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Abstract: Background: Due to its prevalence and negative impacts on both the economy and society, 

the diabetes mellitus (DM) has emerged as a worldwide concern. In light of this, the label-free quanti-

fication (LFQ) proteomics and diabetic marker selection methods have been applied to elucidate the 

underlying mechanisms associated with insulin resistance, explore novel protein biomarkers, and dis-

cover innovative therapeutic protein targets. 

Objective: The purpose of this manuscript is to review and analyze the recent computational advances 

and development of label-free quantification and diabetic marker selection in diabetes proteomics. 

Methods: Web of Science database, PubMed database and Google Scholar were utilized for searching 

label-free quantification, computational advances, feature selection and diabetes proteomics. 

Results: In this study, we systematically review the computational advances of label-free quantifica-

tion and diabetic marker selection methods which were applied to get the understanding of DM patho-

logical mechanisms. Firstly, different popular quantification measurements and proteomic quantifica-

tion software tools which have been applied to the diabetes studies are comprehensively discussed. 

Secondly, a number of popular manipulation methods including transformation, pretreatment (center-

ing, scaling, and normalization), missing value imputation methods and a variety of popular feature 

selection techniques applied to diabetes proteomic data are overviewed with objective evaluation on 

their advantages and disadvantages. Finally, the guidelines for the efficient use of the computation-

based LFQ technology and feature selection methods in diabetes proteomics are proposed. 

Conclusion: In summary, this review provides guidelines for researchers who will engage in pro-

teomics biomarker discovery and by properly applying these proteomic computational advances, more 

reliable therapeutic targets will be found in the field of diabetes mellitus. 

Keywords: Label free quantification, diabetes proteomics, computation, target discovery, antidiabetic drug, mass spectrometry. 

1. INTRODUCTION 

 Diabetes is a deadly and costly disease [1]. The WHO 
estimated that about 422 million adults are suffering from 
diabetes mellitus (DM) all over the globe as per latest data 
and each year people died directly from diabetes counts for 
nearly 1.6 million [2]. However, the curing of diabetes is still 
a very challenging task even with the great knowledge and 
successful development of effective treatments [3-5]. To 
overcome this problem, new drug targets for diabetes are 
clearly needed that will better address these unmet needs. 
The primary targets of the majority of the antidiabetic drugs 
(clinical trial/approved) are proteins [3, 6-10]. These kinds of 
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changes of protein interactions, concentrations or functions 
might lead to the fundamental mechanism of various dis-
eases including diabetes mellitus [11-13]. Thus, a compre-
hensive understanding of the molecular mechanisms under-
lying DM progression is of great significance for its diagno-
sis and treatment. 

 In the field of diabetes research, it is vital to understand 
the protein abundances and concentration, therefore the pro-
teomics techniques are urgently needed [14]. So far, diabetes 
proteomics has grown rapidly in the intervening period. A 
search of the terms diabetes mellitus and proteomics or pro-
teome shows that since 1995, publication has increased rap-
idly, with > 3500 each year for previous 5 years and the term 
diabetes mellitus publication has risen to over 20000 each 
year in the past five years (Fig. 1a). Moreover, it is clear that 
proteomics has been gradually widely used in diabetes re-
search for recent years, over 20 percent of all diabetes publi-
cation in 2018 as shown in (Fig. 1b). In particular, it has 
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been adopted to elucidate the underlying mechanisms asso-
ciated with insulin resistance [15, 16], explore novel protein 
biomarkers [17-20], and discover innovative therapeutic pro-
tein targets [14, 21]. In addition, the development of antidia-
betic drugs is greatly promoted by these remarkable tech-
niques [22]. 

 A convincing example to prove the importance of pro-
teomics in diabetes is the study of glycated albumin (GA). 
GA was reported to be of higher concentration in the diabe-
tes individual [23, 24], and had been commonly considered 
as a promising alternative of the traditional biomarkers of 
diabetes (such as glycated hemoglobin) [25]. However, tradi-
tional quantitative methods (such as fluorescence spectros-
copy [26], phenylboronate affinity chromatography [27] and 
ELISA [28]) were found to be failed in the evaluation of the 
status of glycation [25]. Therefore, with the rapid develop-
ment of MS technology, proteomics had been widely 
adopted for accurately identifying and quantifying GA in 
both healthy and diabetic individuals, so as to discover reli-
able diagnostic biomarkers used to predict prediabetes as 
well as secondary complications, respectively [29-34]. 
Moreover, a further proteomic study analyzing a large num-
ber of clinical samples showed that GA was indeed closely 
related to diabetic onsets [35], which demonstrated the feasi-
bility of GA in the diabetes diagnosis. All these proteomic 
studies could substantially facilitate the diagnosis and treat-
ment of diabetes [25]. 

 Not only does the prevalence of diabetes need to be con-
trolled, but also its serious complications need to be con-
cerned, including neuropathy, retinopathy, cardiopathy, dia-
betic nephropathy and so on [36]. In a previous study, re-
searchers identified peptides of differential abundance in 
serum between the controls and diabetic neuropathy patients, 
which were considered as biomarkers for detecting diabetic 
neuropathy [37]. In another proteomic research, the compre-
hensive alterations of vitreous proteome in proliferative dia-
betic retinopathy were observed and the abundances of pro-
teins were quantified by LFQ methods [38]. The proteomic 
strategy was also adopted in the study of diabetic cardiomy-
opathy’s pathogenesis and helped to demonstrate the effec-
tiveness of antioxidant therapy in its treatment [39]. Addi-

tionally, in-depth analysis of urine proteome could provide 
reliable protein signature for identifying diabetic nephropa-
thy (such as β2-microglobulin and ubiquitin) [40]. Therefore, 
the application of proteomics in diabetic complications is of 
great significance and can help reduce the harm of diabetes. 

 In recent years, with the advent of precision medicine 
[41], extensive attention and great efforts have been paid to 
the research of protein-based biomarkers to improve the suc-
cess rate of clinical trials of corresponding drugs [42, 43], 
which has led to the rapid development of proteomics on the 
basis of MS [44]. The computational methods were widely 
used in the field of target and drug discovery [45-50] such as 
computer-aided drug design (CADD) [51-57], and the LFQ 
method demonstrates many advantages including allowing 
detection of proteomes without the expenditure of time and 
money due to introducing stable isotopes to prepare experi-
mental samples, and could process large amount of samples 
from various sources [58-61]. These remarkable characteris-
tics make LFQ the most commonly used quantification 
methods in diabetes proteomics [62-65]. For example, LFQ 
was applied to analyze the differential proteome of serum in 
type 1 diabetes [66] and discovered the insulin receptor sub-
strate-1 in the insulin-stimulated interaction [64]. Further-
more, it is already used to discover a novel function of AP-
MAP in gestational DM [67]. 

 Although LFQ has been widely used in various aspects of 
current anti-diabetes research, there are still many technical 
challenges in this field [44, 68-71]. In particular, imprecision 
[72], inaccuracy [73, 74] and low reproducibility [5, 73] of 
the LFQ are regarded as pivotal “technical challenge” in the 
research of discovering diabetic marker [75]. In order to 
solve the above problems, mass spectrometry (MS) quantifi-
cation measurements performance and some computational 
methods (like quantification software tools and data manipu-
lation methods) were in progress [76, 77], and were widely 
applied for LFQ analyses [78] to discover therapeutic bio-
markers for antidiabetic drug research [63-66]. Nowadays, it 
becomes more and more useful to overview the various 
quantification software tools [60, 79], various proteomics 
data manipulation methods [80, 81], and properly use of 
these methods for specific datasets [82, 83]. Moreover, no 

 

Fig. (1). Trends in diabetes proteomics. (a) Annual frequency, beginning with 1995, of publications using the terms diabetes (in green) com-

pared with diabetes proteomics (in orange). (b) The number of diabetes proteomics studies has increased over 20% of all the diabetes publi-

cation in 2018, indicating increasingly popular application of the technologies. 
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such review of the LFQs has been conducted yet on diabetes 
proteomics. 

 Simultaneously, feature selection methods play a key role 
in identifying significant proteins/peptides (or features) be-
tween distinct groups from complex diabetes proteomic 
datasets [84-86]. So far, there are multiple feature selection 
techniques that have been successfully utilized in DM re-
search  to discover the hidden patterns and relationships [87-
90]. Bagherzadeh-Khiabani et al. [91] made use of a clinical 
dataset comprising of 803 pre-diabetic females and predicted 
the likelihood of DM by comparing several common feature 
selection algorithms. In another work, Georga et al. [92] 
used random forest methods to predict the glucose concen-
trations in diabetic mellitus patients. However, due to the 
lack of robustness of feature selection methods, the consis-
tency of the biomarkers has been discovered in most cases is 
ambiguous [93]. Therefore, to better understand which 
methods are more accurate when classifying data, some pub-
licly available feature selection methods for proteomics data 
were recently compared [94-97]. But no such specific review 
of the feature selection has been conducted yet on diabetes 
proteomics. 

 In this study, we systematically review the computational 
advances of label-free quantification and diabetic marker 
selection which be applied to get the understanding of DM 
pathological mechanisms. First, 3 quantification measure-
ments and 11 proteomic quantification tools frequently ap-
plied in diabetes proteomics were comprehensively re-
viewed. Second, a variety of manipulation methods includ-
ing 4 transformation, 16 pretreatment (2 centering, 4 scaling 
& 10 normalization) and 3 missing value imputation meth-
ods, together with 12 popular feature selection techniques 
applied in diabetes proteomics were evaluated according to 
their reported advantages and disadvantages. Finally, the 
guidelines for the efficient use of the computation-based 
LFQ technology and feature selection methods in diabetes 
proteomics were proposed. 

2. QUANTIFICATION MEASUREMENTS FOR DIA-

BETES PROTEOMICS 

 There were three quantification measurements (QMs) 
used for proteomics-based diabetic biomarker discovery, 
which were (as shown in Fig. 2) acquired by two different 
modes of acquisition: data-independent (DIA) and data-
dependent (DDA) [44, 60]. For the QMs acquired by the 
mode of acquisition of DDA, individual precursors were 
selected for fragmentation in a semi stochastic manner, fa-
voring the most intense peaks. In contrast, all precursors 
were fragmented and tandem mass spectrometry (MS/MS) 
data were acquired for all fragment ions in DIA acquisition 
[98, 99]. Under this circumstance, there were two main 
QMs: spectral counting and peak intensity [100]. The detail 
descriptions on these two QMs were frequently reported in 
previous studies [101, 102]. For the QM acquired by the 
mode of acquisition of DIA, the SWATH-MS was a meas-
urement that enabled complete detection and quantification 
of almost all detectable peptide fragments in a sample [103]. 
Since it demonstrated the significantly enhanced quantifica-
tion accuracy and precision [61, 104], it was known as one 
of the most advanced techniques in current MS-based pro-
teomics. 

 As one of the most popular QMs acquired by the mode of 
acquisition of DDA, peak intensity offered more accurate 
quantitation and wider dynamic range than spectral counting 
[105]. In addition, the protein quantification applying peak 
intensity was reported to be better accuracy for higher reso-
lution mass spectrometry [106]. But for low resolution ma-
chines, owing to great amounts of thermal noise, the preci-
sion of peak intensity was impaired [107]. The other popular 
QM was spectral counting, which was a very simple LFQ 
technique for taking into account the total number of spectra 
of identified proteins [108]. It demonstrated the best QM for 
quickly screening the differences between samples [109], 
and broad estimation of the identification of total proteins 
[110]. 

 SWATH-MS, a newly developing QM, has gradually 
gained popularity due to it can comprehensively detect all 
ionized peptide fragments with the favorable sensitivity, re-
producibility, accuracy and extended dynamic range for ana-
lyzing diabetes proteomics data [44, 103]. It has become an 
effective way to discover novel potential therapeutic targets 
for treating proliferative diabetic retinopathy [111], elucidate 
the underlying DM etiology associated with insulin resis-
tance in gestational diabetes mellitus and diabetic cardiovas-
cular complications [15, 112]. By now, although not many 
studies have used SWATH-MS for diabetic biomarker dis-
covery, it is worth noting that this technology has the poten-
tial to address the limitations of many current diagnostic 
biomarkers or therapeutic targets [113]. 

3. QUANTIFICATION SOFTWARE TOOLS FOR 

DIABETES PROTEOMICS 

 So far, there are a variety of quantification software tools 
(QSTs) for diabetes proteomics data analysis. Some of them 
are freely accessible while others are commercial. These 
QSTs which have different algorithms could process diabe-
tes proteome datasets generated by different QMs. Here we 
show 11 QSTs which are extensively applied in processing 
proteome raw data and divide them into three types accord-
ing to the way of 3 different QMs. They are described as 
follow (Fig. 2), and (Table 1) provides explanations on each 
QST. 

3.1. QSTs Used to Pre-process the Diabetes Proteomic 

Data Quantified by SWATH-MS 

 The DIA-Umpire is a freely accessible QST which can 
pre-process the raw data acquired by DIA [114], and it is 
extremely appropriate to the untargeted quantification em-
ploying proteomics dataset on the basis of SWATH-MS 
[115]. The advantage of this tool is that it can get robust pro-
tein quantification, so similar amount of proteins can be dis-
covered among various sets of samples while traditional 
tools of DDA can’t do this [116]. However, it is not suitable 
for quantifying the modified peptides after translation due to 
the design purpose of protein quantification [117]. The accu-
racy for protein quantification of this tool is improved to 
93% by filling in the intensities of missing peptide ions 
[114]. Moreover, it has been frequently applied to analyze 
human proteome by targeted high-resolution mass spec-
trometry [118] and generate the results of pseudo-MS2 spec-
tra protein identification [119].  
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Fig. (2). Quantification measurements together with their representative quantification software tools used in diabetes proteomics. 

Table 1. Thirteen popular quantification software tools for diabetes proteomic data. 

Quantification Tool Platform* Version Applied in Diabetes Proteomic Researches 

DIA-Umpire W; L; M 
2.0 

(Apr. 2016) 
Applied to export the peptide identification results of pseudo-MS/MS spectra [119]. 

OpenSWATH W; L 
2.4.0 

(Oct. 2018) 

Applied to generate a compendium of quantitative proteome data in dietary and 
metabolic perturbations mouse strains [121]. 

PeakView W 
2.2 

(Oct. 2014) 
Applied to study the malleable nature of diet-induced cognitive dysfunction [110]. 

Skyline W 
4.2.0 

(Jan. 2019) 

Applied to determine transitions for each target peptides in the study of protein 
changes within the diabetic vasculature [130]. 

SW
AT

H
-M

S 

Spectronaut W 
11 

(May 2016) 

Applied to analyze the controversial omentin-regulated proteins in type 2 diabetes 
[133]. 

MaxQuant W; L 
1.6.5.0 

(Oct. 2016) 

Applied to establish an online 2D-LC-HCD-MS/MS platform for comprehensive 
glycated peptide quantification[163]. 

Scaffold W 
4.8.9 

(Dec. 2018) 

Applied in an in-depth analysis of the urinary proteome based on different separation 
strategies [168]. 

OpenMS W; L; M 
2.4.0 

(Oct. 2018) 

Applied for the proteomic analysis of corneal endothelial cell-descemet membrane 
tissues in type 2 diabetes mellitus [138]. 

PEAKS W 
8.5 

(Oct. 2017) 

Applied to predict gestational diabetes through early second-trimester peptidomic 
serum peptides identification [141] 

Progenesis W 
4.1 

(May 2018) 

Applied to study the retinal proteome alterations in a mouse model of type 2 diabetes 
[145] 

Pe
ak

 In
te

ns
ity

 

Proteome Discoverer W; L 
2.2 

(Aug. 2017) 

Applied for determining changes in protein expressions in arterial tissue from pa-
tients with type 2 diabetes mellitus [151] 

Census W; L; M 
2.3 

(Mar. 2014) 
Applied in a multiple proteomics study on liver mitochondria isolated from sponta-

neous diabetic rat model [155]. 

MaxQuant W; L 
1.6.5.0 

(Oct. 2016) 
Applied to study the unique exocrine tissue proteomic profile of type 1 diabetes 

cadaveric human pancreata [164]. 

Scaffold W 
4.8.9 

(Dec. 2018) 
Applied for identification of more specific biomarkers for prediction of Diabetic 

nephropathy [167] 

Sp
ec

tr
al

 C
ou

nt
in

g 

DTASelect W 
2.0.41 

(Mar. 2010) 
Applied to explain the relationship of Ces3 to obesity and diabetes [160]. 

*W = Windows OS, L= Linux OS, M= Mac OS. 
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 As a QST designed with the ability to work under differ-
ent platforms, OpenSWATH is an automated, open-
accessible and high-throughput tool [120]. It is a cross-
platform software, written in C++, which only depends on 
open-data formats, permitting the analysis of DIA data 
through multiple tools vendors and can deeply analyze dia-
betes proteomics data based on SWATH-MS [60, 103, 120]. 
The disadvantage of this tool is that it can’t distinguish pep-
tide ions with lots of the same MS/MS fragments [114]. In a 
previous study, the accuracy of the software can reach 87.5% 
with a high precision of 94.3% [120]. OpenSWATH has 
been applied to generate quantitative proteome data in an 
experiment of metabolic perturbations [121]. 

 Compared with other tools of this type, the PeakView 
shows particular superiority of integrating major computa-
tional processing methods [119, 122]. The principle of this 
tool has been introduced in previous research [103]. The 
advantage of PeakView was the function that all the ex-
tracted ion chromatograms could be inspected visually [123], 
and the mass defect filtering (MDF) technique integrated 
into this tool provided a new method for rapid identification 
of various compounds [124]. However, it couldn’t automati-
cally compare the differential peaks between control and 
sample, so manual comparison is needed [123]. The accu-
racy of this software varies with sample size and parameters 
[125]. Nowadays, PeakView has rapidly grown into a power-
ful quantification tool for processing proteomic data in many 
fields. For example, in the study of the association between 
maternal metabolic changes and circulating exosomes in 
gestational diabetes, PeakView was used for the quantifica-
tion calculations [15]. In addition, Johnson LA used 
PeakView for Mass spectrometry data analysis and high-
lighted the malleable nature of diet-induced cognitive dys-
function [110]. 

 Skyline is also a freely accessible quantification tool 
which can process data acquired by different techniques of 
reaction monitoring and analyze both DDA and SWATH-
MS data on the basis of MS1 information of quantification 
[126]. Besides its excellent file compatibility [127], it has 
strong capabilities of method editing and can respond to 
large amounts of complex data [128]. Moreover, it enables to 
quantify proteins, peptides as well as small molecules [129]. 
With the help of Skyline, an analysis of 572 diabetes patients 
introduced a biomarker panel with the potential to improve 
diagnosis of diabetic kidney disease [109]. Skyline was also 
applied to determine the conversion of each target peptides 
in the study of protein changes in the diabetic vascular sys-
tem [130] and select the optimum peptides for multiple reac-
tion monitoring in type 2 diabetes patients treated with 
Xiaoke Pill and Glibenclamide [131]. 

 Another widely applied QST in this type is the Spectro-
naut, which can be used in DIA measurement analysis [116, 
132]. The powerful functions of choosing peaks and interfer-
ence auto-correction applying typical library of spectral 
make it widely used to sustain workflow that doesn’t have a 
spectral library [60, 122], and this is the key strength of it. In 
addition, Spectronaut is more sensitive in the detection of 
differentially expressed proteins [125]. A proteomics analy-
sis of omentin-regulated proteins which was reported con-
troversial in type 2 diabetes has applied Spectronaut [133]. 

3.2. QSTs Used to Pre-process the Diabetes Proteomic 

Data Quantified by Peak Intensity 

 As a freely accessible QST, OpenMS can process MS-
based raw proteomics data with the high-throughput and 
robust characteristics. It was widely used for analyzing dia-
betes proteomics data with enhanced reproducibility [134]. 
This tool is more flexible than other tools because it has 
smaller algorithmic components which can be rapidly com-
bined for specific analysis [135]. In another study of 
OpenMS, the quantification coverage could reach 99%, and 
the obtained protein abundance was close to the known 
amounts, indicating high accuracy [136]. It is widely applied 
to blood transcriptomes and metabolomics for personalized 
medicine [110], identification of therapeutic targets in 
chronic kidney disease [137] and analyzing endothelial cell 
Descemet membrane of cornea proteomics in type 2 diabetes 
[138]. 

 PEAKS has become a powerful QST for processing dia-
betes proteomic raw data to identify and quantify the pro-
teins. It has developed into a comprehensive software of pro-
teomics quantification that could handle both the label-free 
and labeling proteomics data. Besides, it was also a multi-
functional tool which can be used for analyzing PTMs (Post-
translational Modifications) and protein/peptide de novo 
sequencing [139]. Its advantage is that the generation of 
peaks makes the protein quantification have higher sensitiv-
ity and accuracy than other QSTs [140]. Moreover, PEAKS 
help to predict the identification of gestational diabetes by 
early second-trimester peptidomic serum peptides [141]. 

 Progenesis which is a commercial tool, quantifies protein 
abundances by ion intensity from large scale proteomics data 
and ion detection according to a high sensitivity algorithm 
[142]. Operators can control each processing step when us-
ing this software [79]. It is limited to LFQ unless there are 
other programming interfaces [143]. The quantification accu-
racy of this tool was analyzed within various proteomic date 
sets, and it performed almost the best compared with other 
software [122]. Nowadays, Progenesis has been commonly 
used in diabetes proteomics study [14], including the human 
placental tissue impaired by gestational diabetes [144], reti-
nal proteome alterations in type 2 diabetes mouse model 
[145], and analysis of vitreous body from proliferative dia-
betic retinopathy and type 2 diabetic patients [146]. 

 Proteome Discoverer makes a large range of proteomic 
workflows easier, from the identification of proteins to iso-
baric mass tagging to PTM analysis and both LFQ and SI-
LAC [110, 147]. It supports a variety of database search al-
gorithms (Byonic, Mascot and Sequest, et al.) and diverse 
separation techniques (ETD, CID and HCD, et al.) for more 
detailed analysis [148]. Researchers could present MS-data 
directly from the instrument, which allows for the identify-
ing and quantifying peptides and proteins by multiple seek-
ing algorithms [148]. It strikes a good balance between us-
ability and flexibility, which on the other hand may lead to 
functional impairment [149]. A Java library has been estab-
lished to solve the problem of parsing and visualizing the 
output files of this software [147], which was caused by the 
lack of internal conversion tools [150]. Proteome Discoverer 
has been used in arterial tissue from patients with DM to 
detect differences of protein expressions [151] as well as in 
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the patient of diabetic nephropathy to determine changes in 
the proteome of human urinary exosomes [152]. 

3.3. QSTs Used to Pre-process the Diabetes Proteomic 
Data Quantified by Spectral Counting 

 Census is a commercial software based on spectral count-
ing not only is accessible for different stable isotope labeling 
tests, but also can treat with the shotgun diabetes label-free 
proteomics data [153]. Multiple computational strategies for 
improving quality of quantification and its extensive cover-
age of quantification strategies makes it outstanding from 
other QSTs of spectral counting [154]. The quantitative ac-
curacy of low abundance peptide was improved by using 
filtering strategy [154]. Census can be used for quantitative 
analysis and a multiple proteomic research on spontaneous 
diabetic rat model liver mitochondria was conducted [155]. 

 Another Spectral Counting QSTs, DTASelect, can be 
used for analysis and effective identification of the proteins 
produced by the search engine of tandem MS database [56] 
which is a kind of most widely used [156]. The process of 
DTASelect contains filter, establishment and visualization of 
a great deal of a biosample tandem mass spectra [157]. This 
method takes typical proteins through elimination of the dif-
ferent identification and therefore improves quantification of 
proteins [157]. Users could decide to accept or reject the 
result of individual spectrum by setting complex criteria 
[157], which is a unique advantage of this software. It can 
make complicated tests possible by simplifying analysis of 
data [158] so that it could be adopted to various diabetes 
proteomic research with a low false positive [159] and link-
ing Ces3 to obesity and diabetes [160]. 

3.4. The QSTs Used to Pre-process the Diabetes Proteo-
mic Data Quantified by Multiple QMs 

 Two QSTs able to process raw data generated by various 
QMs are accessible, they are Scaffold and MaxQuant soft-
ware packages. Specifically, both tools could process data 
obtained from spectral counting and peak intensity. 

 MaxQuant matches proteins across various samples since 
it integrates common used algorithms for quantifying pro-
teins for MS-based apparatus with high resolution [161]. 
Nowadays, this tool is widely used for the analysis of tan-
dem spectra produced by the high energy collisional, colli-
sion-induced and the electron-transfer [162] in the diabetes 
proteomics. A previous research showed that MaxQuant 
could quantify the largest number of proteins compared to 
other LFQ tools in the SGSDS, CPTAC and UPS1 data sets 
[122]. This tool has been applied to establish an online 
MS/MS platform for comprehensively quantifying glycated 
peptide [163]. In addition, it was also used to study the 
unique exocrine tissue proteomic profile of type 1 diabetes 
cadaveric human pancreas [164]. 

 Scaffold is a kind of commercial QST offering good ac-
curacy on identifying proteins through applying different 
computational methods and providing diversiform strategies 
for confirming the proteins identification accuracy from pri-
mary datasets [165]. It is a multifunctional software that can 
be used in complex LC-MS/MS experiment for analysis, 
quantitation, validation and other processes [165]. This tool 

was applied to study the alteration determined by exercise 
training of the skeletal muscle proteome in type 2 diabetes 
patients [166]. Since microalbuminuria had been reported to 
be limited in determining disease risk, Scaffold is used to 
identify biomarkers for diabetic nephropathy prediction more 
specifically [167]. A recent study where Scaffold is used 
presents a depth urinary proteome analysis according to dif-
ferent strategies of separation [168]. 

4. DATA MANIPULATION METHODS FOR DIABE-
TES PROTEOMICS 

 Three manipulation methods were developed to process 
diabetes proteomic data, which included transformation, pre-
treatment (centering, scaling & normalization) and missing 
value imputation. More detailed description on those applied 
methods and the wide application in present diabetes melli-
tus research were then discussed in the next part and shown 
in Fig. (3). All these methods are summarized in Table 2. 

4.1. Methods for Transforming the Diabetes Proteomic 

Data 

 In most instances, diabetes proteomics data usually re-
quires transformation as the first step [169]. In matrix of 
data, the abundances of proteins are sometimes discovered to 
distribute in a right-skewed way [169]. Therefore, a proper 
usage of the transformation seems to be quite important to 
generate data with much more symmetry-improved and 
normal distribution. At present, four transformation methods 
(Power, Log, Cube Root and Box-cox) were frequently ap-
plied to process the diabetes proteomics data. 

 Power transformation (POW) can be used to transform 
the normal linear model [170]. Usually, it deals with a round 
of functions and results in performing a monotonic transfor-
mation [170], and it has the capacity of the stability of vari-
ance [171]. POW has been applied to study progresses that 
were available in the nation-wide Finnish diabetic nephropa-
thy study [172], and to indicate the significance of both sub-
fascial and subcutaneous fat related to the metabolism of 
lipid and glucose [173]. Besides, another symmetric distribu-
tion before the dataset analysis usually comes from the log 
transformation (LOG). For the dataset where the residuals 
might be larger for values of the dependent variables, this 
method can be quite suitable [174]. Hence, the LOG was a 
popular method of transformation for microarray datasets 
[175] and has helped the analyses of the functional and pro-
teomic alterations of high-density lipoproteins in plasma in 
diabetes patient and placenta in maternal obesity [176, 177]. 
The LOG method was usually performed by log2-scale, and 
the algorithm was programmed and implemented under the 
R environment. 

 Variance and mean of distribution using N=1/3 power 
(cube root) by substituting have been applied to process all 
kinds of diabetes mellitus proteomic dataset through the cube 
root (CUB), that is initially designed according to probability 
density function [178]. Yet this method is adopted to com-
pare the proteomic analysis result from saliva of dogs with 
obesity-related metabolic dysfunction [179]. As a kind of 
method able for parametric power transformation, the box-
cox (BOX) aims to break away from multiple anomalies 
[180], and has been applied in a robust and fast workflow 
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which shows potential in plasma biomarker identification 
[181]. The parameter λ in BOX was set to 0.3, and the algo-
rithm was programmed and implemented under the R envi-
ronment (version 3.5.1). 

4.2. Methods for Pretreating the Diabetes Proteomic 

Data 

 The pretreatment methods which can remove systematic 

biases were taken as an inalienable sector of LFQ to improve 

the accuracy of relatively quantifying the peptides and pro-

teins [182]. Currently, there are 2 centering, 4 scaling and 10 

normalization methods which are commonly used in diabetes 

proteomics and have been overviewed in the following sec-

tions. 

4.2.1. Methods for Centering the Diabetes Proteomic Data 

 Mean centering (MEC) adjusts the concentrations to fluc-

tuate around 0 rather than the mean value. It is thus applied 

to concern the fluctuating section of the dataset, and then 

only remain the related differences (the variation among the 

samples) [183]. Some diabetes related proteomic analysis 

such as weight loss and maintenance [181], anti-diabetes 

lipid and bile acid markers [184], as well as biomarkers for 

neuroretinal degeneration in diabetic retinopathy [185] used 

the MEC. Its algorithm was programed by integrating the 

basic mean function (mean value) in the R-statistical pro-

gramming and implemented under the R environment (ver-

sion 3.5.1). Similarly, median centering (MDC) regulates 

changes in the dataset between proteins with low and high 

abundance beside median of the protein concentrations 

[183]. It was widely applied in exocrine tissue proteomic 

profile in type 1 diabetes [164] and diagnostic biomarker 

[186]. The algorithm of MDC was programmed by integrat-

ing the basic median function (median value) in the R-

statistical programming and implemented under the R envi-

ronment (version 3.5.1). 

4.2.2. Methods for Scaling the Diabetes Proteomic Data 

 Before analyzing a multivariate data, a step of scaling 
might be essential to obtain accurate results, because protein 
concentration levels in samples can range by orders of mag-
nitude [187]. The scaling can be crucial for avoiding the case 
in which the peak is the most influential in the multivariate 
dataset [187]. Some kinds of scaling methods exist, that is 
ATO, VAS, RAN and PAR. 

 The auto scaling (ATO, also named unit-variance scal-
ing) method is the simplest way adjusting the proteomic 
variance and can scale the intensities into unit variances 
based on standard deviation of diabetes proteomic data [188, 
189]. ATO has now also been used to identify miRNAs as 
predictive biomarkers of type 2 diabetes [190] and applied to 
several pregnancy conditions [177]. The algorithm of ATO 
was programmed by integrating basic sd function (standard 
deviation) in the R-statistical programming and implemented 
under the R environment (version 3.5.1). Vast scaling (VAS) 
is an extension of ATO [141]. VAS concern stable variables 
making the coefficient of variation and the standard devia-
tion to be the factor of scaling [183]. Every peak is auto-
scaled and separated through the coefficient of variation. It is 
especially suitable for proteins bearing small fold changes 
[141]. VAS has been used to study the delayed storage influ-
ence on the metabolome and proteome of cerebrospinal fluid 
[191]. The algorithm of VAS was programmed by integrat-
ing two basic functions var and mean (variance and mean 
value) in R-statistical program and implemented under R 
environment. 

 In addition, pareto scaling (PAR) can utilize the standard 
deviation as a scaling factor [188] which is very similar to 
autoscaling. This approach is able to reduce the weight of 
huge intensities fold changes, that is much more important 
compared to ATO [188]. But as the major weight, the very 
large fold alteration might not change. So being sensitive to 
the large fold changes might be a disadvantage of PAR

Fig. (3). Data manipulation methods sequentially applied in diabetes proteomics.
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Table 2. Manipulation methods available for LFQ-based diabetes proteomics. 

Algorithm 
Package 

(Function) 
Applied in Diabetes Proteomic Study 

Power 
car 

(bcPower) 

Applied to indicate the significance of both subfascial and subcutaneous fat related to the me-

tabolism of lipid and glucose [173]. 

Log 
metabolomic  

(LogTransform) 

Applied to analyse the functional and proteomic alterations of high density lipoproteins in 

plasma in diabetes patient [176]. 

Cube root 
pamr 

(pamr.cube.roo) 

Applied to compare the proteomic analysis result from saliva of dogs with obesity-related meta-

bolic dysfunction [179]. Tr
an

sf
or

m
at

io
n 

Box-cox 
AID 

(boxcoxfr) 

Applied in a robust and fast workflow which shows potential in plasma biomarker identification 

[181]. 

Mean centering Mean 
Applied in the discovery of biomarkers for neuroretinal degeneration in diabetic retinopathy 

[185]. 

C
en

te
ri

ng
 

Median centering Median 
Applied to study unique exocrine tissue proteomic profile exhibited by type 1 diabetes cadaveric 

human pancreata [164].  

Auto scaling Metabolomics Identify miRNAs as predictive biomarkers of type 2 diabetes [190]  

Vast scaling DiffCorr 
Applied to study the delayed storage influence on the metabolome and proteome of cerebrospinal 

fluid [191]. 

Pareto scaling BioMark 
Applied to process data on the basis the information of scan-level and help predict the risk of 

developing diabetes [192]. 

Sc
al

in
g 

Range scaling DiffCorr 
Applied in the study of omics data fusion integrated with an optimal data preprocessing strategy 

[171]. 

EigenMS DanteR Applied to study the pathogenesis and pathophysiology of gestational diabetes mellitus [219]. 

Lowess LPE 
Applied to the study of the influence on platelet micro-RNA expression from controlled type 2 

diabetes mellitus [221]. 

Mean 
mixOmics; 

Normalyzer 

Applied in the research of differential expression of proteins in different tissues of diabetic and 

non�diabetic rats [205]. 

Median 
Normalyzer 

mixOmics 

Applied to normalize multiple spectra intensities in proteomic analysis of gestational diabetes 

[210]. 

MAD stats 
Applied to establish a platform which can identify natural compounds regulating Pdx1 and insu-

lin expression [213]. 

PQN 
KODAMA 

MALDIquant 
Applied in a metabolomics study in gestational diabetes [215]. 

RLR Normalyzer 
Applied in an early study of the relationship between visceral adipose tissues and early 

pathogenesis of type 2 diabetes applied the RLR [198]. 

TIC Normalyzer 
Applied to explore the functional and proteomic changes of plasma high density lipoproteins in 

diabetes [203]. 

TMM edgeR 
Applied to study the transcriptional reprogramming in human myocytes induced by type 2 diabe-

tes [224]. 

N
or

m
al

iz
at

io
n 

Z-score mosaic Applied to help calculate the significant changes in gene expression in different samples [226]. 

KNN 
imputation (knnImpu-

tation) 

Applied to find out desired protein in proteomic study on diabetes mellitus patients with 

perimenopausal syndrome [233]. 

LLS 
pcaMethods (llsIm-

pute) 
Applied in oral glucose tolerance experiment in patients with gestational diabetes [236]. 

Im
pu

ta
tio

n 

SVD 
pcaMethods (svdIm-

pute) 

Applied to study unsaturated plasma phospholipids level in the pregnancy patients diagnosed 

with gestational diabetes [235]. 
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[183]. Processing data on the basis the information of scan-
level with PAR could help predict the risk of developing 
diabetes [192]. The algorithm of PAR was programmed by 
integrating two basic functions sd and sqrt (standard devia-
tion and square root) in the R statistical programming and 
implemented under the R environment (version 3.5.1). Dif-
ferently, Range scaling (RAN) takes the biological range as 
the factor of scaling [193] which is maximal and minimal 
density attained by a typical protein in a series of tests [183]. 
Because there are 2 values used to assess the biological 
range, which makes RAN more susceptive to outliers [183]. 
It has been adopted to the study of omics data fusion inte-
grated with an optimal data preprocessing strategy [171]. 
The algorithm of RAN was programmed by integrating two 
basic functions max and min (maximum value and minimum 
value) in the R-statistical programming and implemented 
under the R environment (version 3.5.1). 

4.2.3. Methods for Normalizing the Diabetes Proteomic 
Data 

 Diabetes proteomics data retain innately biased because it 
might range from sample processing to differences issues of 
the instrumentation [194]. The normalization is treating 
process aiming to explain the bias as well as make these 
samples much more comparable while maintaining the bio-
logical variation [195]. Therefore, how to choose an optimal 
normalization method could be a vital issue to the down-
stream analysis reliability [195-197]. 

 Robust linear regression (RLR) can be quite robust to 
outliers in datasets when compared with linear regression 
using least square estimation and it scales one referred range 
to another. RLR performs quite well when estimating the 
logFC of the spike-in proteins [182]. A study of the early 
pathogenesis in DM applied the RLR [198]. The median 
values over all the samples as the reference sample (to which 
all the other samples were normalized to) were first calcu-
lated, and then RLR method was programed by integrating 
the basic rlm function in R-statistical programming and im-
plemented under the R environment, which was then pro-
grammed with default parameter settings. Different from 
other normalization methods, Total Ionic Current (TIC) 
could be used in proteomics dataset normalization on the 
basis of identifying same proteins to a specific sample and 
evaluating the sum of all the peak intensities of these pro-
teins [199]. TIC was reported as one of the simplest and 
most common methods normalizing diabetes proteomics data 
[200-202]. The premise of using this method is the assump-
tion that each protein is equally important among given sam-
ple. It has been used to explore the functional and proteomic 
changes of plasma high-density lipoproteins in diabetes 
[203]. The TIC method was programed by integrating the 
basic sum function (summation) in R-statistical programming 
and implemented under the R environment (version 3.5.1). 

 Various adjustments to the basic premise of TIC include 
mean normalization, median normalization, median absolute 
deviation, cyclic locally weighted regression and etc. [201]. 
The mean normalization (MEA) can normalize datasets us-
ing the mean of all proteins, which can remove the effect of 
background. This method regards the mean of intensity of all 
the variables in a specific specimen as each protein intensity 
in the same specimen [174]. The MEA has been widely ap-

plied in the research of the metabolomics related to cardio-
vascular disease in type 2 diabetes patients [204] and differ-
ential expression of proteins in different tissues of diabetic 
and non�diabetic rats [205]. The MEA method was imple-
mented with the Normalise function using the metabolomics-
package in R/Bioconductor, which was then programmed 
with the mean parameter settings under R environment. The 
median normalization (MED) is developed to make the me-
dian of samples in a dataset the same, based on the hypothe-
sis that a constant separates the samples [206-208]. It scales 
the log of intensity values according to the global median 
value so that they have the same median [209]. So far, the 
intensities of multiple spectra have been normalized apply-
ing MED in proteomic analysis of gestational diabetes [210]. 
MED method was implemented with the Normalise function 
using the metabolomics-package in R/Bioconductor, which 
was then programmed with the median parameter settings 
under R environment. 

 Median Absolute Deviation (MAD) is a simple way for 
variation quantification, which could be used to estimate the 
sample standard deviation while just scaled through the 
1.483 [211]. In contrast to standard deviation, MAD is more 
robust to outliers and expected to obtain fewer false nega-
tives [212]. Furthermore, the method can improve the proc-
ess of quality control of dataset on the basis of LC-MS. And 
MAD has helped to establish a platform which can identify 
natural compounds regulating Pdx1 and insulin expression 
[213]. MAD method was programed by integrating two basic 
functions median and mad (median value and median abso-
lute deviation) in the R-statistical programming and imple-
mented under the R environment (version 3.5.1). Probabilis-
tic quotient normalization (PQN) operates in a similar way to 
MED, and it can transform proteomics data on the basis of 
the systematic assessment of most like dilutions [214], and it 
has significant accuracy and robustness compared to those 
on basis of the length of vector. The disadvantage of PQN is 
that, it operates assuming class of interest (such as species, 
sex) does not exhibit significant differences [207]. A study 
of metabolomics in gestational diabetes applied PQN, sug-
gesting PQN is a reliable normalization technique as well 
[215]. The median values over all samples as the reference 
sample (to which all the other samples were normalized to) 
were first calculated, and then PQN method was imple-
mented with the median function in the R-statistical pro-
gramming and implemented under the R environment. 

 EigenMS (EIG) fits the variance model analysis to assess 
the treatment group effects, and next applies singular value 
decomposition to model residual matrix to remove the bias 
[216-218]. EIG has already been adopted to the study of the 
pathogenesis and pathophysiology of gestational diabetes 
mellitus [219]. The EIG method was implemented using its 
R-codes available for downloading from the Sourceforge-
repositories. Locally weighted scatterplot smoothing (LOW) 
can normalize two-color expression data, in which the log-
ratio for each sample can be adjusted by the lowess fitted 
value [220]. It’s based on the assumption that spot intensity 
determines the appearance of dye bias [220], and can be used 
in both complete and incomplete datasets [220]. It has been 
adopted to the study of the influence on platelet micro-RNA 
expression from controlled type 2 diabetes mellitus [221], as 
well as amino acid and acyl-carnitine metabolism in infants 



Advances in Current Diabetes Proteomics Current Drug Targets, 2020, Vol. 21, No. 1    43 

from dietary protein intake [222]. The LOW method was 
programed by the preprocess function using the software 
package of LPE in the R environment, which was then pro-
grammed with the LOWESS parameter settings under R envi-
ronment. 

 Moreover, the trimmed mean of M-values (TMM) can 
also be very popular for its simplicity and high efficiency in 
processing RNA-sequence data [223]. This normalization 
can be applied to evaluate scaling factors in data, and has 
been used to study the transcriptional reprogramming in hu-
man myocytes induced by type 2 diabetes [224]. TMM 
method was implemented with the tmm function using the 
NOISeq-package in R/Bioconductor, and was then pro-
grammed with the default parameter settings under R envi-
ronment. Z-score (ZSC) can normalize data acquired from a 
large scale of experiments on basis of the standard deviation 
and mean values then can be used in comparison of the mi-
croarray data [225]. Z-score has helped to calculate the sig-
nificant changes in gene expression in different samples 
[226-228]. The formula of Z-score was the same as that of 
the Auto Scaling (ATO), and its algorithm was usually pro-
gramed by integrating basic sd function (standard deviation) 
using the mosaic-package in the R-statistical programming 
and implemented under the R environment (version 3.5.1). 

4.3. Methods for Imputing the Missing Values in Diabetes 

Proteomic Data 

 Diabetes proteomic dataset usually distributed sparsely 
[229], that implies a specific matrix of data contains lots of 
missing values among situations [122]. For instance, the de-
tection instrument limitation is compared higher than the 
proteins concentration [216], different biological factors or 
analytical/technical lapse, the incorrect protein or peptide 
identification [230]. Therefore, the imputation approaches 
are usually existing for addressing these problems [216]. To 
the best of our knowledge, several imputation strategies ap-
plied to process the missing values are described as follows. 

 As an imputation method, K-nearest Neighbor Imputa-
tion (KNN) could identify K proteins similar to the protein 
that has values missed [231, 232]. And it has the ability to 
find out the most similar protein to the desired protein in 
proteomic study on diabetes mellitus patients with peri-
menopausal syndrome [233]. The KNN method was imple-
mented with the impute.knn function using the impute-
package in R/Bioconductor, and then programmed with the 
parameter settings of k value equaling to 10 under R envi-
ronment. Singular Value Decomposition (SVD) is on ac-
count of linear relation through all kinds of proteins of a 
typical sample [234]. When compared with KNN that uses 
the local pairwise information, SVD predicts missing value 
primarily by message from global matrix [234, 235]. The 
SVD method was implemented with the pca function using 
the pcaMethods-package in R/Bioconductor, and then pro-
grammed with the parameter settings of svdImpute method 
under R environment. What is more, Local Least Squares 
Imputation (LLS) can exploited dataset through local similar 
structures [231]. This method has been utilized in oral glu-
cose tolerance experiment in patients with gestational diabe-
tes [236]. LLS method was implemented with the llsImpute 
function using the pcaMethods-package in R/Bioconductor, 
and then programmed with the k value equaling to 10 to-

gether with the default parameter settings under R environ-
ment. 

5. DIABETES MARKER IDENTIFICATION USING 

PROTEOMIC DATA 

 In the study of identifying diabetes biomarker, the marker 
selection (also called feature selection) strategies are much-
needed and quite popular [237]. Since several kinds of tech-
niques were accessible for finding biomarker or disease re-
lated proteins imported through therapies for diabetes, it’s 
quite a challenge using appropriate methods for doing any 
diabetes marker-related researches [238, 239]. All these fea-
ture selection strategies which commonly applied in the stud-
ies of DM divided into three categories, there are embedded 
methods, multivariate filter methods and univariate filter 
methods [240, 241]. All frequently-used marker selection 
methods are described as follows and shown in Table 3. 

 Some filter methods could reflex the quality of every 
feature according to its discriminative ability in which fea-
ture can be reserved when the value of the metric were in a 
typical standard [242]. The function of t-test is to estimate if 
the mean values of the two sets that distribute normally have 
statistical difference [243, 244]. It was widely applied in the 
omics study [245] and has helped to exploit a new assay for 
rapid and multidimensional monitoring of diabetes [246] and 
also been adopted to study different content of proteins in 
arteries membrane between metformin users and patients 
with type 2 diabetes [151]. Analysis of Variance (ANOVA) 
[247] pays attention to analyze the dissimilitude in several 
groups variance or average value in a typical protein [248, 
249]. ANOVA has been used to analyze a biomarker set of 
urinary, which could assess diabetic patients’ early kidney 
risk [250], and explore the association of potential salivary 
biomarkers with diabetic retinopathy in type 2 diabetes 
[251]. Moreover, Chi-square (χ2

) may become a popular 
strategy in weighting divergence distribution if the class 
value has nothing to do with hypothetical features [252]. χ2

 
has been applied to study the relationship between the sever-
ity of cardiovascular disease and proinflammatory as well as 
antioxidant proteins in type 2 diabetes [253], and the associa-
tion between KCNQ1 mutations and hypertension in type 2 
diabetes mellitus [254]. 

 Mann-Whitney-Wilcoxon test (MWW) is a non-
parametric alternative test with null hypothesis [255, 256]. 
MWW is normally applied while the assumption of the data 
or t-test is not met [257], so it has been used to explore indi-
vidual glycation sites in blood plasma proteins, which are 
prospective biomarkers of type 2 diabetes mellitus [258]. By 
comparing the absolute value alteration among mean values 
of two groups, Fold Change (FC) calculated the ratio or log 
of the ratio levels between groups. Except for its application 
in genomics [259, 260], in plasma of type 1 diabetes pa-
tients, FC value has been applied in finding proteomic 
changes of high density lipoproteins [203], and monitoring 
the individual development of diabetic nephropathy patients 
with type 2 diabetes [261]. Linear Models for Microarray 
Data (LIMMA) pays attention to different protein expression 
analysis of raw-file produced by microarray [262]. LIMMA 
has been applied to explore significant genes associated with 
diabetic nephropathy [263]. 
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Table 3. Twelve popular marker selection algorithms in diabetes proteomic researches. 

Algorithm 
Package 

(Function) 
Applied in Diabetes Proteomic Study 

t-test 
stats 

(t.test) 
Applied to exploit a new assay for rapid and multidimensional monitoring of diabetes [246]. 

ANOVA 
ANOVA.TFNs 

(fanova) 

Applied to explore the association of potential salivary biomarkers with diabetic retinopathy in 

type-2 diabetes [251]. 

Chi-square 
stats 

(chisq.test) 

Applied to study the relationship between the severity of cardiovascular disease and proin-

flammatory as well as antioxidant proteins in type-2 diabetes [253] 

MWW 
stats 

(wilcox.test) 

Applied to explore individual glycation sites in blood plasma proteins, which are prospective 

biomarkers of type-2 diabetes mellitus [258]. 

Fold Change 
metabolomics 

(FoldChange) 

Applied to monitor the individual development of diabetic nephropathy patients with type-2 

diabetes [261]. 

U
ni

va
ri

at
e 

Fi
lte

r 

LIMMA 
limma 

(lmFit) 
Applied to explore significant genes associated with diabetic nephropathy [263]. 

PLS-DA 
caret 

(plsda) 

Applied for identify early urinary biomarkers of diabetic nephropathy identification in type 1 

diabetes patient [266]. 

OPLS-DA 
ropls 

(opls) 

Applied to investigate the proteomic alterations of human milk in women with gestational 

diabetes mellitus [268]. 

M
ul

tiv
ar

ia
te

 F
ilt

er
 

SPLS-DA 
mixOmics 

(splsda) 
Applied to explore host-microbiota interactions in patients with type-1 diabetes [271]. 

Decision Tree 
dtree 

(pca) 
Applied to improve the diagnostic accuracy for type 2 diabetes mellitus [225]. 

Random Forest 
randomForest 

(randomFores) 
Applied in the study of the associations between maternal BMI and insulin resistance [277]. 

Em
be

dd
ed

 

SVM 
e1071 

(svm) 

Applied to improve type 2 diabetes mellitusd diagnostic accuracy with the help of glycation 

sites in plasma proteins [225]. 

 

 As for PLS-DA [264], the strategy belongs to linear two-

class classifier [265]. Since the sample sizes are unequal, the 

PLS-DA would not produce a decision boundary with great 

accuracy [264]. In type 1 diabetes patient, it was also useful 

for early urinary biomarkers of diabetic nephropathy identi-

fication [266]. Orthogonal PLS-DA (OPLS-DA) method is a 

vigorous strategy for analyzing qualitative data structures, 

and the results predicted by it are similar to the results of 

standard PLS-DA [267]. The OPLS-DA has been applied to 

investigate the proteomic alterations of human milk in 

women with gestational diabetes mellitus [268]. What’s 

more, similar to PLS-DA, the Sparse PLS-DA (SPLS-DA) 

may be inclined to ignore variables that only distinguish be-

tween small samples [269]. Variable selection and modeling 

in SPLS-DA strategy can be allowed in one step, and the 

interpretability is modified by valuable graphical output 

[270] therefore helps in exploring host-microbiota interac-

tions in patients with type 1 diabetes [271]. 

 Moreover, both the feature selection part and the learn-

ing part are of significance and could not be separated in 

embedded methods [272]. Take Decision Trees (DT) for 

example, it studies a battery of training examples, picks out 

a property and splits typical examples according to the val-

ues of that attribute by an iterative process [273]. This 

method has helped characterize drug targets [274] and has 

been applied in type 2 diabetes mellitus to improve diag-

nostic accuracy [225]. Through the idea of integrated learn-

ing, Random Forest (RF) integrates multiple trees [275]. 

This strategy helps clinical phenotypic discrimination and 

biomarker selection [276] as well as the associations be-

tween maternal BMI and insulin resistance study [277]. In 

addition, the Support Vector Machine (SVM) was reported 

to be a powerful classification tool, whose basic principle 

was to discover a multidimensional hyperplane by project-

ing the studied samples into the high dimensional space 

during the model construction [278]. It performs well in 

handling high-dimensional datasets with the help of a few 

training examples [279] although it has the limitation of 

relying on negative data sets [280]. SVM has been applied 

to the improvement of DM diagnostic accuracy with the 

help of glycated lysine-141 in haptoglobin combined with 

glycated hemoglobin HbA1c [225]. 
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CONCLUSION 

 Most current therapies for diabetes were developed in the 
absence of defined therapeutic targets or an understanding of 
molecular mechanisms of the disease. Proteomics helps to 
enhance our understanding of the pathogenesis of DM. Fur-
thermore, as the computation methods of LFQ and diabetic 
marker selection are increasingly growing more specific and 
sensitive, the application of these advances is an important 
opportunity to enhance our knowledge of diabetes and iden-
tify new therapeutic targets for the discovery of antidiabetic 
drug. Different data analysis results differ in the choice of 
manipulation methods and the proper selection of methods is 
crucial to minimize the biological deviation of the omics 
datasets [141, 182, 195, 281]. For instance, as reported by 
the studies, LOG transforms data into a normal distribution, 
and the application of some parametric statistical tests (in-
cluding MWW test and t-test) should be based on the as-
sumption of such normal distribution [141]. All in all, these 
computational advances discussed above provided guidelines 
for researchers who will engage in proteomics biomarker 
discovery and by properly applying these proteomic ad-
vances, more stable therapeutic protein targets might be dis-
covered in the research of DM. 

LIST OF ABBREVIATIONS 

ANOVA = Analysis of Variance 

APMAP = Adipocyte Plasma Membrane-Associated 

Protein 

ATO = Auto Scaling 

BOX = Box-Cox 

CADD = Computer Aided Drug Design 

CUB = Cube Root 

DDA = Data-dependent Acquisition 

DIA = Data-independent Acquisition 

DM = Diabetes Mellitus 

DT = Decision Trees 

EIG = EigenMS 

FC = Fold Change 

KNN = K-nearest Neighbor Imputation 

LFQ = Label-free Quantification 

LIMMA = Linear Models for Microarray Data 

LLS = Local Least Squares Imputation 

LOG = Log Transformation 

LOW = Locally Weighted Scatterplot Smoothing 

MAD = Median Absolute Deviation 

MDC = Median Centering 

MEA = Mean Normalization 

MEC = Mean Centering 

MED = Median Normalization 

MWW = Mann-Whitney-Wilcoxon test 

OPLS-DA = Orthogonal Partial Least Square Discrimi-

nant Analysis 

PAR = Pareto Scaling 

PLS-DA = Partial Least Square Discriminant Analysis 

POW = Power Transformation 

PQN = Probabilistic Quotient Normalization 

PTM = Post-translational Modification 

QMs = Quantification Measurements 

QSTs = Quantification Software Tools 

RAN = Range Scaling 

RF = Random Forest 

RLR = Robust Linear Regression 

SPLS-DA = Sparse Partial Least Square Discriminant 

Analysis 

SVD = Singular Value Decomposition 

SVM = Support Vector Machine 

SWATH = Sequential Window Acquisition of All 

Theoretical Mass Spectra 

TIC = Total Ionic Current 

TMM = Trimmed Mean of M-values 

VAS = Vast Scaling 

ZSC = Z-score 

χ2
 = Chi-square 
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