimal one(s) by comprehensive performance ranking,
which can thus greatly facilitate proteome quantification for
current metaproteomic research.

Materials and methods
Quantification tools and subsequent processing
methods used in ANPELA

Eighteen quantification tools for preprocessing mass spectrome-
try (MS)-based raw data acquired by three acquisition techniques
(Peak intensity, Spectral counting and SWATH-MS) were pro-
vided in ANPELA (Supplementary Method S1), which included
Abacus [64], Census [65], DIA-Umpire [66], DTASelect [67], IRMa-
hEIDI [68], MFPaQ [68], MaxQuant [69], OpenMS [70], OpenSWATH
[20], PEAKS [71], ProteinProphet [72], Proteios SE [73], Progenesis
[44], SWATH 2.0 [20], Skyline [74], Spectronaut [75], Scaffold [33]
and Thermo Proteome Discoverer [33]. Moreover, 28 subsequent
processing methods were used for analyzing metaproteomic
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Table 1. Overview on 18 quantification tools together with their corresponding mode of acquisition, acquisition technique and quantification
metric. APEX, absolute protein expression index; Average-Top3, average intensity of the three highest intense peptides; emPAI, exponentially
modified protein abundance index; iBAQ, intensity-based absolute quantification; IRP, internal reference peptide; MaxLFQ, delayed normaliza-
tion and maximal peptide ratio extraction; NoC, intensity of nonconflicting peptides; NSAF, normalized spectral abundance factors; PAI, protein
abundance index; Raw, raw spectral counts; Summed-Top3, summed intensity of the three highest intense peptides; TIC, total ion current; TPA,
total protein approach; TRIC, transfer of identification confidence

Mode of
acquisition

Acquisition
technique

Representative
quantification tools

Quantification metric provided

Data-dependent
acquisition
(DDA)

Spectral counts
(MS2)

Abacus NSAF [47, 64, 130]
Census Raw [65]
DTASelect Raw [67]
IRMa-hEIDI Raw [129]
MaxQuant emPAI; APEX [47, 69, 130]
MFPaQ PAI [131]
ProteinProphet Raw [132]
Thermo Proteome Discoverer NSAF [33, 47, 130]
Scaffold emPAI; NSAF; Total spectra; Weighted spectra [133]

Peak intensity
(MS1)

MaxQuant MaxLFQ; Summed-Top3; iBAQ; TPA [69]
MFPaQ TIC; Average TIC [134]
OpenMS TIC; Top three TIC [135]
PEAKS Average-Top3; Summed-Top3 [136]
Progenesis Average-Top3; NoC [33, 137]
Proteios SE Summed-Top3 [48,73]
Scaffold Average-Top3; iBAQ; TIC [138]
Skyline Average-Top3 [139]
Thermo Proteome Discoverer Minora algorithm [140, 141]
Census Weighted overall intensities [142]

Data-independent
acquisition
(DIA)

SWATH-MS

DIA-Umpire Data-centric iBAQ abundance measures and ‘Top N’ metrics [65]
OpenSWATH Peptide-centric TRIC algorithm [143, 144]
PeakView Peptide-centric extracted ion chromatograms alignment [145]
Spectronaut Peptide-centric ‘target-decoy’ search strategy [75]
Skyline Peptide-centric IRP method [146]

data (Supplementary Method S2), which included 4 transfor-
mation (Box–cox [76], Cube root [77], Log transform [78] and
Power [79]), 16 normalization (Auto Scaling [80], Cyclic Loess [81],
EigenMS [50], Linear Baseline Scaling [82], Lowess [83], Median
[84], Mean [85], Median Deviation [86], Pareto Scaling [87], PQN
[88], Quantile [82], Robust Linear Regression [50], TIC [89], TMM
[90], VSN [91] and Z-score [92]) and 8 filtering or imputation
(Back [44], Basic [44], Bpca [44], Censor [44], Knn [93], Lls [44], Svd
[93] and Zero [94]). To make the discussion in this study clearly
understood, a three-letter abbreviation was assigned to each
method (Table 2), and the brief descriptions of these methods
were also provided in Table 2.

Criteria and corresponding assessment metrics for
evaluating the performance of LFQ workflow

Besides the criterion ‘precision’ (intragroup variations) primarily
applied for assessing the performance of LFQ [50], a variety of cri-
teria have been developed and applied in the LFQ-related studies
[20, 51, 52]. Due to the independent nature of these criteria [47],
they are known to complement one another and highly recom-
mended to be collectively employed for ‘thoroughly’ evaluating
specific LFQ workflow [46, 47, 52]. Particularly, two independent
criteria, ‘precision’ and ‘accuracy’, were collectively considered
to enable the in-depth evaluation of LFQ [20, 44, 50], and three
independent criteria were further integrated for the first time to
comparatively evaluate various LFQ methods [47]. Moreover, an
appropriate LFQ is expected to retain or even increase the differ-
ence in proteomic data between two distinct sample classes [59,

95]. In the meantime, the reproducibility of identified markers is
also recognized as another independent criterion for assessing
the performance of LFQ [52]. Thus, five independent criteria
were used here to assess the performance of an LFQ workflow
in ANPELA (each measured by a variety of assessment metrics;
Supplementary Method S3).

(a) Precision of LFQ based on the proteomes among replicates

Different acquisition techniques, various tools for preprocessing
raw proteomics data and diverse approaches for data processing
(transformation, normalization, filtering and missing value
imputation) could profoundly affect the precision of LFQ [20],
which was assessed by pooled coefficient of variation (PCV)
of the reported protein intensities among replicates [20, 96].
PCV was thus adopted as an assessment metric reflecting LFQ’s
ability to reduce variations among replicates [97] and to enhance
technical reproducibility [56]. A lower value of PCV indicates
a more complete reduction of unwanted signals (denoting
improved LFQ precision) [98].

(b) Classification ability of LFQ between distinct sample groups

An appropriate LFQ is expected to retain or even increase the
difference in metaproteomic data between two distinct sample
groups [59, 95]. Two-way clustering of proteins identified from
these two groups is thus used as an assessment metric to assess
LFQ classification ability [95, 99]. First, the total number of pro-
tein intensities in each sample is reduced by feature selection.
Then proteins (rows) and samples (columns) are clustered by
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Table 2. Abbreviated names of the subsequent processing methods used in this study together with their corresponding full names and brief
descriptions

Processing method (abbreviation) Brief description of each method

Transformation

Box–Cox Transformation (BOX)
Transforming data based on linearity, normality and homoscedasticity
assumption [76]

Cube Root Transformation (CUB) Improving normality distribution of simple count data [77]

Log Transformation (LOG)
Almost routinely carried out for reaching a more symmetric
distribution [78]

None (NON) No transformation method applied
Power Transformation (POW) Stabilizing variance and making data more normal distribution-like [79]

Normalization

Auto Scaling (ATO)
Scaling protein intensities based on the standard deviation of OMIC
data [80]

Cyclic Loess (CYC)
Estimating a regression surface using multivariate smoothing
procedure [81]

EigenMS (EIG)
Preserving true differences based on treatment effect and singular
value decomposition [50]

Linear Baseline Scaling (LIN)
Mapping each spectrum to the baseline based on a constant linear
relationship [82]

Locally Weighted Scatterplot Smoothing (LOW)
Normalizing a proteomic data set by compensating for non-linear
bias [83]

Mean Normalization (MEA)
Normalizing the data by mean value of all signals to eliminate
background effect [84]

Median Absolute Deviation (MAD)
A measure of the spread of the data and used to estimate the sample
standard deviation [85]

Median Normalization (MED) Scaling the samples so that they have the same median [86]
None (NON) No normalization method applied

Pareto Scaling (PAR)
Reducing the weight of large fold changes in protein intensities by
standard deviation [87]

Probabilistic Quotient Normalization (PQN)
Transforming the spectra based on an overall estimation on the most
probable dilution [88]

Quantile Normalization (QUA)
Achieving the same distribution of protein intensities across all
samples [82]

Robust Linear Regression (RLR)
Used for transference to rescale one reference interval to another
scale [50]

Total Ion Current (TIC)
Summing all the separate ion currents carried by the ions of different
m/z [89]

Trimmed Mean of M Values (TMM)
Estimating scale factors between samples for differential expression
analysis [90]

Variance Stabilization Normalization (VSN)
A non-linear method for keeping the variance constant over the entire
data range [50]

Z-score normalization (ZSC) Normalizing data based on the mean and standard deviation [92]

Imputation

Background Imputation (BAK) Simulating the situation where protein values are missing [44]

Bayesian Principal Component Imputation (BPC)
Providing capacity to auto-select the parameters used in the
estimation [44]

Censored Imputation (CEN)
Imputing non-missing completely at random missing values by lowest
intensity value [44]

K-nearest Neighbor Imputation (KNN)
Imputing values based on K proteins similar to the proteins with
missing values [93]

Local Least Squares Imputation (LLS)
Missing value imputation by a linear combination of similar genes
identified by KNN [44]

None (NON) No imputation/filtering method applied
Singular Value Decomposition (SVD) Estimating the missing values based on a linear consideration [93]

Zero Imputation (ZER)
Replacing the missing values with zeros deemed to the simplest
imputation method [94]

their similarities in a protein intensity profile. Details can be
found in Supplementary Method S3.

(c) Differential expression analysis based on reproducibility
optimization

To avoid overfitting/confounding in LFQ, distribution of P-values
of protein intensities between two distinct sample groups is

examined [100, 101]. Unbiased variation is expected for the
majority of proteins (without clear differentiation of expression),
with an obvious peak in the [0.00, 0.05] interval corresponding to
proteins with differential intensities [101]. Moreover, a volcano
plot of proteins with differential intensity provides a glimpse
of the total number of differentially expressed proteins [102].
In a metaproteomic study exploring mechanisms underlying
complex biological process, the limited number of differentially
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expressed proteins may result in false discovery [103]. Thus, the
statistical differences (P-value) of protein intensities between
distinct groups are first estimated by reproducibility-optimized
test statistic (ROTS) [61, 104]. Distribution of P-values is then
provided, and a skewed distribution may indicate overfitting
and/or confounding [105].

(d) Reproducibility of the identified protein markers among different
data sets

Consistency score (CS) is a popular assessment metric represent-
ing the reproducibility of identified markers [52, 106] and is used
to assess the level of consistency among the protein markers
discovered from the various portions of a given data set [107]. A
higher CS denotes a more stable discovery of markers [52]. First, a
random sampling is conducted on the studied data set to gener-
ate multiple sub-data sets. Then each protein is ranked based on
its significance (q-value) and absolute fold change. Finally, those
top-ranked proteins in each sub-data set are selected as markers
before the calculation of the CS (Supplementary Method S3).

(e) Accuracy of LFQ based on spiked and background proteins

Extra experimental data (e.g. spiked proteins) are frequently
generated and used as a reference to validate or adjust LFQ’s
performances [20, 96], and it is therefore straightforward
to know the expected log fold changes (logFCs) for both
spiked and background proteins (the expected logFC for
background proteins is zero) [102]. First, the differentially
expressed proteins are identified by ROTS. Then the true positive
rate (TPR) for the successful discovery of spiked protein is
calculated. A higher TPR corresponds to a greater accuracy.
Moreover, the logFCs of protein intensity (for both spiked
and background proteins) between distinct sample groups are
measured, and the correlation between measured and expected
logFCs is then assessed by mean squared error. A higher
level of correlation indicates a more accurate LFQ workflow
[102].

Each criterion above evaluated the LFQ performance based on
its own underlying theory, and the combination of multiple crite-
ria resulted in a systematic assessment. The assessment results
are directly provided as tables or illustrated as plots online, all
of which can be downloaded from the ANPELA web page. More
information can be found in Supplementary Method S3.

Details of web server implementation

Official (https://idrblab.org/anpela/) and mirror (http://idrb.zju.
edu.cn/anpela/) sites of ANPELA are deployed on a server run-
ning ‘Cent OS Linux v7.0 operating system’, ‘Apache HTTP web
server v2.2.15’ and ‘Apache Tomcat servlet container’ (http://
httpd.apache.org). The web interface was constructed by R Pack-
age v3.4.1 (Shiny v0.13.1) running on the Shiny-server v1.4.1.759
(http://www.rstudio.com/shiny). A number of R packages were
utilized in the background processes including affy, AUC, Dif-
fCorr, DT, e1071, fastlo, ggfortify, ggsci, ggplot2, gplots, impute,
limma, LPE, metabolomics, MetNorm, NOISeq, pcaMethods, png,
RcmdrMisc, ROTS, rmarkdown, ropls, shiny, shinyBS, shinydash-
board, shinyRGL, statTarget and vsn. ANPELA website can be
readily accessed by all users with no login requirement and by
a variety of popular web browsers including Google Chrome,
Mozilla Firefox, Safari and Internet Explorer (10 or later). For
using the stand-alone version of ANPELA downloaded directly
from the official and mirror sites, the installation of R envi-

ronment is required before its running. The ‘User Manual’ of
the stand-alone version of tool was provided in Supplementary
Method S4.

The input formats required by ANPELA

The input files required by ANPELA are the standard output
raw files of the 18 quantification tools, together with a label
file indicating the category of each sample. The standard output
raw files of quantification tools are described in the ‘Tutorial’
panel of ANPELA. Alternatively, a standard format designed by
ANPELA is also accepted for assessing the in-house tool or
predefined analytical workflow, which should be in ‘csv’ format
with the dimension of m × n (m and n indicate the numbers
of metaproteomic features and microbial samples, respectively).
Additionally, an additional file providing the concentrations of
known proteins (such as spiked proteins) is required to assess
the performances of LFQ based on the last criterion. Specifically,
the extra file should contain the ‘class of samples’ and the
‘Sample ID’. The ‘Sample ID’ should be unique and defined by
the preference of the ANPELA user, and the ‘class of samples’
refers to the group of ‘Sample ID’. The input sample file can be
found in the ‘Tutorial’ panel of ANPELA.

The formats and visualization of ANPELA output files

The output files of ANPELA include the following: (1) a variety of
statistical measures (e.g. coefficient of variation, median abso-
lute deviation, CS and PCV value), (2) the histograms, boxplots
and matrixplots before and after transformation, normaliza-
tion, filtering and missing value imputation, (3) Venn diagrams
assessing LFQ’s reproducibility, (4) a map of PCV distribution of
protein intensities among replicates, (5) the P-value distribution,
heatmap and volcano plot based on the identified markers, (6)
boxplots of the deviations between the measured and expected
logFCs of spiked and background proteins and (7) bar chart and
receiver operating characteristic curve measuring quantification
accuracy of both spiked and background proteins. The resulting
LFQ files and assessment documents in a compressed ZIP format
can be downloaded from ANPELA.

Results and discussion
The standard workflow of ANPELA

The main components of the ANPELA framework include four
steps: (α) uploading of the raw metaproteomic data. Various file
formats generated by all 18 quantification tools can be accepted,
and the users are asked to upload specific files containing the
data generated by those tools, together with a label file indi-
cating the class of each sample. If the users want to process
their own data before the ANPELA analysis, they can upload
the data in a unified format defined by ANPELA. (β) data trans-
formation and normalization. Transformation aims at reducing
the impacts of very large value of intensities and making them
more comparable or normally distributed [108, 109], and nor-
malization can remove variability during the separate sample
preparations and Mass Spectrometry (MS) runs [46, 50, 78]. (γ )
data filtering and imputation. In total, eight popular approaches
of metaproteomic studies were integrated. Missing values are
frequently encountered in metaproteomic data sets and can
greatly hamper subsequent OMIC analysis (with no calculation
result for some extreme cases) [83]. (δ) multifaceted performance
assessment. Each LFQ workflow is collectively evaluated from
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Figure 1. The standard workflow of ANPELA: (α) uploading the raw metaproteomic data preprocessed by 18 quantification tools; (β) data transformation and

normalization; (γ ) data filtering and imputation; and (δ) the multifaceted performance evaluation from five different perspectives.

five perspectives. A series of assessment metrics (represented
by digital numbers or statistical plots) are provided. Figure 1
illustrates the standard workflow of ANPELA, and a detailed
demo on its usage can be found in the ‘Tutorial’ panel.

As known, a web server is accessible online and can work
regardless of users’ operating system and platform, providing
advantage over stand-alone applications in terms of accessibility
and software update. However, the web server has the disadvan-
tage of being slower than the stand-alone applications due to
the time cost of web connection and the shared nature of com-
putational resources [110]. Therefore, the function of ANPELA
was realized by not only an online web server but also a local
version downloadable directly from ANPELA sites. On one hand,
the online web server provided the unique function of evaluating
the performance of the whole LFQ workflow from multiple per-
spectives; on the other hand, the downloaded local tool enabled
the discovery of the optimal LFQ(s) by comprehensively ranking
all (more than 500) possible LFQ workflows. The official (https://
idrblab.org/anpela/) and mirror (http://idrb.zju.edu.cn/anpela/)
sites of ANPELA could be readily assessed. Additionally, the
source code of the local tool could be downloaded from the home
page of these sites and run under R environment without extra
installation. The ‘User Manual’ of the local version of ANPELA
was also provided in Supplementary Method S4.

ANPELA facilitates the discovery of well-performing
LFQ workflows for metaproteomic study

To comprehensively evaluate the level of dependence of LFQ
workflows on different metaproteomic data sets, PRIDE database
[111] was screened by searching the keywords including ‘Micro-
biota’, ‘Microbiome’ and ‘Metaproteomic’, which resulted in 106
metaproteomics-related records. Then the corresponding stud-
ies of the records were systematically reviewed. By considering
several additional criteria [LFQ, the availability of raw inten-
sity data files and the protein database or library to search
against, the well-defined parameters (such as isolation scheme

and range of retention time) and the clear description on dis-
tinct sample groups], eight representative metaproteomic data
sets were finally selected for further analysis: PXD006224 [42]
(60 metabolic phase & 24 equilibrium phase fecal samples),
PXD002882 [112] (21 Crohn’s disease patients & 10 healthy indi-
viduals), PXD006129 [113] (14 western style diet & 14 chow-fed
mice), PXD006070 [114] (9 corn & 9 grass silage-based samples),
PXD003028 [115] (8 people before & 8 people after their break-
fast), PXD000987 [116] (8 transverse colon & 8 descending colon
samples), PXD005929 [117] (3 surface-exposed & 3 whole cell
extracts) and PXD006810 [118] (3 NleB1-infected and 3 wild-type
cells). Detailed information of these benchmark data sets could
be found in Supplementary Table S3.

Herein, the PCV of protein intensities among replicates
for each data set was calculated and applied to assess the
‘precision’ of LFQ. A lower PCV value denoted a more complete
reduction of the unwanted signal, which indicated improved LFQ
‘precision’ [20, 98]. The performance of each workflow could be
categorized into four groups based on the following PCV values:
superior (<0.14) [20, 119], good (0.14∼0.3) [119, 120], fair (0.3∼0.7)
[121] and poor (>0.7) [121]. For 20 representative workflows (as
shown in Table 3), their performances on different data sets
varied significantly. Taking the first workflow (BOX-MAD-SVD)
shown in Table 3 as an example, its performance was superior,
good, fair and poor in 1, 2, 4 and 1 data sets, respectively. The
variation in LFQ performances among eight metaproteomic
data sets are further illustrated in Supplementary Figures
S1 and S2. As shown, there was a clear data set-dependent
characteristic for the analyzed representative workflows. Thus,
for a particular metaproteomic study, it was necessary to assess
the performance of each LFQ to discover the well-performing
ones, and ANPELA was developed to provide this unique function
by assessing each workflow as a whole analysis chain.

Besides metaproteomics, it was of great interest to evaluate
the LFQ workflow on further proteomics data sets. As newly
emerging technique [122], the ‘sequential windowed acquisition
of all theoretical fragment ion mass spectra’ (SWATH-MS)
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Table 3. Evaluation of different LFQ workflows based on the value of PCV of eight metaproteomic benchmark data sets. The performance of
a workflow was categorized into four groups based on the following PCV values: superior (<0.14, double underline), good (0.14∼0.3, single
underline), fair (0.3∼0.7, dotted underline) and poor (>0.7, no underline). The workflow abbreviations are provided in Table 2, and those
benchmark data sets are in descending order by their total number of samples (the number of cases versus that of the controls, as listed
in the brackets under each data set ID)

Workflow PXD006224
(60:24)

PXD002882
(21:10)

PXD006129
(14:14)

PXD006070
(9:9)

PXD003028
(8:8)

PXD000987
(4:4)

PXD005929
(3:3)

PXD006810
(3:3)

BOX-MAD-SVD 0.05 0.15 0.47 0.38 0.44 0.64 0.27 1.31
BOX-EIG-KNN 0.26 0.48 0.32 0.19 0.26 0.22 0.10 0.28
BOX-QUA-BAK 0.43 0.76 0.65 0.54 0.54 0.46 0.22 0.64
BOX-VSN-CEN 0.09 0.02 0.14 0.09 0.10 0.09 0.04 0.43
CUB-EIG-KNN 0.29 0.52 0.36 0.21 0.29 0.25 0.11 0.31
CUB-MAD-SVD 0.05 0.15 0.47 0.38 0.44 0.64 0.27 1.31
CUB-RLR-CEN 0.75 0.93 0.85 0.59 0.61 0.53 0.24 0.55
CUB-VSN-BAK 0.11 0.18 0.15 0.76 0.12 0.11 0.05 0.60
LOG-EIG-CEN 0.10 0.24 0.13 0.12 0.12 0.09 0.03 0.12
LOG-PQN-ZER 0.90 0.95 1.27 1.07 0.87 0.68 0.29 1.34
LOG-TIC-BAK 0.21 0.31 0.23 0.45 0.21 0.17 0.09 0.72
LOG-VSN-SVD 0.06 0.15 0.48 0.39 0.45 0.65 0.27 1.31
NON-EIG-KNN 1.08 1.55 1.07 0.69 0.96 0.82 0.32 0.82
NON-MAD-SVD 0.05 0.15 0.47 0.38 0.44 0.64 0.27 1.30
NON-VSN-BAK 0.11 0.23 0.17 0.12 0.12 0.11 0.04 0.14
NON-ZSC-CEN 0.64 1.60 0.94 1.68 1.39 1.56 0.44 1.06
POW-CYC-BAK 1.25 2.95 2.46 1.20 4.55 10.83 1.00 6.08
POW-LOW-BAK 2.26 0.41 4.71 4.26 4.08 4.41 15.87 6.64
POW-TMM-ZER 1.68 1.07 1.11 1.47 4.07 2.65 11.16 1.07
POW-VSN-CEN 0.19 0.26 0.28 0.25 0.32 0.43 0.14 0.33

was reported to provide much more comprehensive detection
and accurate quantitation of proteins compared to traditional
acquisition techniques [122]. Therefore, seven SWATH-MS
proteomic data sets were collected from the PRIDE database
[111] following the similar process of metaproteomic data sets
collection. These benchmark data sets included PXD001064
[123] (72 monozygotic & 44 dizygotic twins blood samples),
PXD003972 [124] (20 wild-type & 20 GRB2 knock-in mice),
PXD004880 [125] (18 ‘Down syndrome’ patients & 18 healthy
individuals plasma samples), PXD000672 [126] (18 tumorous
& 18 non-tumorous kidney tissue biopsies), PXD006106 [127]
(10 formaldehyde-treated & 10 -untreated HeLa), PXD003278
[128] (6 siRNA-treated & 6 PRPF8-depleted Cal51 cell samples)
and PXD002952 [20] (3 yeast 30% versus Escherichia coli 5% & 3
yeast 15% versus E. coli 20% mixtures). Detailed information of
these 7 data sets could be found in Supplementary Table S3,
and the performances of the same set of 20 representative LFQ
workflows in Table 3 on these 7 SWATH-MS proteomic data sets
were provided in Supplementary Table S4. Similar to the findings
of metaproteomic data sets, the performances of a given LFQ on
seven different sets of SWATH-MS data varied greatly. Taking
the first workflow (BOX-MAD-SVD) as an example, it performed
‘superior’, ‘good’, ‘fair’ and ‘poor’ in 5, 0, 1 and 1 data sets, respec-
tively (Supplementary Table S4), which showed similar data set-
dependent characteristic as for those metaproteomic data sets.

As shown in Table 3 and Supplementary Table S4, some work-
flows were found to provide mainly ‘superior’, ‘good’, ‘fair’ or
‘poor’ PCV performance. These findings inspired us to further
investigate whether there was any general guideline on the
selection of consistently well- or poorly performed workflows
across various data sets. To achieve this, those eight metapro-
teomic and seven SWATH-MS proteomic data sets were further
analyzed to assess the ‘robustness’ of LFQ performance. First, the
‘robustness’ of LFQ performance between any 2 of 15 studied
data sets (defined by the amounts of overlapped workflows

with the same level of performances between two data sets)
was calculated. Since the number of 2 combinations from those
15 studied data sets (C2

15) equaled to 105, 4 error bars (in dark
gray) were drawn in Supplementary Figure S3A to indicate the
amounts of the overlapped workflows of consistently ‘superior’,
‘good’, ‘fair’ or ‘poor’ performance between any 2 of those 15
studied data sets. Then the ‘robustness’ of LFQ performance
among 8 metaproteomic and among all 15 studied data sets was
calculated, and the amounts of the overlapped workflows per-
forming consistently ‘superior’, ‘good’, ‘fair’ or ‘poor’ were shown
in Supplementary Figure S3A (blue bars for the metaproteomic
data sets and orange bars for all 15 studied data sets). Obviously,
with the accumulation of the analyzed data sets (from 2 to 8 to 15
in Supplementary Figure S3A), the amounts of overlapped LFQs
decreased substantially (from ∼161 to 53 to 33 and from ∼242 to
129 to 97 for ‘superior’ and ‘poor’, respectively), and there was no
overlapped workflow consistently performing ‘good’ and ‘fair’
across 8 and 15 data sets. These indicated a dramatic reduction
of the ‘robustness’ of LFQ performance with the accumulation of
the analyzed data sets.

As shown in Supplementary Figure S3A, there were 33 and
97 workflows performing consistently ‘superior’ and ‘poor’
across all 15 studied data sets. To investigate the probabilities
of each processing method appearing in the consistently
‘superior’ performing workflows, Supplementary Figure S3B
was drawn. The occurrence probabilities of some processing
methods were found to be higher than the others. Moreover,
Supplementary Figure S3C was provided to show the frequency
of each method in consistently ‘poor’ performing workflows,
and some methods were found to appear more frequently
than others. However, considering the dramatically reduced
amounts of overlapped workflows (from ∼161 to 33 for ‘superior’,
from ∼242 to 97 for ‘poor’) with the accumulation of the
analyzed data sets (Supplementary Figure S3A), it should be
very difficult to summarize a general guideline for selecting the
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Figure 2. Performance assessment of LFQ workflows with the benchmark microbiome data set (PXD006224 [42]) from multiple perspectives. (A) precisions of different

LFQ workflows were assessed by PCVs. Cut-off (≤0.7) for ‘desired’ PCVs [121] resulted in 144 workflows of good performance (in light orange background). (B)
reproducibility of various workflows was evaluated by the CSs. (C) performance of workflows was collectively assessed by both PCVs and ‘CSs’. The dots indicate

the rank of each LFQ workflow, as evaluated by PCVs and ‘CSs’, with the possible workflow used in Tilocca’s pioneering study [42] shown as green dots. The dots

accumulated within the purple dash line square were considered as the well-performing workflows under both criteria (a) precision and (d) reproducibility. (D) the top 50

overall ranked workflows by both criteria together with their ranks by each independent criterion.

consistently well- or poorly performing workflows, especially
when more data sets are included for further analysis. Thus, for
a specific data set, an independent performance assessment on
various LFQ workflows is required, and tools like ANPELA are
recommended.

Feasibility of discovering the LFQ performing
consistently well under two distinct criteria

Five well-established criteria [20, 59–62] (each with distinct
underlying theory) are now available to evaluate the perfor-
mance of LFQ workflows. Herein, the benchmark data set
PXD006224 [42] was collected to analyze and compare the
assessment results based on different criteria. As demonstrated
in Figure 2A and B, two distinct criteria, (a) precision and
(d) reproducibility, were utilized to assess and rank the perfor-
mance of 560 LFQ workflows. In particular, Figure 2A ranked
the LFQ workflows based on their ‘precision’ (measured by PCV
value). The cut-off (≤0.7) for a ‘desired’ PCV [121] resulted in
144 workflows with good performance (light orange). Figure 2B
ordered the LFQ workflows by their ‘reproducibility’ (measured
by ‘CS’). Both figures demonstrated significant variations among
the performances of different LFQ workflows (from e−6.9 to e3.7

for PCVs; from 38.6 to 106.5 for ‘CSs’). Due to these variations, the
performance of each LFQ workflow should be assessed before
any metaproteomic study, and ANPELA could be a handy tool for
providing such important information.

Moreover, the performance of LFQ collectively assessed by
both criteria, (a) precision and (d) reproducibility, was shown in
Figure 2C. As illustrated, among those 144 highest-ranked work-

flows by PCV value, only 44 (30.6%, accumulated within the
purple dash line square of Figure 2C) were found to perform
well under the criterion (d) reproducibility. Considering the large
number of possible workflows (560 in total, shown as dots in
Figure 2C), only a small fraction (∼7.9%) could be considered
as the well-performing ones by both criteria. Furthermore, the
workflow used in Tilocca’s pioneering study [42] was identified
and mapped in Figure 2C (green dots). Since Tilocca’s study men-
tioned only the transformation method applied, all workflows
(96 in total) containing that method were highlighted as green
dot. Eight (8.3%) out of these 96 were considered as well per-
forming by both criteria (within purple dash line square). Sup-
plementary Table S5 provided a full list of LFQ workflows ranked
independently by the ‘precision’ or ‘reproducibility’. As shown,
the ranking results of two criteria were inconsistent with each
other. Due to the independent nature of these two criteria [47],
the collective consideration of both criteria was proposed here to
give an overall ranking to each workflow. Particularly, the overall
ranking was defined by the sum of the ranks for two criteria (the
smaller the sum is, the higher the LFQ workflow ranks). Taking
the LFQ workflow (LOG-EIG-KNN) in Supplementary Table S5 as
an example, its independent ranks by both criteria were not so
high (ranked 47th and 19th by criterion (a) and (d), respectively),
but it was the one of the best overall ranking due to its well-
balanced performances between two criteria. Figure 2D gave the
top 50 overall ranked workflows together with their ranks by
independent criteria (the workflows highlighted in green indi-
cated those LFQs used in Tilocca’s study [42]).

Similar to the above analysis, the same strategy was applied
to another SWATH-MS-based benchmark data set PXD001064
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[123]. The performance ranks by two distinct criteria, (a) pre-
cision and (d) reproducibility, were illustrated in Supplementary
Figure S4A and B, and the performances of LFQs collectively
evaluated by both criteria were shown in Supplementary Figure
S4C. Similar to metaproteomic data set PXD006224 analyzed
above, among the 280 highest-ranked workflows by one criterion
(PCV values), only 14 (5.0%, accumulated in the purple dash line
square of Supplementary Figure S4C) were found to be highly
ranked by another (‘CSs’). That is to say, among all 560 workflows
(the dots in Supplementary Figure S4C), only very small fraction
(∼2.5%) could be considered as the well-performing ones by
both criteria. The original workflows (five in total) used in Liu’s
study [123] for analyzing PXD001064 data set were highlighted
as green dots in Supplementary Figure S4C. As shown, three out
of these five were suggested by criterion (a) to be the ‘desired’
workflows, but none of the five workflows was found to be
well performing under both criteria (no green dot in purple
dash line square). Supplementary Figure S4D gave the top 50
overall ranked workflows together with their ranks by each
independent criterion. In summary, based on the analysis on two
benchmark data sets (one metaproteomic and another SWATH-
MS proteomic data sets), the selection of the most suitable
criterion for a specific biological problem should be determined
by the innate nature of the given data set. As these criteria com-
plement one another [20, 52, 59–62], it is essential to collectively
employ them for assessing the performance of LFQ workflow,
which further made ANPELA distinguished from other available
tools.

ANPELA enables the performance assessment of LFQ
workflows from multiple perspectives

The assessment and subsequent performance ranking from
multiple perspectives in ANPELA was realized by a variety of
metrics. These metrics included PCV value for criterion (a)
precision [20], classification accuracy for criterion (b) classification
ability [95], level of uniformity of P-value distribution for criterion
(c) differential expression analysis [101], CS value for criterion
(d) reproducibility [107] and degree of correlation between the
measured and expected logFCs of protein intensity for criterion
(e) accuracy [50]. Based on these metrics, the performances
of 560 LFQ workflows could be ranked separately, and five
ranking numbers were assigned to each workflow by the five
corresponding criteria. Due to the independent nature of the
five criteria [47], the collective consideration of multiple criteria
was proposed in this study and realized in ANPELA for providing
the overall ranking to all 560 workflows. Particularly, the overall
ranking of a given workflow was defined by the sum of multiple
ranking numbers under multiple criteria (the smaller the sum is,
the higher the LFQ workflow ranks). Taking the metaproteomic
benchmark data set PXD006129 (including 14 western style diet
& 14 chow-fed mice) [113] as an example, the overall ranking
of the performances of 560 workflows on this particular data
set was calculated and the top 100 ranked LFQs were provided
in Figure 3A. Since there is no spiked protein in this data set,
only four criteria (a), (b), (c) and (d) were collectively assessed.
As shown, the performance ranking under each criterion was
represented by colored rectangles (the top-ranked LFQ was
colored by exact blue. With the increase of ranking number, the
color changed gradually toward orange with the last-ranked LFQ
shown in exact orange). Based on the comprehensive ranking
shown in Figure 3A, the selection range of LFQ workflows could
be significantly narrowed down, and it is thus possible for the
readers to discover the optimal workflows for their own data set.

Because of the tremendous computational workload
required for assessing 560 workflows, it is too time- and
resource-consuming to make the comprehensive assessment
service online. Therefore, an alternative way of enabling the
evaluation on user’s local computer was provided as a stand-
alone ANPELA. This version could be downloaded from both
official (https://idrblab.org/anpela/) and mirror (http://idrb.zju.
edu.cn/anpela/) sites and provided the same sets of assessment
metrics and plots as that of the online ANPELA. Moreover, this
local version tool could further provide an overall performance
ranking for all 560 workflows in the format of not only a figure
(shown in Figure 3) but also a ‘CSV’ table (including detail
results of assessing metrics, ranks by independent criteria
and overall ranking). The exemplar input/output files could be
simultaneously downloaded together with the source code of
the stand-alone tool from ANPELA websites. The installation of
R environment was required before running ANPELA and was
provided in ‘User Manual’ (downloadable from websites) and
Supplementary Method S4. Both ‘User Manual’ and exemplar
files could help users to get familiar with this tool as soon as
possible.

ANPELA validates the accuracy of LFQ workflows based
on spiked and background proteins

Spiked protein is frequently adopted to evaluate the perfor-
mance of an LFQ workflow [52, 129]. A workflow with desirable
accuracy should not only maintain unbiased variation in
background proteins between sample groups (the expected
logFC between the case and control equals to zero) but also
make the variation in spiked proteins biased by viewing the
expected abundance ratios as golden standard [50, 101]. Herein,
the ability of ANPELA to validate the accuracy of LFQ workflows
based on spiked proteins was analyzed using benchmark data
PXD002099 with known ‘ground truth’ of variant proteins (48
UPS1 proteins spiked into yeast proteome digest with five
different concentrations 2, 4, 10, 25 and 50 fmol/μL) [61]. A
random combination of any 2 of these different concentrations
could therefore result in 10 pairs of sample group with distinct
concentration. Taking the pair of 10 versus 25 fmol/μL as an
example, the accuracy of the 20 representative LFQ workflows
were determined by considering the spiked (Figure 4A) and
background (Figure 4B) proteins. All workflows were found to
be able to maintain the unbiased variations of background
proteins between sample groups, but only some workflows
could make the variation in spiked proteins biased according
to the expected abundance ratio (logFCexpected = 1.32 in this
case). With reference to the logFC of unnormalized data (the
gray boxplot in Figure 4A), several workflows demonstrated
good performance in guaranteeing biased variation in spiked
proteins. The variance stabilization normalization (VSN)
described in Valikangas’s study [50] as ‘performed well in
differential expression analysis’ was identified well performing
(the 6th ranked as shown in Figure 4) in this study. The
well-performing workflows (in Figure 4) also included LOG-
MED-NON, LOG-RLR-BAK, NON-EIG-ZER, NON-RLR-NON and
LOG-CYC-BAK. For the remaining nine pairs of sample group,
the accuracy of the same set of 20 representative workflows
were analyzed and illustrated in Supplementary Figures S5–S13.
As shown, the accuracy of different representative workflows
for a specific concentration varied greatly, and the accuracy
ranks of a particular workflow for different pairs also changed
substantially. Table 4 gave an overview of the LFQ workflows
performing better than unnormalization (indicated by circle).
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Figure 3. Overall ranking of the performances of LFQ workflows on the metaproteomic data sets (A) PXD006129 with 14 western style diet and 14 chow-fed mice and

(B) PXD002099 containing 48 UPS1 proteins spiked with five different concentrations. Since there is no spiked protein in data set PXD006129, only four criteria (a), (b),

(c) and (d) were collectively assessed. Since the sample sizes of both case and control in PXD002099 were very small (3 versus 3), it was inappropriate to assess the

quantification performance base on criterion (d) reproducibility, and only four criteria (a), (b), (c) and (e) were considered. The performance ranking under each criterion

was represented by colored rectangles (the top-ranked LFQ was colored by exact blue). With the increase of ranking number, the color changed gradually toward orange

with the last-ranked LFQ shown in exact orange.

Figure 4. The accuracy of 20 representative LFQ workflows based on (A) spiked and (B) background proteins for two distinct data sets of different protein concentration

(10 versus 25 fmol/μL) in PXD002099. The workflows were ordered by the level of deviations between the median and expected logFCs of spiked proteins. Expected

logFCs for the background and spiked proteins were 0 and 1.32, respectively. The workflow abbreviation was provided in Table 2. ‘Unnorm.’ denotes unnormalized data.

No LFQ workflow was found performing consistently better
across all pairs of sample group, and the number of these well-
performing workflows for different data set pairs varied from
1 to 15.

Supplementary Table S6 provided the degree of correlation
(between the measured and expected logFCs of protein intensity)

of LFQ workflow for the data sets of different concentrations (2
versus 4 fmol/μL, 2 versus 10 fmol/μL, 2 versus 25 fmol/μL, 2
versus 50 fmol/μL, 4 versus 10 fmol/μL, 4 versus 25 fmol/μL, 4
versus 50 fmol/μL, 10 versus 25 fmol/μL, 10 versus 50 fmol/μL and
25 versus 50 fmol/μL). The number in each cell of Supplementary
Table S6 indicated the median deviation of spiked proteins ±
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Table 4. Overview of the performance of 20 representative LFQ workflows assessed by criterion (e) accuracy. The LFQ workflows performing
better and worse than unnormalization were represented by circle and cross, respectively

Workflow 2 versus
4

2 versus
10

2 versus
25

2 versus
50

4 versus
10

4 versus
25

4 versus
50

10 versus
25

10 versus
50

25 versus
50

NON-VSN-NON × O O O O O O O O O
LOG-CYC-BAK × O O O O O O O × O
LOG-MED-NON × O O O O O O O × O
LOG-PQN-SVD × O O O O O O × O O
LOG-RLR-BAK × O O O O O O O × ×
NON-RLR-NON × O O O O O O O × ×
NON-EIG-ZER × × O O O × × O × O
BOX-MEA-BPC × O × × O × × × × ×
BOX-VSN-BAK × O × × O × × × × ×
BOX-ZSC-CEN × O × × O × × × × ×
CUB-MEA-SVD × O × × O × × × × ×
LOG-EIG-CEN O × × × × × × × O
BOX-CYC-KNN × × × × O × × × × ×
CUB-QUA-NON × × × × O × × × × ×
CUB-TMM-SVD × × × × O × × × × ×
LOG-MAD-ZER × × × × O × × × × ×
CUB-MAD-BAK × × × × × × × × × ×
LOG-TIC-CEN × × × × × × × × × ×
POW-TIC-ZER × × × × × × × × × ×

Figure 5. Numbers and percentages of the LFQs performing better than unnormalization among all workflows assessed by criterion (e) accuracy.

standard deviation. The number highlighted in green and bold
was the workflow of better accuracy than unnormalization. As
shown, no LFQ workflow was discovered to perform consistently
better than unnormalization across all 10 pairs of sample
group, and the majority of the workflows performed well only
in very limited pairs (∼75% of the 560 were well performing
in no more than 2 pairs; Figure 5). The inconsistency of
the performances among different pairs indicated the data
set-dependent nature of LFQ workflow, and a case-by-case
performance assessment for a given data set is thus required.
In sum, ANPELA demonstrated good capacity for validating
the accuracy of an LFQ workflow by preserving the true
biological variation of spiked proteins, which could be used
to discover the optimal workflow for a metaproteomic study
with the gold standard of the expected protein abundance
ratio.

Besides ‘accuracy’, other four criteria could be collectively
considered in ANPELA. A metaproteomic benchmark data set
PXD002099 (48 UPS1 proteins spiked into the yeast proteome
with five different concentrations) [61] was therefore collected
as example. The overall ranking of the performances of 560
workflows on this data set was calculated and the top 100 ranked
LFQs were provided in Figure 3B. Since the sample sizes of the

cases and controls were small (3 versus 3), it was inappropri-
ate to assess the quantification performance using criterion (d)
reproducibility, and only criteria (a), (b), (c) and (e) were considered.
Based on the ranking in Figure 3B, the selection range of LFQs
was greatly narrowed down by collectively considering those
independent criteria.

Conclusions
ANPELA allows the users to directly analyze the standard
output files of popular quantification tools, and its multifaceted
strategies for performance assessments could collectively
improve the reproducibility, precision and accuracy of LFQ in
metaproteomic studies. ANPELA has a unique ability to evaluate
the performance of the whole workflow and enables the identifi-
cation of the optimal LFQ(s) by the comprehensive performance
ranking of all 560 workflows. Thus, it has great potential for
applications in metaproteomic and other studies requiring LFQ
techniques, as many features are shared among proteomic
studies. To enhance the accessibility of ANPELA, a mirror site
(http://idrb.zju.edu.cn/anpela/) was constructed as the backup
of the official ANPELA site (https://idrblab.org/anpela/).
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Key Points
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mance assessment of the whole LFQ workflow (collec-
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• ANPELA enables the identification of the optimal LFQ(s)
based on the comprehensive performance ranking of all
560 workflows.

• ANPELA not only automatically detects the diverse
formats of data generated by all quantification tools
but also provides the most complete set of processing
methods among the available web servers and stand-
alone tools.

• Systematic validation using metaproteomic bench-
marks revealed ANPELA’s capabilities. It is publicly
accessible at https://idrblab.org/anpela/.
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