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Abstract

Protein kinases have been regarded as important therapeutic targets for many diseases. Currently, a total of 41 kinase
inhibitors have been approved by the Food and Drug Administration, along with a large number of kinase inhibitors being
evaluated in clinical and preclinical trials. Among all, allosteric inhibitors, such as type II kinase inhibitors, have attracted
extensive attention owing to their potential high selectivity. Nowadays, molecular docking has become a powerful tool to
search for novel kinase inhibitors. However, as for type II kinase inhibitors, their allosteric characteristics may exert a deep
influence on docking accuracy. In this study, a comprehensive assessment was conducted to evaluate the effectiveness of
nine docking algorithms towards type II kinase inhibitors. The calculation results showed that most tested docking
programs, especially Glide with XP scoring, LeDock and Surflex-Dock, succeeded in the accurate identification of near-native
binding poses, with the success rates ranging from 0.80 to 0.90, and the scoring functions in GOLD and LeDock
outperformed the others in the prediction of relative binding affinities. In terms of the P-values, areas under the curve and
enrichment factors, Glide with XP scoring, Surflex-Dock, GOLD with Astex Statistical Potential scoring and LeDock had
better screening power to discriminate between active compounds and decoys. However, the screening power is sensitive to
different initial conformations of the same target. It is expected that our study can provide some guidance for
docking-based virtual screening to discover novel type II kinase inhibitors, as well as other allosteric inhibitors.
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Introduction

Protein kinases belong to the family of phosphate transferases
that can alter the conformation or activity of a protein or enzyme
by catalyzing the transfer of the γ-phosphate of adenosine
triphosphate (ATP) to the hydroxyl groups of serine, threonine

or tyrosine residues of their substrates [1]. Currently, more than
500 protein kinases have been encoded in the human genome,
which can be roughly divided into conventional and atypical
protein kinases [2]. According to their sequence similarity in the
catalytic domains, the conventional protein kinases consist of
eight main groups, including TK, TKL, STE, CMGC, CK1, CAMK,
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Figure 1. Representative binding structures for (A) type I, (B) type II, (C) type III

and (D) type IV inhibitors. The ligands and DFG (DLG)motifs are colored in brown

and orange, respectively. The binding sites are showed as surfaces.

AGC and others [3]. The protein kinase family has been proven
to be involved in a series of essential cellular signaling pathways
and modulate almost all basic cellular functions [4, 5]. Besides,
plenty of evidence shows that overexpression or dysregulation
of some kinases is related to a variety of diseases, such as cancer
[6–8], inflammation [9–11], neurodegenerative disorders [12, 13],
etc. Thus, protein kinases have emerged as one of the most
important classes of drug targets [14]. Up to now, a total of 41
drugs targeting kinases have been approved and a large number
of kinase inhibitors are currently in clinical and preclinical trials
[15, 16].

Since the first crystal structure of protein kinase domain was
solved in 1991 [17], extensive process has been achieved in the
field of kinase structural biology [18]. Until now, more than 4000
kinase crystal structures have been deposited in the Protein
Data Bank (PDB) [19], thus greatly accelerating the design and
discovery of novel kinase inhibitors. According to the binding
modes of ligands and the conformations of essential residues
in the binding pockets, the reversible kinase inhibitors can
be roughly categorized into four types: type I, II, III and IV
(Figure 1) [20]. Type I inhibitors are ATP-competitive inhibitors,
also known as ATP mimetic inhibitors, which just bind to
the ATP-binding pocket in the active DFG(Asp-Phe-Gly)-in
conformation.Type II inhibitors not only bind to theATP-binding
pocket but also occupy an adjacent hydrophobic pocket in the
inactive DFG-out conformation [21]. Type I1/2 inhibitors are a
combination of type I and type II inhibitors, which bind to
the DFG-in conformation but extend into a back pocket [22].
Type III inhibitors belong to allosteric inhibitors, which are
not ATP competitive and only bind to the allosteric pocket
adjacent to the ATP-binding pocket [23]. Type IV inhibitors
bind to an allosteric site remote from the ATP-binding pocket
such as the myristate pocket [24, 25]. Type I inhibitors,
which represent most of the available kinase inhibitors, are
often thought to lack selectivity because the targeted ATP-

binding pockets are highly conserved across the entire human
kinome. Hence, design and discovery of inhibitors targeting the
inactive DFG-out state or other allosteric sites, which may have
a better chance to achieve improved kinase selectivity, are urgent
[26–28].

With the rapid advances on computational chemistry and
computer technology, docking-based virtual screening (VS)
has become one of the most commonly used approaches in
structure-based drug design [29, 30]. In the past four decades,
a large number of protein–ligand docking programs, such as
AutoDock [31], AutoDock Vina [32], LeDock [33], Glide [34] and
GOLD [35], have been developed and continually updated.
However, because different sampling algorithms and scoring
functions are employed by different docking programs and
various parameters need to be tuned in most programs, it is
hard to judgewhich one is the best choice for a specific protein or
protein family. Therefore, based on different datasets, a number
of studies have been reported to assess the performance of
docking algorithms and scoring functions under some specific
circumstances by examining the sampling power to recognize
near-native ligand binding poses, scoring power to rank binding
affinities and screening power to discriminate active compounds
from decoys [36–42]. In order to guarantee the reliability of an
assessment study, an extensive dataset with a large number
of targets and ligands was necessary [43]. Nevertheless, the
results of an assessment study could only represent the overall
docking performance on the specific dataset. In other words,
if we attempt to conduct a docking-based VS for a specific
protein or protein family, it may be necessary to evaluate the
applicability of the used docking algorithms to the studied
targets [44].

Compared with conventional ligand binding pockets, such
as the ATP-binding sites of protein kinases, allosteric pockets
appear to be more flexible because the binding of a ligand can
induce the conformational change of surrounding residues
[45]. As a result, whether a docking program works well for
allosteric inhibitors, such as type II kinase inhibitors, remains
to be elucidated. In this study, a number of popular docking
programs, including Autodock [31], Autodock Vina [32], DOCK
[46], Glide [34], GOLD [35], LeDock [33], rDock [47], MOE Dock
[48] and Surflex-Dock [49], were assessed towards type II kinase
inhibitors in terms of sampling power, scoring power and
screening power. Through this study, we attempt to solve the
following puzzles: (1) Compared with type I inhibitors, type
II kinase inhibitors occupy an additional allosteric pocket, so
does a small increase of molecular weight or the number of
rotatable bonds of ligands affect the docking accuracy of a
certain program? (2) Allosteric sites are more flexible than
the ATP-binding pockets so that the binding modes of type
II inhibitors with different scaffolds may vary a lot, and then
are the commonly used semi-flexible docking algorithms (rigid
protein and flexible ligand) adaptable for the VS of allosteric
inhibitors. (3) In some widely accepted benchmarks such as
DUD/DUD-E [50, 51], type I and type II kinase inhibitors are
mixed and broadly classified as the same type. However, docking
a type I inhibitor into a DFG-out conformation or in turn docking
a type II inhibitor into a DFG-in conformation may not yield
reasonable prediction. Furthermore, in a so-called benchmark
study, for each target, a single representative crystal structure
was usually used, but there is no doubt that the docking
results based on different protein conformations for the same
target might be different to a certain degree. Therefore, in this
regard, can these so-called benchmarks be considered as golden
standards for docking assessment?
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Figure 2. (A) Distribution of the kinases with the DFG-out conformations found in the KLIFS database by mapping onto the human kinome phylogenetic tree. Image is

generated by KinomeRender [72]. (B) Workflow of the collection and preparation processes for dataset I. (C) Workflow of the construction process for dataset II.

Materials and methods
Data set collection and structure preparation

The Kinase–Ligand Interaction Fingerprints and Structures
(KLIFS) database is a resource of the protein structures of
catalytic kinase domains and the binding modes of kinase
ligands, and it offers a consolidated kinase repository for
systematic mining of kinase–ligand interaction information
[52, 53]. Taking DFG-out as the keyword, 324 PDB structures were
extracted from KLIFS, and the kinases confirmed to own the
inactive conformations were distributed in almost all groups
of the whole kinome (Figure 2A). Then, the PDBbind database
(version 2017) [54] was searched and 222 structures were found
in both KLIFS and PDBbind. Nevertheless, the category in KLIFS
or the binding data obtained from PDBbind might be not
correct, and each structure was checked manually. Finally, the
incongruous structures with covalent ligand binding, multiple
binding models for the same ligand or ligand binding in just the
ATP-binding pocket or other allosteric pockets were eliminated,

and the final dataset (referred to as dataset I) contains 201
protein–ligand complex structures (the composition of dataset
I is shown as Figure 3). The distributions of the experimental
binding affinities and five important physicochemical properties
calculated by Discovery Studio 3.1 [55], including molecule
weight (MW), octanol–water partitioning coefficient (AlogP),
molecule solubility (logS), number of rotatable bonds (nrot)
and polar surface area (PSA) of the 201 type II inhibitors, are
illustrated in Figure 4. Obviously, the average MW and nrot of
dataset I are significantly larger than those of the ordinary kinase
dataset tested by Cross et al. [38].

The coordinates of these 201 structures were downloaded
from the PDBbind database [54]. For each complex, a protein
structure file with the PDB format and two ligand structure files
with the SD format and Mol2 format were generated. The miss-
ing loops inmany proteins were added by theModule/Refine Loops
module in Chimera [56]. Then, all the structures were processed
by the Protein PreparationWizard [57] module in Schrödinger 2017,
including removing waters and redundant chains, assigning
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Figure 3. Distribution of the protein kinase targets in dataset I grouped by kinase sub-families.

Figure 4. Distributions of (A) pIC50, (B) molecular weight, (C) AlogP, (D) logS, (E) number of rotatable bonds and (F) PSA of the 201 ligands in dataset I.

bond orders, adding hydrogens, filling in missing side chains,
optimizing H-bond network and minimizing the system with
the OPLS2005 force field until the root-mean-square deviation
(RMSD) of heavy atoms converged to 0.30 Å. The protonation
states of residues at pH = 7.0 were determined by PROPKA [58].
If the assessed docking program has its own protein preparation
function, its own function would be used. Besides, when we
conductedmolecule docking calculations, the initial coordinates
of the ligands sketched by ourselves or extracted from a com-
pound library are always random. Thus, to mimic the real sce-
nario, all the ligands in the dataset were successively rotated
around the z axis by 180◦ and minimized with the OPLS2005
force field by using an in-house script based on the Python API
available in Schrödinger 2017.

To test the screening power of a docking algorithm to dis-
tinguish known type II inhibitors from decoys, an additional

validation dataset, named dataset II, was constructed (Figure 2).
Because some targets in dataset I have very few actives, three
representative targets (ABL1, BRAF and p38α) with more than
100 type II inhibitors from three different groups (TK, TKL and
CMGC) were chosen for assessment. As far as we know, different
initial protein conformations may have great effect on docking
[22, 59–62], so for each target, three different crystal structures
(PDB entries: 2HYY, 2HZ0 and 3QRI for ABL1, 3IDP, 3II5 and 4KSP
for BRAF, and 1WBT, 2YIW and 3K3I for p38α) were selected
based on the diversity of the co-crystalized ligands represented
by the Tanimoto coefficient calculated using the FCFP 4 finger-
print by the Find Diverse Molecule module in Discovery Studio 3.1
[55]. It was found that the classes of the known kinase inhibitors
in the existing databases are not clearly categorized, and thenwe
collected the known type II inhibitors for each target by search-
ing literature manually. As a consequence, 105, 370 and 320 type
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Table 1. Basic information of the nine assessed docking programs

Program Sampling algorithm Scoring function Website

AutoDock LGA Force field-based scoring function http://autodock.scripps.edu/
Autodock Vina Iterated local search global optimizer Empirical scoring function http://vina.scripps.edu/
DOCK Anchor-and-Grow Algorithm Grid-based Score, Continuous Score, Zou

GB/SA Score, Hawkins GB/SA Score and so on
http://dock.compbio.ucsf.edu/

Glide Extensive conformational search or
anchor and refined growth strategy

GlideScore or GlideScore XP empirical scoring
function

http://www.schrodinger.com/

GOLD GA GoldScore, ChemScore, ASP and Piecewise
Linear Potential (CHEMPLP)

http://www.ccdc.cam.ac.uk/

LeDock A combination of evolution algorithm
and simulated annealing search

Empirical scoring function http://lephar.com/

rDock A combination of GA, low temperature
MC and Simplex minimization (MIN)

Empirical scoring function http://rdock.sourceforge.net/

MOE Dock Alpha Triangle, Alpha PMI, Proxy
Triangle, Triangle Matcher and so on

ASP Score, Affinity dG Score, Alpha HB Score,
London dG Score and GBVI/WSA dG Score

http://www.chemcomp.com/

Surflex-Dock Fragmentation Empirical Hammerhead scoring function http://www.tripos.com/

II inhibitors were collected for ABL1, BRAF and p38α, respec-
tively, and 50, 100 and 100 most diverse actives were extracted
by the Find Diverse Molecule module for ABL1, BRAF and p38α,
respectively. The corresponding decoys were generated with a
ratio of 1:50 by DUD-E [51]. Finally, all the molecules in dataset II
were processed by the LigPrep [63] module in Schrödinger. The
ionized states and tautomers/stereoisomers at pH = 7.0 were
generated by using Epik [64, 65]. The maximum number of the
stereoisomers for each molecule was set to 4, and the other
parameters for Ligprep were set to the default settings.

Docking programs

Nine docking programs were assessed towards type II kinase
inhibitors, including AutoDock (version 4.2.6) [31], Autodock Vina
(version 1.1.2) [32], DOCK (version 6.8) [46], Glide (version 7.7)
[34], GOLD (version 5.3.0) [35], LeDock (version 1.0) [33], rDock
(version 2013.1) [47], MOE Dock (version 2016.8) [48] and Surflex-
Dock (version 4221) [49]. The basic information of these programs
is summarized in Table 1. In docking calculation, the binding site
was defined by the co-crystalized ligand. Themaximum number
of the docking poses for each ligand and the RMSD cutoff for
clustering were set to 20 and 0.5 Å, respectively. All the other
parameters were set with no tuning of the optional parameters,
unless otherwise noted as followed.

AutoDock

Proteins and ligands were firstly preprocessed by AutoDock-
Tools 1.5.6, including format conversion, addition of hydrogens,
assignment of Gasteiger charges and cleanup of unwanted ele-
ments. The grid points and grid point spacing were set to 60 and
0.375 Å, respectively. The Lamarckian genetic algorithm (LGA)
was employed to search the binding conformation of flexible lig-
and. The generations in the LGA calculation and the iterations of
Solis &Wets local search were set to 27 000 and 300, respectively.
The final poses were scored with the default scoring function.

AutoDock Vina

The preprocessing protocols for proteins and ligands were the
same as those used in AutoDock. The size of the search space
was set to 30 Å × 30 Å × 30 Å, and the maximum energy
difference between the best and the worst binding modes was
set to 10 kcal/mol.

DOCK

Given the poor computational efficiency of most scoring func-
tions implemented in DOCK, only the traditional grid-based
scoring function was used in this study. Firstly, the AM1-BCC
and ff99SB partial charges were assigned to ligands and proteins
by Chimera [56], respectively, and then the solvent accessible
surface of each protein was generated by the DMS program
with a probe radius of 1.4 Å. The negative image of the surface
was created by sphen cpp, and the spheres within 10.0 Å of the
given ligand were chosen by sphere selector to represent the
binding pocket on the protein.Next, a boxwith 8.0 Å length and a
grid with 0.3 Å grid spacing were generated by showbox and grid.

Glide

Three different scoring modes, including high throughput VS
(HTVS), standard precision (SP) and extra precision (XP), are
supported in Glide based on the so-called docking precision. Due
to relatively low accuracy of HTVS, SP and XP were used in our
study. By using the Receptor Grid Generation utility of Glide, the
binding box with the size of 10 Å × 10 Å × 10 Å centered on the
co-crystallized ligand was generated for each protein structure.
Then, based on this grid, Glide docking calculations with the SP
and XP scoring were carried out.

GOLD

Proteins were prepared by the built-in protein preparation
module including adding hydrogens and deleting unnecessary
waters. Then, the binding site was defined as the residueswithin
10 Å around the co-crystalized ligand. The genetic algorithm
(GA) search efficiencywas set to ‘automatic’, and the four scoring
functions implemented in GOLDwere used for scoring, including
Piecewise Linear Potential (CHEMPLP), GoldScore, ChemScore
and Astex Statistical Potential (ASP).

LeDock

The conformations of each ligand were sampled by a combi-
nation of simulated annealing and evolutionary optimization
algorithm. After the given protein was processed by the lepro
utility, docking calculation was performed with the default
parameters.

rDock

A combination of stochastic and deterministic search tech-
niques was used to generate low-energy ligand binding poses
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in rDock. In detail, the standard docking protocol contains three
stages of GA search (GA1, GA2 and GA3), a low temperature
Monte Carlo (MC) stage and a Simplex minimization stage. All
the parameters for binding site determination, pose sampling
and scoring were set to default.

MOE Dock

Four sampling algorithms (Alpha Triangle, Alpha PMI, Proxy
Triangle and Triangle Matcher) and five scoring functions (ASE
Score, Affinity dG Score, Alpha HB Score, London dG Score and
GBVI/WSA dG Score) are supported in MOE Dock. Here, all the
above 20 pairs of sampling algorithms and scoring functions
were evaluated and the best one was presented in the final
results. The proteins were preprocessed by the built-in QuickPrep
module, and the parameters of the sampling algorithms and
scoring functions were set to default.

Surflex-Dock

In docking calculations, the ligand fragments were generated
and superimposed to the binding site, defined by a protomol
derived from the protein–ligand complex, and then scored by
a modified empirical scoring function based on Hammerhead.
Protomol was determined by the ‘proto’ mode, and docking was
carried out with the ‘-pgeom’ mode.

Evaluation metrics

The performance of each docking program was assessed by the
sampling power to recognize near-native ligand binding poses,
scoring power to rank binding affinities and screening power to
discriminate active compounds from decoys.

Sampling power

Sampling power represents the capacity of a docking program
(sampling algorithm and scoring function) to recognize the cor-
rect ligand binding poses. In our study, the native ligands were
extracted from the crystal complexes and then redocked into
the corresponding proteins. The heavy-atom RMSD between the
experimentally observed native pose and each docking pose was
calculated by the obrms utility in OpenBabel [66]. If the RMSD is
less than 2.0 Å, the docking pose was considered as near-native.
Based on the RMSDs of all molecules in dataset I, an overall
success rate for each docking program was obtained.

Scoring power

Scoring power represents the ability of a docking program (or
a scoring function) to rank the binding affinities. In this study,
Pearson’s correlation coefficient (r) was used to evaluate the
linear correlation between the scores predicted by each docking
program and experimental binding data, and Spearman’s rank-
ing coefficient (ρ) was used to evaluate the Pearson correlation
between the rank values of the two variables. Besides, to assess
the performance of a given scoring function alone, each ligand in
the crystal structure was just refined and scored, thus excluding
the influence of conformational sampling.

Screening power

Screening power refers to the ability of a docking program to dis-
tinguish actives from decoys in a docking-based VS. Here, three
criteriawere used in the screening power assessment. Firstly, the
discrimination capability was evaluated by the P-value of the
difference between the means of the two distributions of the
docking scores for the known inhibitors and decoys in dataset
II given by the student’s t-test with a 95% confidence interval.

In addition, the area under the curve (AUC) of receiver operating
characteristic (ROC) curve was also used to measure the overall
performance of docking enrichment, and it has a value ranging
from 0 for a complete failure to 1 for a perfect enrichment.
Moreover, in a practical VS campaign, what we are interested in
is how many hits can be identified in the top-ranked molecules.
Therefore, in this study,we also paid attention to the enrichment
factor (EFx%) at a predefined fraction of the dataset (x%), which is
defined by Equation 1

EFx% =
Nactives−seen

Nx%

Nactives

Nactives + Ndecoys

(1)

where Nactives and Ndecoys are the numbers of actives and decoys,
respectively; Nactive-seen and Nx% represent the numbers of the true
actives and molecules within the top x% of the score-order list,
respectively.

Results and discussion

Assessment of sampling power on dataset I

The sampling power of the tested docking programs (or scoring
functions) was evaluated first. The cumulative occurrence
frequency of the docking poses under a given RMSD threshold
is illustrated in Figure 5. In terms of the success rates for the
best-scored poses, most docking programs could achieve good
performance. If the best-RMSD poses were used, the success
rates of some docking programs could even be close to 1.0,
suggesting that most tested programs can take a successful
sampling towards type II kinase inhibitors. As reported in the
previous studies, MW or nrot of ligands might have a great
impact on docking. [44, 67] However, comparedwith our previous
assessment [36] on an ordinary benchmark dataset or another
study reported by Cross et al. [38], the sampling power of the
docking algorithms tested in this study towards type II kinase
inhibitors is even better, implying that, compared with type I
kinase inhibitors, the effect of a small increase of MW or nrot of
type II inhibitors on docking is not too significant. Based on the
success rates for the best-scored poses, the performance of the
tested programs follows the following order: GOLD CHEMPLP
(0.905) > LeDock (0.900) > Glide XP (0.891) > AutoDock
(0.876) > GOLD ChemScore (0.866) > GOLD GoldScore (0.861) ≈
Surflex-Dock (0.861) > DOCK (0.856) > GOLD ASP (0.841) > Auto-
Dock Vina (0.836) > Glide SP (0.831) > rDock (0.582) > MOE
Dock (0.428). To give a more realistic evaluation of the tested
docking programs, theminimized ligandswere redocked into the
corresponding proteins, and the success rates were calculated.
As shown in Figure 5, for the minimized ligands, the success
rates of most docking programs (especially DOCK) decreased,
suggesting that the docking results may be sensitive to the
initial geometries of the input ligands, and therefore the
preparation and minimizations of ligands for docking need
to be handled carefully [68]. Based on the minimized ligands,
the performance of the tested programs has the following
rank: Glide XP (0.891) > LeDock (0.866) > GOLD CHEMPLP
(0.846) > GOLD ASP (0.836) > Glide SP (0.831) > Surflex-Dock
(0.826)>AutoDock (0.816)>GOLD GoldScore (0.811)>AutoDock
Vina (0.806) > GOLD ChemScore (0.791) > DOCK (0.682) > rDock
(0.592) > MOE Dock (0.353). In many cases, combination
of molecule docking with a rapid scoring scheme and a
more rigorous method, such as Molecular Mechanics/Poisson-
Boltzmann Surface Area and Molecular Mechanics/Generalized
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Figure 5. RMSD cumulative distribution of the results predicted by different docking programs (or scoring functions). (A–D) The best-scored poses were selected as the

best poses and (E–H) the best-matched poses (lowest RMSD) were selected as the best poses. (A), (B), (E) and (F) depict the docking results based on the native ligands,

and (C), (D), (G) and (H) depict the docking results based on the minimized ligands. Dashed lines indicate a 2.0 Å RMSD cutoff, and small images highlight the RMSD

range of 0–2.0 Å.

Born Surface Area [69, 70], was used to improve the accuracy of
docking. In these situations, multiple poses of a single molecule
were generated by molecular docking, and then the docking
results were rescored by a more rigorous method. Here, the
success rates of the tested docking programs for the top 1, top 2,
top 3 and top 20 best-scored poseswere calculated.As illustrated
in Figure 6, when more poses were used, the success rates could
be improved, especially for Glide SP (0.831, 0.886 and 0.896 for
the top one, top two and top three poses, respectively), AutoDock
Vina (0.836, 0.896 and 0.920) and Surflex-Dock (0.861, 0.905
and 0.935).

In summary, except for several programs such as rDock,

MOE Dock and DOCK, most tested docking programs illustrate
satisfactory sampling power towards type II kinase inhibitors.
If we want to identify the correct binding poses for type II
inhibitors, Glide XP, LeDock or GOLD CHEMPLP may be a good
choice. Besides, it should be noted that LeDock, a recently devel-
oped free docking tool, performed excellently on predicting cor-
rection binding poses for dataset I and a larger dataset in our
previous study [36]. Just as explained in our previous study, a
combination of evolutionary algorithm and simulated annealing
search adopted in LeDock may mainly account for its surprising
sampling power. As far as we know, evolutionary algorithm,
especially its basic branch, GA, is an efficient global optimization
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Figure 6. Success rates of different docking programs (or score functions). The top one (blue), top two (orange) and top three (green) best-scored poses and best-RMSD

poses (top 20 best-scored poses) (red) were compared with the native poses. If the RMSD between the native pose and either one of the selected poses is less than 2.0 Å,

it is considered as a successful prediction. (A) and (B) describe the results for the native ligands and minimized ligands, respectively.

Table 2. Pearson’s correlation coefficients and Spearman’s ranking coefficients of different docking programs towards type II kinase inhibitors

aAn absolute value.
bGreen and red represent the maximum and minimum, respectively, and yellow represents a medium. The colors are based on the values of Pearson’s correlation
coefficient.
cNot tested due to the lack of this option.

method and widely applied to handle optimization problems
[71]. In addition, LeDock uses SA search rather than conventional
random search as a tool to generate the first generation of
docking poses, thus greatly enhancing the probability to detect
the right conformations. We believe that the sampling strategy
employed by LeDock should have its own superiority and may
provide some guidance for the exploitation of novel sampling
algorithms.

Assessment of scoring power on dataset I

The Pearson’s correlation coefficients (r) and Spearman’s rank-
ing coefficients (ρ) for the tested programs are summarized in
Table 2. Some representative scatter plots of the experimental
binding affinities (pIC50) versus docking scores predicted by sev-
eral well-performed programs are illustrated in Figure 7. As the r
and ρ display a similar trend, only the r values were used in the
following discussions.

The assessment of the scoring power was conducted on
both the native and minimized ligands. Overall, similar to
the sampling power, the scoring power for the minimized
ligands is also worse than that for the native ones. For most
docking programs, r obtained from the best-RMSD poses is not
always better than that obtained from the best-scored poses.
However, when excluding the inhibitors with unsuccessful
predictions (RMSD > 2.0 Å), r obtained from the best-scored
poses can gain a remarkable improvement, highlighting the
importance of the accurate predictions of binding poses. When
the minimized ligands were used in docking, based on the
Pearson’s correlation coefficients for the best-scored poses,
the performance for the individual docking programs has the
following order: GOLD ASP (0.515) > LeDock (0.466) > GOLD CH-
EMPLP (0.459) > GOLD ChemScore (0.452) > GOLD GoldScore
(0.437) > Glide XP (0.397) > AutoDock Vina (0.390) > AutoDock
(0.370) > Glide SP (0.370) > MOE Dock (0.328) > Surflex-Dock
(0.269) > DOCK (0.228) > rDock (0.127). Among all the tested
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Figure 7. Scatter plots of experimental binding affinities (pIC50) versus docking scores predicted by several representative docking programs, including (A–C)

GOLD CHEMPLP, (D–F) GOLD ASP and (G–H) LeDock. (A), (D) and (G) represent the results for the best-scored poses predicted based on the minimized ligands; (B),

(E) and (H) represent the results for the best-RMSD poses predicted based on the minimized ligands; and (C) and (F) represent the results for the refined binding poses

based on the native ligands. The regression line is indicated by the blue dashed line, and R represents the absolute value of Pearson correlation coefficient.

programs, the score functions implemented in GOLD and LeDock
have the best scoring power.

As has been stated above, some ligands, of which neither
the best-scored pose nor the best-RMSD one has a satisfactory
match with the native pose due to insufficient sampling, may
have a great influence on the final results. Hence, to reduce the
effect of sampling, the docking calculations with only a local
refinement on the native poses were also conducted. In this
situation, the correlation coefficients for most docking programs
improve a lot, such as Glide SP (from 0.374 to 0.486), Glide XP
(from 0.397 to 0.454), AutoDock Vina (from 0.385 to 0.453) and
MOE Dock (from 0.293 to 0.452). Interestingly, some programs
that even performed not so well on the accurate prediction
of ligand binding poses (such as DOCK and MOE Dock) could
also yield acceptable results. Thus, maybe except a few score
functions (such as rDock) that really have some intrinsic defects,
most tested score functions do not work too badly towards type
II kinase inhibitors.

Assessment of screening power on dataset II

As rDock and MOE Dock do not perform so well in the assess-
ments of sampling power or scoring power, their screening pow-
ers were not evaluated anymore. Therefore, only the other seven
docking programs were tested in this section.

Firstly, we evaluated the overall performance of VS in terms
of two criteria: the P-values given by the student’s t-test and
the AUC of the ROC curve (Table 3). The distributions of the
docking scores of the actives and decoys and the ROC curves
are plotted in Figure 8. Among all the 33 AUCs for the same
target, there are 25 and 14 values larger than 0.9 for ABL1 and
BRAF, respectively, while the number is reduced to 0 for p38α.
An interesting finding is that the impact of the different initial
protein conformations of the same target on the screening power
is significant. Taking ABL1 as an example, the AUCs for 2HYY
or 3QRI range from 0.92 to 0.99 (except the values produced
by DOCK), but those for 2HZ0 are much lower, and only three
of them are higher than 0.90 (GOLD ASP, AutoDock and Vina).
According to the structural alignment of 2HYY, 2HZ0 and 3QRI
(Figure 9), we can observe that the three bound ligands adopt
very similar configurations in the ATP-binding pocket while their
orientations in the allosteric pocket are quite different, thus
inducing the substantial conformational changes of some sur-
rounding residues. As a result, initial protein conformation may
have a great influence on docking, and it is of vital importance
to choose an appropriate crystal structure before carrying out a
docking-based VS.

When it comes to the performance of each individual dock-
ing program, it is difficult to determine which one has the
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best screening power due to the sensitivity to different target
conformations. According to the AUCs for BRAF, GOLD ASP
(0.983), LeDock (0.971) and Glide SP (0.971) perform the
best for 3IDP, while AutoDock Vina (0.933) becomes one of
the top three for 4KSP. Therefore, in consideration of the
complexity to make a comparison, we roughly took the
average of the nine AUC values and nine P-values for each
target, where the mean of AUCs and the geometric mean
of the P-values were obtained. According to the averaged
AUCs, LeDock (0.906), GOLD ASP (0.897) and Surflex-Dock
(0.891) perform relatively better, and AutoDock Vina (0.883)
and GOLD CHEMPLP (0.881) have a satisfactory performance
as well. Furthermore, except for the ridiculous data towards
2HZ0, where the AUCs are remarkably poorer than the average,
Glide SP (from 0.855 to 0.894) and Glide XP (from 0.858 to 0.881)
can also yield acceptable results. Then, when the P-values
were regarded as the criteria, another order can be obtained:
Glide SP (3.05 × 10−79) > GOLD ASP (1.01 × 10−78) > LeDock
(1.56 × 10−75) > Glide XP (3.21 × 10−70) > GOLD CHEMPLP
(1.45 × 10−63) > AutoDock Vina (3.64 × 10−58) > Surflex-Dock
(1.76 × 10−56) > AutoDock (2.51 × 10−54) > GOLD ChemScore
(1.13 × 10−46) > GOLD GoldScore (4.54 × 10−27) > DOCK
(2.18 × 10−07). Similarly, Glide SP, GOLD ASP and LeDock show
good screening powers in terms of the P-values.

As indicated above, Glide, GOLD and LeDock may be the
most applicable programs for the docking-based VS towards
type II kinase inhibitors. However, both the P-values and
AUCs may be easily affected by some extreme samples in the
benchmark dataset, especially these molecules that cannot
be docked into the pockets, so enrichment factors (EFs) were
also used in the assessment, and EF1%, EF5% and EF10% are
listed in Table 3. Based on the averaged EF values, Glide SP
(EF1% = 32.202, EF5% = 11.395 and EF10% = 6.592), Surflex-
Dock (28.889, 11.807 and 7.000), GOLD ASP (27.744, 12.064 and
7.158) and LeDock (26.481, 11.856 and 7.283) have the most
comprehensive performance, which is generally consistent with
the results obtained above.

Discrimination of type II and type I kinase inhibitors
in VS

To further explore the discrimination of type II and type I kinase
inhibitors in VS, a pre-existing benchmark dataset containing
both the type II and type I inhibitors was extracted from
DUD-E and a decoy dataset was generated correspondingly.
Then, taking BRAF as a case, three DFG-out conformations
(3IDP, 3II5 and 4KSP) and three DFG-in ones (2FB8, 4E26
and 5FD2) were chosen, and four well-performed dock-
ing programs, including Glide SP, GOLD ASP, Surflex-Dock
and LeDock, were used to dock all the molecules in the
dataset to the six selected BRAF structures. The ROC curves
and associated AUCs of each combination are shown in
Figure 10.

Aswe can see, because the inhibitors in the dataset used here
have not been categorized clearly in advance and the effects
of type I inhibitors cannot be ignored, the AUCs obtained here
are significantly smaller than those just based on the dataset
with only type II inhibitors. Similar to the results shown in
the previous section, the screening powers for the different
conformations of a same target vary a lot. It is so surprising to
observe that the results based on the DFG-out conformations are
not always better than those based on theDFG-in conformations.
According to our initial hypothesis, the ATP-binding site in a
DFG-out conformation should be still accessible for most type
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Figure 8. Distributions and ROC curves of the docking scores given by different docking programs for the known inhibitors and decoys towards nine different crystal

complexes of three representative targets (ABL1, BRAF and p38α). The results from left to right are successively based on 2HYY (ABL1), 2HZ0 (ABL1), 3QRI (ABL1), 3IDP

(BRAF), 3II5 (BRAF), 4KSP (BRAF), 1WBT (p38α), 2YIW (p38α) and 3K3I (p38α).
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Figure 9. Structural comparison of different ligand-ABL1 complexes. (A) The 3D structures of the aligned protein–ligand complexes. 2HYY, 2HZ0 and 3QRI are colored

in cyan, magenta and green, respectively. (B–D) The 2D protein–ligand interaction diagrams for 2HYY, 2HZ0 and 3QRI, respectively, are shown. The ligand is colored in

sea green, and the structures of the other two complexes are colored in gold. Red circles represent the structures aligned well in at least two complexes. The picture is

produced by LigPlus [73].

Figure 10. ROC curves based on different docking programs and different crystal structures of BRAF. (A) Glide SP, (B) GOLD ASP, (C) Surflex-Dock and (D) LeDock.

I inhibitors, but the conventional ATP-binding pocket in a DFG-
out conformation is not large enough to accommodate many
type II inhibitors, thus potentially leading to the superiority of
a DFG-out conformation in the VS of kinase inhibitors. After
manual inspections, we found that the excessive numbers of

oxygen and nitrogen atoms of type II inhibitors may lead to
their acceptable docking scores for some wrong binding poses.
Anyway, there is no doubt that type II and type I kinase inhibitors
have almost completely different binding characteristics even
they both occupy the same ATP-binding pocket. Therefore,when
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constructing a benchmark to assess a newly exploited docking
program, it should be cautious if the kinase-related data are the
component of the dataset.

Conclusion

An extensive assessment has been conducted to evaluate the
performance of nine docking programs towards type II kinase
inhibitors. In terms of sampling power, most tested docking
programs can achieve satisfactory predictions towards type II
kinase inhibitors with the success rates ranging from 0.80 to
0.90. Among all, Glide XP, LeDock and GOLD CHEMPLP perform
the best based on the best-scored poses, whereas LeDock and
Surflex-Dock have the best capability to find the best-matched
poses among the several top-ranked poses. As for the scoring
power, the score functions in GOLD and LeDock achieve the best
correlations with the experimental data. When docking with
only a local refinement is adopted, correlation coefficients of
most programs can be improved obviously, suggesting that the
overall performance of each program deeply depends on the
sampling accuracy. From the perspective of type II inhibitors,
based on the assessment of both the sampling power and scoring
power, it seems that a small increase of molecular weight or
the number of rotatable bonds of the ligands does not have
remarkable effect on docking accuracy. As for the screening
power, the initial protein conformations play a more important
role than docking programs, and therefore it is difficult to
compare different docking programs just based on a certain
crystal structure. Roughly, in terms of P-values, AUCs and
EFs (EF1%, EF5% and EF10%), Glide SP, Surflex-Dock, GOLD ASP
and LeDock may have relatively better screening performance
towards type II inhibitors. Besides, based on our dataset
and another one extracted from DUD-E, we found that type
II and type I inhibitors may affect each other severely in
the assessment of a certain program, so it is necessary to
distinguish them clearly when constructing a benchmark
dataset. In conclusion, type II kinase inhibitors indeed have
their own docking characteristics and the assessment results
are significantly different from the ones conducted previously.
These findings are expected to provide some valuable insights
into the discovery of novel type II kinase inhibitors, as well as
other allosteric inhibitors.

Key Points
• Nine popular docking programs were extensively
assessed towards type II kinase inhibitors in terms of
sampling power, scoring power and screening power.

• Most tested docking programs succeeded in the accu-
rate identification of near-native binding poses with the
success rates ranging from 0.80 to 0.90.

• The scoring functions in GOLD and LeDock outper-
formed the others in the prediction of relative binding
affinities.

• Glide with XP scoring, Surflex-Dock, GOLD with ASP
scoring and LeDock had better screening power to dis-
criminate between active compounds and decoys.

• The screening power of the tested docking programs is
sensitive to different initial conformations of the same
target.
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Supplementary data are available online at https://academic.
oup.com/bib.
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