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Abstract

Despite The Central Dogma states the destiny of gene as ‘DNA makes RNA and RNA makes protein’, the nucleic acids not only
store and transmit genetic information but also, surprisingly, join in intracellular vital movement as a regulator of gene
expression. Bioinformatics has contributed to knowledge for a series of emerging novel nucleic acids molecules. For typical
cases, microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) exert crucial role in regulating vital
biological processes, especially in malignant diseases. Due to extraordinarily heterogeneity among all malignancies,
hepatocellular carcinoma (HCC) has emerged enormous limitation in diagnosis and therapy. Mechanistic, diagnostic and
therapeutic nucleic acids for HCC emerging in past score years have been systematically reviewed. Particularly, we have
organized recent advances on nucleic acids of HCC into three facets: (i) summarizing diverse nucleic acids and their
modification (miRNA, lncRNA, circRNA, circulating tumor DNA and DNA methylation) acting as potential biomarkers in HCC
diagnosis; (ii) concluding different patterns of three key noncoding RNAs (miRNA, lncRNA and circRNA) in gene regulation
and (iii) outlining the progress of these novel nucleic acids for HCC diagnosis and therapy in clinical trials, and discuss their
possibility for clinical applications. All in all, this review takes a detailed look at the advances of novel nucleic acids from
potential of biomarkers and elaboration of mechanism to early clinical application in past 20 years.

Key words: noncoding RNA; lncRNA; miRNA; ctDNA; hepatocellular carcinoma; therapy

Introduction
In 2018, liver cancer had presented the sixth incidence (4.7%) and
third mortality (8.2%) in malignancies worldwide [1]. According
to statistics, there were approximately 840 000 new cases and

780 000 of liver cancer reported [1]. Liver cancer comprises
hepatocellular carcinoma (HCC) (75–85%), intrahepatic cholan-
giocarcinoma (10–15%) and other rare types [1]. As the most
common form of liver cancer, HCC often develops in patients
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with a history of hepatitis B virus (HBV) infection, hepatitis C
virus (HCV) infection, obesity, type 2 diabetes or alcohol-related
liver disease [2–5]. In the past near 100 years, studies in HCC
pathology have expanded our understanding on mechanism
of tumorigenesis and development from the early stage to the
advanced. Scientists got breakthrough achievements when con-
fronting the knotty disease, for typical cases serum α-fetoprotein
(AFP) as diagnostic biomarker, as well as sorafenib, regorafenib
and lenvatinib approved by U.S. Food and Drug Administration
(FDA) for treating HCC [6]. However, these efforts were helpful but
remained limited, in which the measurement of AFP levels was
with lower specificity and sensitivity in early stage HCC [7] and
drug resistance trapped HCC therapies into a greater dilemma.

Bioinformatics has provided a very useful framework for
studying different biomolecules contributing to the process of
biology and medical science [8–10]. Despite The Central Dogma
states the destiny of gene as ‘DNA makes RNA and RNA makes
protein’, the nucleic acid molecules are not only engaged in
roles as the carrier and transmitter of genetic information but
also held responsible for gene regulation by the study of omics
techniques. In recent score years, the expanding knowledge for
genome and continuous reclamation for gene desert with the
help of high-throughput sequencing have contributed to the
emergence of multifarious nucleic acid molecules and modifi-
cation, such as emergence of circulating tumor DNA (ctDNA)
[11], extrachromosomal circular DNA [12], DNA methylation [13],
microRNA (miRNA) [14], long noncoding RNA (lncRNA) [15], circu-
lar RNA (circRNA) [16], PIWI-interacting RNA (piRNA) [17], small
nucleolar RNA (snoRNA) [17] and so on. Interestingly, cancer cells
employed almost all of the above molecules and modifications
to sustain physiological and developmental requirements. As an
extremely heterogeneous malignant disease among all tumors,
HCC initiated more complicated mechanism for adjusting living
environment, resulting in a considerable challenge on diagno-
sis and therapy [18–20]. These emerging novel molecules and
modifications had brought about new insight of tumorigen-
esis, alternative tools for diagnosis and potential therapeutic
approach in clinic for HCC. In this perspective, we take a detailed
look at recent contribution focusing on mainstream nucleic
acids (ctDNA, DNA methylation, miRNA, lncRNA and circRNA) as
potential biomarkers and discuss their function and mechanism
of gene regulation regarding HCC as a paradigm. Advances in
understanding roles of these molecules on HCC development
have contributed to a vast number of publications in the past
score years (Figure 1).

Noncoding RNA in HCC
miRNA

MicroRNA (miRNA) is a class of endogenous noncoding RNA
containing approximately 22 nucleotides (nts) that can exert
critical roles in the regulation of gene expression by comple-
mentarily targeting specific messenger RNA (mRNA), therefore
leading to mRNA degradation or translational process inhibition
[21]. Four key enzymes, including Drosha, exportin 5, Dicer and
argonaute 2 (AGO2), participate in and regulate the process of
human miRNAs biogenesis [22, 23]. Drosha and Dicer have been
reported to deregulate in several types of cancers, which results
in change of miRNAs expression and triggers signaling pathway
of tumor progression [24–28]. In the past few decades, miRNAs
have served as a paradigm for noncoding RNAs and provided
numerous insights into how nucleic acids contributed to onco-
genesis and the development of cancers [29].

Recent efforts of HCC researches concentrate on two facets:
(i) excellent performance of miRNA for HCC diagnosis and (ii)
miRNA’s responsibility for HCC tumor progression.

A growing list of studies has described that miRNAs were
hallmarks of HCC expressed in both of humor and liver tissue.
Altered expression in HCC conduced that miRNAs may sever
as available tools in clinic to discriminate HCC from liver cir-
rhosis, HBV, HCV or healthy people. Tomimaru et al. found that
plasma miR-21 was upregulated in HCC patients than in chronic
hepatitis patients and healthy volunteers. Thereinto, miR-21
could distinguish between HCC and chronic hepatitis with 61.1%
sensitivity and 83.3% specificity, as well as healthy volunteers
with 87.3% sensitivity and 92.0% specificity, which was more
optimal than AFP [30]. Zhou’s group found that the expression
of serum miR-224 was higher in early-stage HCC than in liver
cirrhosis, HBV and healthy controls, and it had a better distin-
guishable performance (95% CI: 0.838–0.923; sensitivity: 86.5%,
specificity: 76.7%) between HCC and each of the three control
groups than AFP (AUC: 0.700, 95% CI: 0.633–0.767; sensitivity:
71.9%, specificity: 63.7%) [31]. Investigators considered miR-16 as
a potential biomarker also for early HCC diagnosis. The serum
level of miR-16 in HCC patients was significantly lower HCC
than in HCV. Moreover, miRNA-16 level could discriminate HCC
from HCV patients with a cutoff value of 0.904, a sensitivity
of 57.5% and a specificity of 70%, and combination of miR-16
with AFP could improve sensitivity and diagnostic accuracy to
85 and 87.5%, respectively [32]. Abdalla et al. found that using
urinary miR-618/miR-650 for detecting HCC among HCV-positive
patients was with 64/72% sensitivity and 68/58% specificity [33].

Apart from in humor, miRNA in tissues was also an effective
tool in HCC diagnosis. One study showed that the expression of
miR-221 was increased in HCC tissues than in matched normal
tissues, and positively correlated with tumor stage, number of
tumor nodes and microvascular invasion in HCC patients. In
addition, survival analysis indicated that HCC patients with
higher miR-211 expression had a worse survival rate than the
lower miR-221 patients [34]. Researchers also found that the
combination of several miRNAs acted as HCC indicators was
efficient and may be more accurate or applicable than using
single miRNA. In Wen’s study, eight selected miRNAs (miR-20a-
5p, miR-25-3p, miR-30a-5p, miR-92a-3p, miR-132-3p, miR-185-
5p, miR-320a and miR-324-3p) were dramatically upregulated in
the HBV-positive HCC patients compared with the HBV-positive
noncancerous patients and showed a sensitivity of 86.6% and a
specificity of 64.6%. Specially, miRNA panel consisting of miR-
20a-5p, miR-320a, miR-375 (a miRNA reported in previous study)
and miR-324-3p could be an indicator for blood-based early
HCC detection [35]. Lin et al. established that an miRNA classi-
fier (Cmi), which consists of miR-29a, miR-29c, miR-133a, miR-
143, miR-145, miR-192 and miR-505, had better sensitivity (70.4–
85.7%) than AFP of 20 ng/mL cutoffs (AFP20) (40.7–69.4%) for HCC
diagnosis in four cohorts, while the specificity (80.0–91.1%) was
similar to that of AFP20 (84.9–100%). Besides, Cmi could be more
sensitive in detecting small size and early-stage HCC than AFP
and even could detect AFP-negative HCC [36].

MicroRNAs (miRNAs) regulate intracellular signal pathway
generally via a unique manner. The innate duty of almost all
miRNAs is controlling gene expression via complementarily tar-
geting 3′ untranslated region (UTR) of specific mRNA, which
could mediate mRNA degradation and translation repression. In
malignant tumor, miRNAs directly targeting mRNAs of oncogene
are committed to affairs of tumor suppressor, while miRNAs
directly inhibiting mRNAs of tumor suppressor exert tumor-
promoting role. Recent mechanism research has revealed that
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Figure 1. Twenty years of popular nucleic acids (miRNA, lncRNA, circRNA, DNA methylation and ctDNA) literature. The graph indicates trends of publications from

1999 to 2019 identified in PubMed using the keywords each nucleic acid combination with HCC.

miRNAs were involved in the regulation of vital gene in HCC by
direct mode.

miR-148a targeted the 3′UTR of SMAD2 in HCC cell, leading
to the inhibition of the expression and function of SMAD2 [37].
miR-24 inhibited p53 expression by binding to the 3′UTR of its
mRNA and, thus, promote metastasis and invasion of HCC [38].
miR-542-3p can directly target TGF-β1 3′UTR and subsequently
suppressed the protein expression of TGF-β1 as well activation
TGF-β/Smad signaling in HCC [39].

However, the line that miRNAs regulate mRNAs of target gene
is not sole but network-like. 3′UTR of one mRNA could be bound
by multiple miRNAs, in return one miRNA could also target
various mRNAs. For example, miR-101 could inhibit the gene
expression of TGFβ-R1, Smad2 and VE-cadherin by binding to the
3′UTR of these mRNAs in HCC, respectively [40]; miR-26b, miR-
342-3p and miR-195 could target different sites of TAB3 mRNA to
inhibit its translational progression in HCC [41–44].

In fact, miRNAs could bind to not only 3′UTR of special mRNA
but also its 5′UTR even coding region. For several cases (not
in HCC), miR-10a can interact with 5′UTR of ribosomal protein
mRNAs so as to enhance their translation [45]; miR-10b down-
regulated the protein expression of MBNL1–3, SART3 and RSRC1
by targeting 5′UTRs of these genes [46]; Expression of GFRA3 was
directly inhibited by miR-34a via its coding region [47]; miR-96
directly bound to the coding region of RAD51 and downregulated
its expression [48].

In addition, a series of miRNAs associated with HCC were
listed at Table 1 with more detail information.

lncRNA

Long noncoding RNA (lncRNA) is a type of transcript more
than 200 nts in length with no protein coding performance [49,
50], many of which express in the tissues and organs under

specified or pathological conditions such as malignancies.
According to location in genome with respect to protein-
coding genes, lncRNAs can be divided into six types that
included intergenic lncRNA, antisense lncRNAs, bidirectional
lncRNAs, intronic lncRNAs and overlapping sense transcripts
[51]. Unlike miRNA, lncRNAs execute more complicated function
as regulators in the process of gene transcription events [52],
posttranscriptional control [53] and epigenetic regulation [54].
Besides, the new identity of lncRNAs is still continuously exca-
vating. Accumulating evidence indicated that many lncRNAs
participate in the biological progression of tumorigenesis and
could be potential clinical indicators or anticancer targets of
HCC [55–57].

LINC00161, a serum and exosome lncRNA, was detected
in serum exosome, exosome-free and urine samples, with an
increased expression in HCC patients compared with matched
healthy controls. And the lncRNA showed excellent stability
and specificity with an AUC of 0.794 (95% CI, 0.712–0.877), a
sensitivity of 75% and a specificity of 73.2% [58]. A study by Wang
et al. indicated that serum LRB1 had a potential distinguishing
ability between patients with HCC and the healthy. It can
be acted as a marker for the diagnosis of HCC with an AUC
of 0.892 (95% CI, 0.843–0.922), a sensitivity of 92.43% and a
specificity of 71.85%, and combination with AFP and des-γ -
carboxy prothrombin results in better detection efficiency with
an AUC of 0.971 (95% CI, 0.942–0.988), a sensitivity of 86.33% and
a specificity of 87.64% [59].

Due to their diversity and complexity, lncRNAs employ mul-
tiplex mechanism to regulate intracellular signal pathway in
HCC. (i) ‘Act as a sponge binding miRNA, resulting in the failure
of miRNA to target specific mRNA’. Li et al. found that SNHG5
could competitively bind miR-26a-5p and relieve its inhibition
to target gene GSK3β, activating Wnt/β-catenin signal pathway
[60]; Study by Sun et al. suggested that PITPNA-AS1 modulated
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Table 1. A series of miRNAs associated with HCC

miRNAs Role in HCC Cancer phenotype Mechanism References

miR-122 Tumor suppressor metastasis miR-122 – PKM2 >> metastasis [152]
miR-125b Tumor suppressor metastasis miR-125b – Angpt2 >> VETC

>> metastasis
[153]

miR-133b Tumor suppressor proliferation, migration, invasion miR-133b – LASP1 >> proliferation,
migration, invasion

[154]

miR-144 Tumor suppressor metastasis miR-144 – AKT3 >> metastasis [155]
miR-144 Tumor suppressor growth, motility miR-144 – ZFX >> growth, motility [156]
miR-145 Tumor suppressor proliferation miR-145 – IGF axis >> proliferation [157]
miR-148b Tumor suppressor tumor initiation, metastasis,

angiogenesis
miR-148b – Neuropilin-1 >> tumor
initiation, metastasis, angiogenesis

[158]

miR-187 Tumor suppressor proliferation, migration, invasion miR-187 – IGF-1R >> proliferation,
migration, invasion

[159]

miR-188-5p Tumor suppressor proliferation, metastasis miR-188-5p – FGF5 >> proliferation,
metastasis

[160]

miR-193b Tumor suppressor invasion, metastasis miR-193b – Mcl-1 >> invasion, metastasis [161]
miR-199a Tumor suppressor invasion miR-199a – DDR1 >> invasion [162]
miR-200a Tumor suppressor invasion, migration miR-200a – GAB1 >> invasion, migration [163]
miR-206 Tumor suppressor migration, invasion miR-206 – cMET >> migration, invasion [164]
miR-214-3p Tumor suppressor proliferation miR-214-3p – PIM-1 >> proliferation [165]
miR-218 Tumor suppressor growth miR-218 – Bmi-1 >> growth [166]
miR-218 Tumor suppressor metastasis miR-218 – SERBP1 >> metastasis, EMT [167]
miR-22 Tumor suppressor metastasis miR-22 – YWHAZ >> metastasis [168]
miR-23c Tumor suppressor proliferation miR-23c – ERBB2IP >> proliferation [169]
miR-28-5p Tumor suppressor proliferation, migration miR-28-5p – IGF-1 >> proliferation,

migration
[170]

miR-28-5p Tumor suppressor growth, metastasis miR-28-5p – IL-34 >> TAM >> growth,
metastasis

[171]

miR-299-3p Tumor suppressor migration, invasion, proliferation miR-299-3p – SIRT5 >> migration,
invasion, proliferation

[172]

miR-29a Tumor suppressor growth, metastasis miR-29a – IFITM3 >> growth, metastasis [173]
miR-29a Tumor suppressor proliferation miR-29a – SIRT1 >> proliferation [174]
miR-29b Tumor suppressor angiogenesis, invasion, metastasis miR-29b – MMP-2 >> angiogenesis,

invasion, metastasis
[175]

miR-302b Tumor suppressor proliferation miR-302b – AKT2 >> proliferation [176]
miR-30b Tumor suppressor transition, metastasis miR-30b – Snail >> transition, metastasis [177]
miR-33b Tumor suppressor proliferation miR-33b – SALL4 >> proliferation [178]
miR-340 Tumor suppressor proliferation, invasion miR-340 – JAK1 >> proliferation, invasion [179]
miR-34a-5p Tumor suppressor proliferation miR-34a-5p – AXL >> proliferation [180]
miR-363-3p Tumor suppressor proliferation, migration, invasion miR-363-3p – specificity protein 1

>> proliferation, migration, invasion
[181]

miR-375 Tumor suppressor proliferation, clonogenicity, migration,
invasion

miR-375 – AEG-1 >> proliferation,
migration, invasion

[182]

miR-377 Tumor suppressor proliferation, invasion miR-377 – TIAM1 >> proliferation,
invasion

[183]

miR-449a Tumor suppressor growth, metastasis miR-449a – c-Met >> growth, metastasis [184]
miR-485-5p Tumor suppressor proliferation, metastasis miR-485-5p – EMMPRIN >> proliferation,

metastasis
[185]

miR-504 Tumor suppressor proliferation, invasion miR-504 – Frizzled-7 >> Wnt/β-catenin
>> proliferation, invasion

[186]

miR-508-5p Tumor suppressor migration, invasion, proliferation miR-508-5p – MESDC1 >> migration,
invasion, proliferation

[187]

miR-542-3p Tumor suppressor migration, invasion miR-542-3p – UBE3C >> migration,
invasion

[188]

miR-615-5p Tumor suppressor growth, metastasis miR-615-5p – RAB24 >> growth,
metastasis

[189]

miR-663a Tumor suppressor proliferation, motility miR-663a – HMGA2 >> proliferation,
motility

[190]

miR-9-3p Tumor suppressor proliferation miR-9-3p – TAZ >> proliferation [191]
miR-98 Tumor suppressor migration, invasion miR-98 – IL-10 >> migration, invasion [192]
miRNA-340 Tumor suppressor proliferation, migration, invasion miRNA-340 – SKP2 >> proliferation,

migration, invasion
[193]

miR-200b Tumor suppressor proliferation miR-200b – DNMT3a >> proliferation [194]

Continued.
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Table 1. Continued

miRNAs Role in HCC Cancer phenotype Mechanism References

miR-466 Tumor suppressor proliferation, migration, invasion miR-466 – MTDH >> proliferation,
migration, invasion

[195]

miR-106b-5p Oncogene invasion miR-106b-5p – RUNX3 – invasion [196]
miR-1180 Oncogene proliferation miR-1180 – TNIP2 – proliferation [197]
miR-182 Oncogene metastasis miR-182 – TP53INP1 – metastasis [198]
miR-197 Oncogene invasion, metastasis miR-197 – Axin-2, NKD1, DKK2 –

Wnt/β-catenin signaling >> invasion,
metastasis

[199]

miR-21 Oncogene proliferation miR-21 – HEPN1 – proliferation [200]
miR-27a Oncogene proliferation miR-27a – PPAR-γ – proliferation [201]
miR-301a-3p Oncogene proliferation, invasion miR-301a-3p – VGLL4 – proliferation,

invasion
[202]

miR-3188 Oncogene cell growth, migration, invasion miR-3188 – ZHX2H – Notch1 signaling
pathway >> growth, migration, invasion

[203]

miR-500a Oncogene proliferation miR-500a – BID – proliferation [204]
miR-519a Oncogene proliferation miR-519a – PTEN – proliferation [205]
miR-616 Oncogene migration, invasion, transition miR-616 – PTEN – migration, invasion,

transition
[206]

miR-92b Oncogene proliferation, metastasis miR92b – Smad7 – proliferation,
metastasis

[207]

N.A. means not available. ‘–’ represents inhibition and ‘>>’ represents promotion.

WNT5A expression by mediating abrogation of miR-876-5p inhi-
bition on WNT5A [61]. Yang et al. identified that HCC cell forced
NORAD to bind to miR-202-5p, thereupon then eliminating miR-
202–5p inhibition to TGFBR [62]. (ii) ‘Regulate gene transcrip-
tion via directly binding to DNA’. Sun’s study indicated that
p65 transcription was strongly inhibited by LINC000607 binding
to its promoter region [63]. Wang et al. reported that lnc-DILC
complementarily bound to IL-6 promoter region and hampered
IL6 transcriptional progress [64]. (iii) ‘Promote mRNA degradation
by binding to mRNA’. Li et al. found that lncARSR physically
interacted with PTEN mRNA and promotes its degradation, acti-
vating PI3K/Akt pathway [65]. (iv) ‘Affect protein stabilization and
activity as an interactor’. Sun’s group proved that lncRNA-hPVT1
bound to NOP2 protein and sustained its stability, thus promot-
ing proliferation and stem cell-like property of HCC cell [66].
Research by Ding et al. revealed that HNF1A-AS1 could directly
interact with the C-terminal of SHP-1 with a high binding affinity
and enhance phosphatase activity of SHP-1 in HCC [67].

We also provided a list of lncRNAs with more useful infor-
mation in Table 2 which were related with the pathogenesis of
HCC.

circRNA

Circular RNA (circRNA), generated from precursor mRNA back-
splicing of exons, is a type of single-stranded RNA differen-
tiated from traditional linear RNA, in the form of covalently
closed continuous loop [68–70]. CircRNAs usually present low
abundance and express in specific cells, tissues and patho-
logical status [70]. Generally, they function as miRNA sponges
and relieve the association between miRNA and target gene,
therefore leading to the expression of target gene [68]. And
circRNAs can be classified into four types that include exonic
circRNAs, circular RNAs from introns, exonintron circRNAs and
intergenic circRNAs [71]. Recent years, emerging circRNAs have
been found to regulate HCC progression by acting as sponges
to interact miRNAs. And they participated in multiple signaling
pathways in HCC pathogenesis and presented good potential on
the diagnosis and therapeutic targets of HCC [72–74].

However, many research focusing on circRNAs in HCC are not
rich. And we reviewed several cases that circRNAs involved in
HCC carcinogenesis. A study by Yu’s group showed circRNA-
104,075 was significantly overexpressed in HCC issues, cell
lines and serum, and transcriptionally regulated by hepatocyte
nuclear factor 4-alpha (HNF4a) with binding to its promoter.
More importantly, circRNA-104,075 could increase the expres-
sion of YAP via interfering the connection between miR-218-
5p and YAP 3′UTR, thus contributing to the translation of YAP.
Besides, circRNA-104,075 had excellent diagnostic performance
with an AUC-ROC of 0.973, a sensitivity of 96.0% and a specificity
of 98.3% for HCC detection [75]. Han et al. picked up circMTO1
downregulated in HCC tissues from the expression profile
of human circRNA and found that HCC patients with lower
circMTO1 expression had the shorter survival rate. And the
researchers identified that the circRNA as sponge of miR-
9 could inhibit cell proliferation and invasion via regulating
p21 of HCC. Hence, circMTO1 would be a potential target in
HCC treatment and a prognosis predictor for HCC detection
[76]. Luo’s research indicated that circRNA-101,505 expression
was reduced in HCC tissue (including cisplatin-sensitive and
cisplatin-resistant groups) than in the adjacent groups, and
HCC patients with high circRNA-101,505 had the worse survival
rate than the low. And the researchers further determined
its tumor-suppressive role in HCC that the overexpression of
the circRNA-101,505 inhibited cell proliferation and enhanced
cisplatin toxicity by sponging miR-103 to increase oxidored-nitro
domain-containing protein 1 (NOR1) expression [77]. Another
research found that circRNA-104,718 acted as an oncogene
to promote HCC progression. First, circRNA-104,718 could be
found expressed higher in HCC tissues than in the normal
group and that the lower expression of the gene led to better
prognosis in HCC patients. Then, mechanistically, circRNA-
104,718 supported cell proliferation, migration, invasion and
inhibited apoptosis by binding to miR-218-5p as a competing
endogenous RNAs (ceRNAs) so as to enhance the translation
of thioredoxin domain-containing protein 5 (TXNDC5) [78]. As
described in the examples above, circRNAs often regulate gene
expression such as miRNAs according to given pattern that
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Table 2. A number of lncRNAs linked with HCC

LncRNAs Role in HCC Cancer phenotype Mechanism References

hDREH Tumor suppressor proliferation, migration N.A. [208]
ELMO1-AS1 Tumor suppressor proliferation, migration, invasion ELMO1-AS1 – ELMO1 >> proliferation,

migration, invasion
[209]

lncRNA-LET Tumor suppressor metastasis lncRNA-LET – NF90 >> CDC42 >> metastasis [210]
FENDRR Tumor suppressor immune escape, proliferation,

tumorigenicity
FENDRR – miR-423-5p – GADD45B – immune
escape, proliferation, tumorigenicity

[211]

MEG3 Tumor suppressor proliferation, migration, invasion MEG3 >> miRNA-10a-5p – PTEN –
AKT/MMP-2/MMP-9 signaling >> proliferation,
migration, invasion

[212]

GMDS-DT Tumor suppressor N.A. N.A. [213]
CASC15 Oncogene EMT CASC15 – miR-33a-5p – TWIST1 >> EMT [214]
CCAT2 Oncogene N.A. N.A. [215]
DBH-AS1 Oncogene tumorigenesis DBH-AS1 – miR-138 – FAK/Src/ERK pathway

>> tumorigenesis
[216]

DCST1-AS1 Oncogene proliferation, metastasis DCST1-AS1 >> AKT/mTOR signaling
>> proliferation, metastasis

[217]

DLEU2 Oncogene proliferation, migration, invasion DLEU2 + EZH2 >> proliferation, migration,
invasion

[218]

DSCAM-AS1 Oncogene proliferation, migration, invasion DSCAM-AS1 – miR-338-3p – CyclinD1 + SMO
>> proliferation, migration, invasion

[219]

EIF3J-AS1 Oncogene proliferation, migration, invasion EIF3J-AS1 – miR-122–5p – CTNND2
>> proliferation, migration, invasion

[220]

ENST00000522221 Oncogene N.A. N.A. [221]
HULC Oncogene proliferation HUL >> HBx + STAT3 >> miR-539 – APOBEC3B

– proliferation
[222]

H19 Oncogene growth H19 >> angiogenin, FGF18 >> growth [223]
URHC Oncogene proliferation URHC – ZAK >> ERK/MAPK pathway –

proliferation
[224]

PVT1 Oncogene proliferation lncRNA-hPVT1 >> NOP2 >> proliferation [66]
XIST Oncogene growth XIST – miR-139-5p – PDK1 >> growth [225]
ROR Oncogene radioresistance ROR – miR-145 – RAD18 >> radioresistance [226]
PTTG3P Oncogene growth, metastasis PTTG3P >> PTTG1 >> PI3K/AKT signaling

>> growth, metastasis
[227]

HOTAIR Oncogene viability, proliferation HOTAI – miR-218 – Bmi-1 >> viability,
proliferation

[228]

UCA1 Oncogene N.A. N.A. [229]
PDPK2P Oncogene proliferation, metastasis, invasion PDPK2P + PDK1 >> PDK1/AKT/caspase 3

pathway >> proliferation, metastasis, invasion
[230]

TATDN1 Oncogene proliferation TATDN1 – miR-6089 – LIX1L >> proliferation [231]
SOX9-AS1 Oncogene metastasis SOX9 >> SOX9-AS1 – miR-5590-3p – SOX9

>> Wnt/β-catenin pathway >> metastasis
[232]

SNHG20 Oncogene transformation SNHG20 >> STAT6 >> transformation [233]
LINC01296 Oncogene proliferation, cell cycle LINC01296 >> BUB1, CCNA2, CDK1

>> proliferation, cell cycle
[234]

PCNAP1 Oncogene growth PCNAP1 – miR-154 – PCNA >> growth [235]
GAPLINC Oncogene EMT, invasion, migration GAPLINC >> SNAI2 >> EMT, invasion,

migration
[236]

LINC00668 Oncogene cell division, cell cycle, mitotic nuclear
division

N.A. [237]

MALAT1 Oncogene metastasis MALAT1 – miR-124-3p – Slug >> metastasis [238]
HOXA11-AS Oncogene migration, invasion HOXA11-AS + EZH2 – miR-124 – migration,

invasion
[239]

TGLC15 Oncogene proliferation TGLC15 + Sox4 >> proliferation [240]
MIAT Oncogene proliferation MIAT – miR-22-3p – sirt1 >> proliferation [241]
PDIA3P1 Oncogene chemoresistance hMTR4 + PDIA3P1 – miR-125/124 – TRAF6

>> NF-κB signaling >> chemoresistance
[101]

LINC01638 Oncogene proliferation LINC01638 >> glucose uptake >> proliferation [242]
SNHG7 Oncogene proliferation, migration, invasion SNHG7 >> RPL4 >> proliferation, migration,

invasion
[243]

N.A. means not available. ‘–’ represents inhibition, and ‘>>’ represents promotion.
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circRNAs are acted as ceRNA binding to miRNAs and relieve
target gene’s inhibition of miRNAs. Besides, circRNAs also act
by associated proteins [70, 79]. For example, when the MBL
protein was expressed in excess, circMbl could sponge out
MBL through binding to it [80]. Luo et al. concluded that the
types of circRNA-binding proteins containing transcription
factors, RNA processing proteins, proteases and some other
RNA-binding proteins, and the interaction contributes to the
occurrence and development of multiple pathological processes
[81]. Some circRNAs were found to been translated [70]. An
investigation reported that circ-ZNF609, with an open reading
frame containing start and stop codon, can encode a protein and
regulate myoblast proliferation [82]. Another research found that
circMbl can be translated through a cap-independent way and
its UTR element might play a promoting role during translation
process [83].

In addition, Table 3 listed a number of circRNAs added avail-
able information which were linked with the pathogenesis of
HCC.

Other noncoding RNAs

Except for the three types above, some noncoding RNA such
as piRNA, snoRNA in HCC was also identified to exert special
function in HCC.

PIWI-interacting RNA (piRNA) is a type of small noncoding
RNA in length 21–35 nts that regulates gene expression by guid-
ing PIWI proteins to cleave target RNA [84]. In malignancies,
piRNAs have been found to participate in cell proliferation,
metastasis and apoptosis, by regulating DNA methylation and
phosphorylation of some key protein of cancer [85–88]. However,
knowledge for functions of piRNAs in cancer still remained not
thorough [15]. A few reports have shown that some piRNAs
play an impact role and have potential performance as good
biomarker for HCC. piR-Hep1 was highly expressed in HCC tumor
tissues compared with that in nontumoral liver. Silencing of
piR-Hep1 led to the inhibition of cell viability and invasion and
reduced AKT phosphorylation [89]. Rizzo et al. found that distinct
piRNAs were expressed in liver tissues under different pathology,
as piR-LLi-24,894 in low-grade lesions only, increasing piR-LLi-
30,552 and piR-020498 from high-grade dysplastic nodules, early
HCC to progressed HCC and piR-013306 in progressed HCC [90].

Small nucleolar RNA (snoRNA) is a class of noncoding RNA
range 60–300 nts in length, which traditionally exerts important
responsibility for rRNA and snRNA modification, such as uridine
isomerization and ribose methylation [91–93]. In recent years,
a new role of snoRNA has been presented as a regulator of
cellular pathways, especially in cancer [92]. Accumulating evi-
dence suggested that snoRNAs employed some signaling path-
way which are important for tumor to control the progression
of HCC. SNORD113–1, a snoRNA downregulated in HCC tissues,
inhibited HCC cell viability and proliferation via involvement of
MAPK/ERK and TGF-β pathway [94]. SNORA18L5 promoted HCC
tumorigenesis and increased MDM2-mediated p53 degradation
by retaining RPL5 and RPL11 in the nucleolus [95].

Noncoding RNA in key signaling pathways of HCC

HCC was documented to hire assorted signaling pathways in
order to meet its abnormal physiological requirements. Well-
described pathways dominant in HCC were TLR4/NF-kB [96],
HGF/c-Met [97], Wnt/β-catenin [98], TGF-β [99] and MDM2-p53
signaling pathway [100]. Therewith, we portrayed these five

prominent signaling pathway sketches in HCC, with added reg-
ulatory noncoding RNA available of key components (Figure 2)
and all components (Figures 3–7).

In mechanism, lncRNAs or circRNAs, as sponges of miRNAs,
could absorb miRNAs and relieve target’s inhibition caused by
miRNAs, finally expression of target genes. Therefore, in this
pattern, lncRNA (PDIA3P1 [101], LINC00657 [102], SBF2-AS1 [103])
or circRNA (circHIAT1 [104], circZFR [105]) led to expression of
target genes, and miRNA (miR-124/125 [101], miR-3171 [104],
miR-106a-5p [102], miR-3615-5p [105], miR-140-5p [103], miR-24
[38]) resulted in the suppression of target genes. In addition,
lncRNA-NEF physically bound with β-catenin and enhanced
interaction between GSK3β and β-catenin, therefore inhibiting
phosphorylation of β-catenin [106]. LncRNA MEG3 interacted
with P53, fostering its stabilization and transcriptional activ-
ity [107]. Cooperation of the five pathways contributes to the
tumorigenesis in HCC via exerting crucial roles in inflammation,
survival, growth, EMT and apoptosis (Figure 2).

Databases of noncoding RNA

There has been a variety of well-constructed databases that
describe the contents of several noncoding RNAs containing
general information, associations with disease, expression level
and regulatory network (Table 4). A majority of these resource
platforms were based on considerable sequencing and exper-
imental data in diseases, and the resources’ utilization would
facilitate the understanding for noncoding RNA and be helpful
to the treatment of the diseases.

Emerging novel DNA and DNA modification
of HCC
ctDNA

Circulating tumor DNA (ctDNA), a special circulating cell-free
DNA (cfDNA), is released into circulation from tumor cells with
carrying cancer-specific genetic and epigenetic aberrations, such
as point mutations [108], copy number variations [109], chro-
mosomal rearrangements [110] and DNA methylation patterns
[111]. The half-life of ctDNA was approximately 1.5 h [112], so
its transient existence indicated the real-time status of tumor.
Many research have suggested that ctDNA could become a useful
tool for liquid biopsy of HCC diagnosis, especially in early stage.

Ikeda’s study performed a ctDNA next-generation sequenc-
ing and analyzed gene alteration on 26 patients. Several genes
occurred mutations including TP53 (61.5%), CTNNB1 (30.8%) and
ARID1A (23.1%) [113]. Another research by Howell et al. detected
the mutation level of ctDNA and found that 35% of HCC patients
existed various degrees of ctDNA mutation of liver cancer-
specific primer panel for eight genes. Frequent mutations were
detected in ARID1A (11.7%), CTNNB1 (7.8%) and TP53 (7.8%).
And using ctDNA with these eight genes had a specificity
of 100% for HCC detection [114]. Besides, Xu et al. performed
methylation analysis on tumor DNA in HCC and ctDNA in
matched plasma and found close correlation between the two
groups. By screening and filtering of markers in HCC patient
and normal blood samples, two models were established to
make diagnostic and prognostic prediction, named as combined
diagnostic score (cd-score) and combined prognosis score (cp-
score), respectively. Thereinto, a cd-score system, consisting of
10 methylation markers, had superior sensitivity and specificity
than AFP level detection for HCC diagnosis in biopsy-proven
HCC patients with 0.969 AUC of cd-score versus 0.816 AUC of
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Table 3. A list of circRNAs associated with HCC and corresponding information

circRNAs Role in HCC Cancer phenotype Mechanism References

cSMARCA5 Tumor suppressor growth, metastasis cSMARCA5 – miR-17-3p/miR-181b-5p – TIMP3
– growth, metastasis

[244]

circMTO1 Tumor suppressor proliferation, invasion circMTO1 – miR-9 – p21 – proliferation,
invasion

[76]

circTRIM33–12 Tumor suppressor proliferation, migration, invasion,
immune evasion

circTRIM33–12 – miR-191 – TET1 –
proliferation, migration, invasion, immune
evasion

[245]

circSETD3 Tumor suppressor proliferation circSETD3 – miR-421 – MAPK14 – proliferation [246]
circSMAD2 Tumor suppressor migration, invasion, EMT circSMAD2 – miR-629 >> migration, invasion,

EMT
[247]

circ-103,809 Tumor suppressor proliferation, migration, invasion circ-103,809 – miR-620 >> proliferation,
migration, invasion

[248]

circ-0001445 Tumor suppressor proliferation, migration, invasion circ-0001445 – proliferation, migration,
invasion

[249]

circADAMTS13 Tumor suppressor proliferation circADAMTS13 – miR-484 >> proliferation [250]
circ-0079929 Tumor suppressor growth circ-0079929 – PI3K/AKT/mTOR >> growth [230]
circRNA-
104,075

Oncogene tumorigenesis circRNA-104,075 – miR-582-3p – YAP
>> tumorigenesis

[75]

circRNA-
100,338

Oncogene proliferation circRNA-100,338 – miR-141–3p – RHEB
> > proliferation

[251]

circRNA-
0078710

Oncogene proliferation, migration, invasion circRNA-0078710 – miR-31 – HDAC, CDK2
>> proliferation, migration, invasion

[252]

circFBLIM1 Oncogene proliferation, invasion circFBLIM1 – miR-346 – FBLIM1
>> proliferation, invasion

[253]

circ-0067934 Oncogene growth, metastasis circ-0067934 – miR-1324 – FZD5
>> Wnt/β-catenin pathway >> growth,
metastasis

[254]

circRHOT1 Oncogene growth, metastasis circRHOT1 + TIP60 >> NR2F6 >> growth,
metastasis

[255]

circ-ZEB1.33 Oncogene proliferation circ-ZEB1.33 – miR-200a-3p – CDK6
>> proliferation

[256]

circPTGR1 Oncogene migration, invasion circPTGR1 – miR-449a – MET >> migration,
invasion

[257]

circRNA-
101,505

Oncogene proliferation circRNA-101,505 – miR-103 – NOR1
>> proliferation

[77]

circ-10,720 Oncogene EMT circ-10,720 – miR-490-5p – vimentin >> EMT [258]
circRNA-
101,368

Oncogene migration circ-101,368 – miR-200a – MGB1/RAGE
signaling >> migration

[259]

cdr1as Oncogene proliferation, migration cdr1as – miR-1270 – AFP >> proliferation,
migration

[260]

circRNA-
104,718

Oncogene growth, metastasis circRNA-104,718 – miR-218-5p – TXNDC5
>> growth, metastasis

[78]

circRNA-
103,809

Oncogene proliferation, cycle progression,
migration

circRNA-103,809 – miR-377-3p – FGFR1
>> proliferation, cycle progression, migration

[261]

circ-0103809 Oncogene growth circ-0103809 – miR-490-5p – SOX2 >> growth [262]
circ-0005075 Oncogene proliferation, migration, invasion circ-0005075 – miR-431 – proliferation,

migration, invasion
[263]

‘–’ represents inhibition, and ‘>>’ represents promotion.

AFP; a cp-score model, comprising of eight markers, showed
more effective performance to distinct between HCC patients
with other non-HCC than using AFP [111].

DNA methylation

DNA methylation is an epigenetic modification that methyl
groups are attached to DNA molecules. Aberrant DNA methy-
lation, a main way of epigenetic deregulation, has emerged as
a driver in oncogenesis and the development of almost type of
cancer [115–117]. DNA methylation typically turns the gene on
when located in promoter, so oncogenes often are hypomethy-
lated and tumor suppressive genes are hypermethylated in

cancer. Accumulating reports have discussed the association
between DNA methylation and HCC.

Liu et al. reported that the promoter methylation level of
two tumor suppressors (SOX1 and VIM) in HCC patients was
remarkably higher than that in non-HCC groups (liver cirrhosis,
chronic hepatitis B and healthy controls) and closely associated
with tumor stage and tumor size. Besides, promoter methy-
lation of two genes in serum could show a higher sensitivity
and specificity (SOX1: 72.08 and 84.21%, VIM: 61.67 and 83.16%)
than that of AFP (56.67 and 83.16%) in discrimination between
HCC and liver cirrhosis and chronic hepatitis B [118]. Research
by Qiu et al. explored the connection between methylation of
TRIM58 and HCC. Methylation level of TRIM58 in many HCC
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Figure 2. Cooperation of TLR4/NF-kB, HGF/c-Met, Wnt/β-catenin, TGF-β and MDM2-p53 signaling pathway directs HCC tumorigenesis via diverse intracellular process.

The detailed mechanism by noncoding RNA is added into key components in each pathway.

Table 4. A list of databases associated with noncoding RNA and corresponding information

Database name Noncoding RNAs
containing

Expression Level Regulatory
network

Description References

miRCancer miRNA √ × miRNA dysregulation in cancer [264]
Oncomir miRNA × × miRNA dysregulation in cancer [265]
HMDD miRNA √ × miRNA dysregulation in disease [266]
TANRIC lncRNA √ × function and clinical relevance of lncRNA in

cancer
[267]

LncRNADisease miRNA, lncRNA √ × lncRNA dysregulation in disease [268]
Lnc2Cancer miRNA, lncRNA √ √ lncRNA dysregulation in cancer;

lncRNAs-miRNA regulation
[269]

CircNet miRNA, circRNA √ √ tissue-specific circRNA expression profiles
and circRNA-miRNA-gene regulatory network

[270]

circRNA disease circRNA √ × circRNA dysregulation in disease [271]
Circ2Disease miRNA, circRNA √ √ circRNA dysregulation in disease;

circRNA-miRNA regulation
[272]

CCRDB circRNA √ × HCC-related circRNA [273]
MNDR miRNA, lncRNA, piRNA,

snoRNA
× × association between diverse noncoding RNAs

and diseases
[274]

tissues was higher compared with nontumor tissues and normal
liver tissues, and TRIM58 expression was decreased in HCC.
In the study, TRIM58 hypermethylation was detected in 51 of
181 HCC patients with the 10% of threshold. Conclusively, the
detection method using TRIM58 methylation level was potential
strategy for HCC clinical prognosis [119]. Kuo et al. found that
IRAK3 showed a dramatically increased promoter methylation
frequency and intensity compared with that in the adjacent non-
tumor tissues and normal parts of liver hemangiomas. Moreover,
IRAK3 promoter methylation was closely associated with tumor
stage, and the HCC patients with hypermethylation of IRAK3 had
the worse prognosis [120]. Besides, Table 5 shows a vast of gene
with aberrant DNA methylation.

Other types of DNA in HCC

Covalently closed circular DNA (cccDNA), existing in HBV
not in human cells essentially, could be detected in HBV-
related HCC [121]. In one study, researchers tested the levels
of cccDNA in HCC tissues which was higher than that of
the nontumor tissues [121]. Huang et al. developed a method
using cccDNA detection in single cells and serum, with an
89.9% positive rate in HCC [122]. In fact, circular DNA exists
in not only bacteria and viruses but also animals, for example,
mitochondrial DNA (mtDNA). mtDNA can be transcribed and
translated. An investigation suggested that mtDNA haplogroup
N9a had an inverse correlation with the incidence of HCC and
its expression suppressed tumorigenic activity in vivo [123].
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Figure 3. The sketch of TLR4/NF-kB signaling pathway with regulating three types of RNA for each component. Yellow, blue and orange modules represent miRNAs,

lncRNAs and circRNAs, respectively.

Figure 4. The sketch of HGF/c-Met signaling pathway with regulating three types of RNA for each component. Yellow, blue and orange modules represent miRNAs,

lncRNAs and circRNAs, respectively.
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Figure 5. The sketch of Wnt/β-catenin signaling pathway with regulating three types of RNA for each component. Yellow, blue and orange modules represent miRNAs,

lncRNAs and circRNAs, respectively.

Figure 6. The sketch of TGF-β signaling pathway with regulating three types of RNA for each component. Yellow and blue modules represent miRNAs and lncRNAs,

respectively.
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Figure 7. The sketch of MDM2-p53 signaling pathway with regulating three types of RNA for each component. Yellow, blue and orange modules represent miRNAs,

lncRNAs and circRNAs, respectively.

Progress of nucleic acids research in clinical
trial and research for HCC
Clinical trials

Like vanguard of nucleic acid molecules, miRNAs have made
unparalleled progress in HCC diagnosis compared with other
noncoding RNA. There have been numerous clinical trials show-
ing at Table 6 using miRNAs as diagnostic biomarkers in HCC
patients. Besides, in 2013, Mirna Therapeutics Inc. initiated one
phase I clinical trial (NCT01829971) termed ‘A Multicenter Phase
I Study of MRX34, MicroRNA miR-RX34 Liposomal Injection’.
Before this, miR-34, like a star in miRNAs, has attracted substan-
tial attention with downregulation in HCC [124] and other types
of cancer [125–130] and roles in a wide spectrum of tumorigenic
pathways including P53 pathway [131], E2F pathway [132], c-
Met pathway [124] and so on. In this research, 155 participants
suffering from primary liver cancer, small cell lung cancer, lym-
phoma, melanoma, multiple myeloma, renal cell carcinoma or
non-small cell lung cancer were intravenously given MRX34 (an
analog of miR-34). However, the program was terminated due
to the patients undergoing five immune-related serious adverse
events in 2017. Until now, no miRNA-mimic therapeutics has
been approved for treating HCC. Maybe the approach is quite a
challenge (discuss in the following section).

In addition, DNA methylation for some genes was served as
helpful tools in clinical trials for HCC diagnosis, which is shown
in Table 7.

Drug design in research

There have been considerable nucleic acid molecules and epi-
genetic characteristics above showing excellent performance in
HCC detection, and some of these participated in crucial path-
ways contributing tumorigenesis and the development of HCC,
which implied these molecules presented potential therapeutic
indication.

In early days, many researchers identified that miR-122 was
frequently downregulated in HCC and targeted Cyclin G1 and
Bcl-w to trigger apoptosis in HCC cell lines, which indicated that
miR-122 may be a potential target for HCC treatment [133–135].
And in 2010, professor Deiters and colleagues developed two
inhibitors (named NSC 158959 and NSC 5476) and one activator
(named NSC 308847) of miR-122. NSC 158959 and NSC 5476
showed reduction of HCV RNA therefore inhibiting of HCV repli-
cation by targeting miR-122. And NSC 308847 could increase in
the activity of caspase-3 and -7 and induce excessive apoptosis
in HCC cell lines through increase of miR-122 level [136, 137].

Studies have shown that miR-34a was significantly down-
regulated in HCC tissues than the normal and could inhibit
the migration and invasion of HCC cell lines through the c-
Met signaling pathway [124]. In 2014, study by Xiao et al. used
a luciferase reporter system and picked up a lead candidate
(Rubone), which acted as a small-molecule modulator of miR-
34a to upregulate it. Mechanistically, Rubone inhibited cell pro-
liferation and induced apoptosis with downregulation of cyclin
D1 and Bcl-2 in HCC cell lines. Moreover, the researchers found
that Rubone could activate the transcription of miR-34a through
increasing P53 activities. Besides, in transplantation tumor ani-
mal model, Rubone exhibited more effective inhibition abilities
of tumor growth than sorafenib at the dosage of 50 mg/kg [138].

Besides, researchers reported that miR-21, miR-96, miR-210
and miR-544 were abnormally expressed in HCC cells or tissues
compared with the normal and involved in the multiple signal
pathways of tumorigenesis of HCC [139–142]. And drug designs
for these miRNAs have emerged and displayed excellent anti-
cancer effect.

‘Compound AC1MMYR2’, a small-molecule inhibitor of
miR-21, could block the development from precursor miR-21
to mature miR-21 and induced the reversion of epithelial–
mesenchymal transition as well as tumor growth in several
types of tumors [143]. ‘Compound 1’ reported by Velagapudi
et al., which inhibited biogenesis of precursor miR-96, showed
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Table 5. Detailed information of aberrant methylation in plenty of genes

Gene name Methylation type Frequency Locus Reference

HOXD10 hypermethylation 76.90% promoter [275]
PDCD4 hypermethylation 59.10% promoter [276]
HCCS1 hypermethylation 62.50% promoter [277]
FOXD3 hypermethylation 57.70% promoter [278]
NKAPL hypermethylation 77.80% promoter [279]
DENND2D hypermethylation 75% promoter [280]
miR-148a hypermethylation N.A. promoter [281]
CDH1 hypermethylation N.A. promoter [282]
9-Sep hypermethylation N.A. promoter [283]
P16 hypermethylation 58.50% N.A. [284]
GNAO1 hypermethylation N.A. promoter [285]
GSTP1 hypermethylation 85% promoter [286]
MT1G hypermethylation N.A. promoter [287]
PGLYRP2 hypermethylation N.A. promoter [288]
miR-192–5p hypermethylation N.A. promoter [289]
NQO1 hypermethylation 50% promoter [290]
KCNQ1 hypermethylation N.A. promoter [291]
RASSF1A hypermethylation 92.50% promoter [292]
CD82 hypermethylation N.A. promoter [293]
RECK hypermethylation 55.40% promoter [294]
COX-2 hypermethylation N.A. promoter [295]
SAMSN1 hypermethylation N.A. promoter [296]
FBLN1 hypermethylation 50% promoter [297]
MEG3 hypermethylation N.A. promoter [298]
BNC1 hypermethylation 49.60% promoter [299]
GADD45B hypermethylation N.A. promoter [300]
MTAP hypermethylation N.A. promoter [301]
RUNX3 hypermethylation 41.10% promoter [302]
SOCS3 hypermethylation 48.03% promoter [303]
DUOX1 hypermethylation 90% promoter [304]
CEBPB hypomethylation N.A. enhancer [305]
BORIS hypomethylation 41.90% promoter [306]
LINE-1 hypomethylation 87.30% promoter [307]
HAI-1 hypomethylation N.A. promoter [308]
MGAT3 hypomethylation N.A. promoter [309]
RASA3 hypomethylation N.A. promoter [310]
UBE2Q1 hypomethylation N.A. promoter [311]
CD147 hypomethylation N.A. promoter [312]
DNAH17 hypomethylation N.A. amplicon [313]
ZEB1-AS1 hypomethylation N.A. promoter [314]
FOXK1 hypomethylation N.A. N.A. [315]

N.A.: not available.

Table 6. Information of miRNAs as biomarker in clinical trials

miRNA Applicable disease Detection
approaches

Enrollment ClinicalTrials.gov
identifier

Sponsor

Certain circulating
miRNAs

HCC Serum 126 NCT03227510 People’s Friendship
University

miR-145, miR-31,
miR-92a

Lymph node metastasis in
HCC

Tissue 150 NCT03416803 Shanghai Zhongshan
Hospital

miR-221, miR-222 HCC Tissue, blood 10 NCT02928627 University of Aberdeen
Certain miRNAs HCV-related HCC Serum 100 NCT03429530 HMHamed

N.A.: not available.

90% inhibition at 40 μM and upregulated the expression of
FOXO1, therefore inducing apoptosis in cancer cells [144].
‘Compound Targapremir-210’, a small molecule inhibitor of
miR-210, inhibited Dicer processing of the miR-210 precursor
and suppressed tumor growth in a mouse model [145, 146].

Christopher et al., reported that a small molecule compound an
inhibitor of miR-544 and also named as MLS000054131, impeded
miR-544 biogenesis and repressed tumor growth in vivo [147].
Complete information of these compounds has been exhibited
in Table 8.
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Table 7. Information of DNA methylation as biomarker in clinical trials

Methylation location Applicable
Disease

Detection
Approaches

Enrollment ClinicalTrials.gov
identifier

Sponsor

cfDNA Liver cancer Blood 1600 NCT03694600 Laboratory for Advanced
Medicine, Indiana

cfDNA-based
SEPT9-promoter

HCC N.A. 440 NCT03311152 Central Hospital, Nancy, France

ctDNA HCC Blood 400 NCT03483922 HKGepitherapeutics
Liver cancer
prognosis-related gene

Liver cancer N.A. 300 NCT01786980 Eastern Hepatobiliary Surgery
Hospital

SEPT9-promoter HCC Blood 220 NCT03804593 Epigenomics, Inc
VTRNA2–1 promoter HCC Tissue 92 NCT04177316 Chang Gung Memorial Hospital

N. A.: not available.

Table 8. Potential compounds targeting miRNAs of HCC

Compound Name Target Activity Structure Reference

NSC 158959 miR-122 EC50 = 3 μM [136]

NSC 5476 miR-122 EC50 = 0.6 μM [136]

NSC 308847 miR-122 IC50 = 3.8 μM [136]

Rubone miR-34a IC50 = 3 μM [138]

AC1MMYR2 miR-21 N.A. [143]

Compound 1 miR-96 40 μM 90% inhibition [144]

Targapremir-210 miR-210 IC50 = 200 nM(MDA-MB-231 cell) [145]

MLS000054131 miR-544 N.A. [147]

N.A.: not available.

Future remarks

Over the past several decades, scientists’ understanding of
genome has been substantially transformed. In the 1960s, it
was widely believed that noncoding DNA (junk DNA) holding
98% region in genome was with no function and produced
junk fragments. But now it seems that the noncoding region
concealed huge potential functioning as gene regulators.
Therewith, emergence of noncoding RNA or DNA has received
considerable attention especially in malignant diseases. In
this perspective and taking the extraordinarily heterogeneous
cancer HCC as paradigm, we discussed incredible progress
on some mainstream nucleic acids above and other popular
ones, which included miRNA, lncRNA, circRNA, ctDNA and DNA
methylation.

Methylation is a switch for gene expression. On/off of tumor
gene is often managed by hypo/hypermethylation particularly in
promoter. In HCC, methylation based on a few genes including

the promoters of SEPT9 and VTRNA2–1 was also under research
in clinical trial. Malignant tumors shed DNA into the circula-
tion [148, 149]. Ephemeral life of ctDNA means it carried real-
time information of tumor. Therefore, the features of ctDNA
including mutation and methylation may be useful for HCC
diagnosis.

All three noncoding RNAs showed promising performance in
HCC detection, but miRNA was quite remarkable, some of which
has entered to clinical trial stage such as miR-221 and miR-222.
Furthermore, the three noncoding RNA regulated gene expres-
sion in terms of different patterns. miRNA and circRNA generally
followed specified mode that miRNA inhibited target gene by
binding to its 3′UTR and degrading its mRNA and circRNA turned
on expression of target gene via sponging special miRNA and
disassociating the link between miRNA and target gene. Unlike
single model of miRNA and circRNA that the former consists of
about 22 nts and the latter forms a covalently closed continuous
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loop, lncRNA is in length range tens to even tens of thousands
nts and possesses mRNA-like structure with a poly(A) tail and
a promoter [150] even forms secondary and tertiary structures
[151]. Therefore, the mRNA- and protein-like structures endow
lncRNA with a variety of ability to regulate expression in gene
and protein levels.

For drug therapy of HCC, all single-target drugs ended in
failure finally. Hence, all drugs for HCC approved by FDA target
multiple proteins such as sorafenib and regorafenib targeting
VEGFR, RET and KIT. As for miRNA, it could not act as the direct
executor of function for vital movement. In one facet, it can bind
to several special mRNAs and lead to the inhibition of multiple
proteins so as to launch the regulation of vital movement, thus
probably targeting several targets of HCC, which may benefit
for therapy. In the other facet, unlike compounds synthesized
in vitro with clear targets, endogenous miRNA targets not only
some proteins known but also other ones that we may not
know yet, which may make against therapy. Maybe MRX34 with
five immune-related serious adverse events is one example.
In reality, put HCC aside, no miRNA therapeutics have been
approved by FDA in any diseases. However, small interfering
RNAs (siRNAs), another small RNA similar with miRNA, have
contributed to the approval of Patisiran in 2018. This may be not
occasional, because (i) siRNA is synthetic with higher specificity
and generally targets one mRNA, but miRNA is endogenous
molecules and targets multiple mRNAs and (ii) the sequence of
siRNA is completely complementary to the target mRNA, while
that of miRNA is partially matched, probably leading to more
unknown events. Till now, miRNA as vanguard of noncoding
RNA is so, and lncRNA and circRNA may be no much better off.
Anyhow, to answer whether benefits outweigh harms or not,
there is still much work to be done.

Key Points
• A variety of nucleic acids (miRNA, lncRNA, circRNA,

ctDNA and DNA methylation) could act as effective
biomarkers in humor or tissue of HCC patients.

• Regulatory patterns of three key noncoding RNA were
summarized that lncRNA employed four distinct mech-
anisms and miRNA or circRNA generally hire the unique
one.

• Some novel nucleic acids (miRNA, ctDNA and DNA
methylation) have contributed to clinical trials research
in HCC diagnosis and therapy.

• miRNA, as vanguard of nucleic acid molecules, showed
difficulty as tool for HCC therapy.
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