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Abstract

The etiology of schizophrenia (SCZ) is regarded as one of the most fundamental puzzles in current medical research,
and its diagnosis is limited by the lack of objective molecular criteria. Although plenty of studies were conducted, SCZ
gene signatures identified by these independent studies are found highly inconsistent. As one of the most important factors
contributing to this inconsistency, the feature selection methods used currently do not fully consider the reproducibility
among the signatures discovered from different datasets. Therefore, it is crucial to develop new bioinformatics tools of novel
strategy for ensuring a stable discovery of gene signature for SCZ. In this study, a novel feature selection strategy (1)
integrating repeated random sampling with consensus scoring and (2) evaluating the consistency of gene rank among
different datasets was constructed. By systematically assessing the identified SCZ signature comprising 135 differentially
expressed genes, this newly constructed strategy demonstrated significantly enhanced stability and better differentiating
ability compared with the feature selection methods popular in current SCZ research. Based on a first-ever assessment on
methods’ reproducibility cross-validated by independent datasets from three representative studies, the new strategy stood
out among the popular methods by showing superior stability and differentiating ability. Finally, 2 novel and 17 previously
reported transcription factors were identified and showed great potential in revealing the etiology of SCZ. In sum, the SCZ
signature identified in this study would provide valuable clues for discovering diagnostic molecules and potential targets
for SCZ.
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Introduction

As one of the most devastating psychiatric disorders, schizophre-
nia (SCZ) leads to the severe handicap of patients in social
engagement and emotional expression [1]. It affects more
than 50 million people worldwide [2], whose life expectancy is
reduced by about 20 years on average compared with the general
population [3]. The etiology of SCZ is regarded as one of the
most fundamental puzzles in current biomedical researches [4],
and its diagnosis is significantly limited by the lack of objective
molecular criteria [5, 6]. To cope with these problems, a variety
of studies have been conducted to track down gene signature of
this disorder [7–12]. Among these studies, the high-throughput
gene expression analysis combining microarray technology
and some popular filter feature selection algorithms (such as
the Student’s t-test [13–17], Fisher’s exact test [18], analysis
of variance [19–21], significant analysis of microarray (SAM)
[22–25] and Chi-square test [26]) has emerged as a powerful
technique [14–20], and a number of differentially expressed
genes (DEGs) between SCZ patients and healthy individuals
(such as SELENBP1 [14] and CDC42BPB [19]) are discovered. Based
on these DEGs, a series of molecular processes involved in SCZ
are discovered, including oxidoreductase activity [14], calcium
signaling pathway [19] as well as metabolic and mitochondrial
functioning [17].

However, the lists of DEGs for a given disease indication
identified by different microarray analyses are highly unstable
[27]. Especially for SCZ, the alterations in gene expression are not
consistently identified from study to study [14]. As reported in
Mistry’s pioneer study, there is no overlap among the lists of top-
ranked genes identified from seven independent datasets [21].
This inconsistency raises doubts about the reliability of reported
signature [28] and significantly hampers its clinical application
[29, 30]. Moreover, this may be part of the reason why there is no
approved biomarker used for SCZ diagnosis/treatment and why
the mechanism underlining SCZ’s pathology remains largely
unknown [31–33].

This inconsistency among gene signatures by different stud-
ies has been attributed to many sources: limited number of sam-
ples [34], disease heterogeneity [35], subtle gene expression vari-
ation undetected by current feature selection method [14], etc.
So far, the analysis combining multiple independent microarray
datasets has been used to enlarge the sample size and in turn
reduce the disease heterogeneity, which gains a certain level of
enhancement in the stability of the identified gene signature
(∼10% of the DEGs from two separate studies are shared by
both) [21, 23]. Recently, the wrapper/embedded feature selection
methods (such as SVM-RFE) are proposed as performing better
than the filter algorithms [13, 22, 26] in their classification results
by involving the classifier using ‘Artificial Intelligence’ [36–38],
and the repeated random sampling is advocated to improve the
consistency among signatures identified from various cancer-
related datasets [27, 39]. However, the methods currently used
for discovering the SCZ signature do not fully consider the con-
sistency among markers discovered by different datasets [21, 27,
40]; it is therefore crucial to develop a new tool of novel strategy
for ensuring a stable discovery of the gene signature of SCZ.

In this study, the most comprehensive set of microarray data
was constructed by combining information from multiple inde-
pendent SCZ studies [14–20], and a novel feature selection strat-
egy for stable signature derivation was developed and applied
to ensure a reliable discovery. Systematic assessment from mul-
tiple perspectives was conducted to guarantee the stability and
reliability of this newly proposed strategy, and a cross-validation

among multiple independent studies was further applied to
evaluate the reproducibility of this strategy by comparing with
traditional methods. Finally, transcription binding motif was
analyzed to identify novel transcription factors (TFs) in the
development of SCZ. In sum, the findings of this study could
facilitate the understanding of SCZ’s etiology and the discovery
of new diagnostic molecular criteria.

Materials and methods
Collection of microarray data from multiple studies

The prefrontal cortex (PFC) had been wildly accepted as the
major locus of dysfunction in SCZ by many clinical and neu-
roimaging studies [41]. In this work, a variety of microarray
studies based on tissues from the brain Brodmann areas (BAs) 9,
10 and 46 were therefore collected by searching ‘schizophrenia’
in such popular SCZ-related data sources as the Gene Expression
Omnibus (GEO) [42], Stanley Medical Research Institute (SMRI)
[18] and Harvard Brain Bank (HBB) [14]. The collected data should
meet the following criteria [21, 33, 43]: (1) the gene expression
profiling was conducted using cDNA microarray technology for
‘Homo sapiens’; (2) the tissues analyzed were based on PFC tis-
sues from BA9, BA10 and BA46; (3) raw data and confounding
variables such as gender, age, postmortem interval and brain
pH were available for further analysis; and (4) the collected
dataset should consist of one group of patients and another
group of healthy people. Comprehensive literature search on SCZ
microarray studies further yielded additional data [15, 16, 21] of
40 SCZ patients and 35 healthy people. As a result, nine inde-
pendent microarray studies were collected, and each comprises
a cohort of SCZ patients and another cohort of healthy controls.
The detailed information of these collected datasets was pro-
vided in Table 1, including dataset ID, microarray platform, date
of data release, number of samples and brain region as indicated
in the original publication. Among these studies, the latest one
(GSE62191 [44], 29 patients and 30 healthy controls) was used as
independent test dataset and the remaining data (166 patients
and 172 controls) were combined to construct classifier and
discover the gene signature of SCZ.

Data pre-processing and batch effect removal

Combination of multiple datasets was carried out in R environ-
ment (v3.4.3, http://www.r-project.org). The raw data (CEL file)
was read, log transformed and normalized using R package affy
[45], and all parameters were set as default. Outliers in each
dataset were first checked and removed, and all probe sets were
then mapped to their corresponding genes using ‘Bioconductor’
[46]. The average expression value was retained if a gene was
mapped to multiple probes. To remove batch effects among
datasets, Z score transformation [47–49] (equation shown below)
was used to adjust the gene expression levels in each dataset.

Z score = xi − x
δ

(1)

where xi refers to the raw intensity of each gene, x indicates
the average intensity of all genes within a single experiment
and δ represents the standard deviation (SD) of all expression
intensities in one array. After this procedure, the mean Z score
for each array became zero with SD equaling one.
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Table 1. A variety of datasets from nine independent microarray studies between SCZ patients and healthy individuals (ordered by the date of
dataset release)

Dataset Microarray
platform

Date of data
release

No. of samples
(patients:controls)

Brain region as indicated
in the original
publication

Pérez-Santiago
et al. (2012)

Mistry et al. (2013)

Haroutunian [16] HG-U133A/B Sep 2005 31:29 Frontal (BA10/46) N.A. Included
HBB Mclean [14] HG-U133A Oct 2005 19:26 Prefrontal cortex (BA9) Included Included
Stanley AltarC [18] HG-U133A Apr 2006 9:11 Frontal (BA10/46) Included Included
Stanley Bahn [18] HG-U133A Apr 2006 34:31 Frontal (BA46) Included Included
Mirnics [15] HG-U133A/B Mar 2008 9:6 Prefrontal cortex (BA46) Included Included
GSE17612 [17] HG-U133 Plus 2 Aug 2009 26:21 Anterior prefrontal

cortex (BA10)
Included Included

GSE21138 [19] HG-U133 Plus 2 Mar 2010 25:29 Frontal (BA46) Included Included
GSE53987 [20] HG-U133 Plus 2 Jan 2014 13:19 Frontal (BA46) N.A. N.A.
GSE62191 [44] Agilent-014850 Oct 2014 29:30 Frontal cortex (BA46) N.A. N.A.

Note: These studies were collected from databases such as GEO [42], SMRI [18] and HBB [14] and a comprehensive literature search on microarray studies of SCZ [15, 16,
21]. All studies were conducted in the prefrontal cortex of postmortem brain tissue, and each dataset comprises a cohort of SCZ subjects and a cohort of healthy people.
Patients, no. of schizophrenia patients; Controls, no. of healthy individuals; BA, Brodmann’s area; Included, the dataset was included in the corresponding study; N.A.,
the dataset was not available in the corresponding study; GSE: the accession number in GEO database [42].

Construction of new strategy to ensure the consistent
discovery of gene signature

The support vector machine (SVM) showed good performance
in classifying microarray data [50], and a wrapper/embedded
recursive feature elimination method (RFE-SVM [51]) was widely
applied in current studies [40]. In RFE-SVM, a gene ranking
function was firstly generated based on a SVM classifier, and
the SCZ signature was then identified by eliminating those of no
differential expression [51]. In this study, a new strategy based
on RFE-SVM was proposed and constructed by (1) integrating
the repeated random sampling with consensus scoring and (2)
evaluating the ranking consistency among multiple datasets.
The workflow of this strategy was illustrated in Figure 1 and
demonstrated as follows.

Firstly, the combined dataset was separated into 2000 unique
training-test datasets using repeated random sampling [27].
Each training dataset was constructed by a random half of the
samples (83 patients and 86 healthy controls) and corresponding
test dataset comprised the remaining. Secondly, 2000 datasets
were randomly grouped into 20 sampling groups (each with
100 unique training-test datasets). In each sampling group, the
gene signature was identified from training dataset using RFE-
SVM algorithm. Meanwhile, the classification performance of
the signature was evaluated by corresponding test dataset using
SVM model with the optimal parameters. Thirdly, to increase the
stability among the signatures identified from various datasets,
the ranking consistency among 100 training-test datasets in
each sampling group were evaluated by a sequential algorithm
of consensus scoring. This algorithm included three steps: (1)
the genes ranked in the bottom (10%∼40% depending on the
number of genes selected in different rounds) were selected
by making sure that their collective contributions would not
exceed the higher-ranked ones; (2) among these selected
genes, those ranked in the bottom 50% of previous ranking
round were chosen to guarantee that they were consistently
low-ranked among several iterations; and (3) the resulting
genes of the previous two steps appearing in over 90% of 100
training-test datasets were eliminated. Fourthly, the signature
was identified by the highest average classification accuracy
among all 100 test datasets. For each sampling set, different
parameters were scanned, and various RFE-SVM iterations

were evaluated to find the globally optimized parameters and
iterations that gave the highest average class differentiation
accuracy for the 500 test sets. Finally, 20 sampling groups were
analyzed in the same way, and the stable signature was made
up of the DEGs identified simultaneously by all 20 sampling
groups.

Systematic assessment on the stability and reliability
of the identified SCZ signature

To assess the stability and reliability of the identified signature,
a systematic assessment from five different perspectives (i–v)
were conducted. The measures were mutually complemental
from different perspectives, and all of them were important
to assess the stability and reliability of the identified signa-
ture.

(i) The stability among signatures identified from different
sampling groups or independent datasets

Firstly, the signature derived from 20 sampling groups was
analyzed. A histogram showing the number of DEGs simulta-
neously discovered by N (1∼20) sampling groups was provided.
The higher number of DEGs identified by the larger N sampling
groups, the more stable the signature identified is. Secondly, to
evaluate the stability among signatures identified from indepen-
dent datasets, the signatures derived from eight studies (Table 1)
were analyzed by consistency score (CS) [52] shown below, which
quantitatively evaluated the stability among signatures identi-
fied from independent datasets [53, 54].

CS =
N∑

i=2

∑

S∈Ii

2i−2 · nS (2)

where N indicates the total number of signatures, Ii refers to
a set containing all the intersections of any i signatures and
nS represents the number of DEGs in intersection S. Based on
this formula, the value of CS increased exponentially with the
accumulation of DEGs in each signature, and the CS values could
therefore only be compared (no strict cutoff was available for
differentiating ‘good’ or ‘bad’ CS values). In sum, the higher
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Figure 1. Flowchart of this study and the newly constructed feature selection strategy.

the CS, the more DEGs are identified in common among
independent datasets. The CS value of the newly proposed
strategy was compared with that of Student’s t-test (corrected
by Benjamini–Hochberg algorithm) [14, 55, 56] and of the SAM
[22–25].

(ii) The level of disease relevance (DR) of the identified signa-
ture

In a complex disorder such as SCZ, the identified signature is
expected to contain a substantial percentage of the SCZ-related
genes [57–59]. But a certain number of irrelevant genes may
be inevitably selected due to measurement variability. Herein,
comprehensive literature reviews were performed to investigate
the DR of the identified signature, which was represented by the
percentage of SCZ-related genes among all DEGs in the identified
signature.

(iii) The role in SCZ played by the hub genes identified from
Protein-protein interaction (PPI) network

STRING database [60] was applied to construct PPI network
with high confidence level (>0.7). The signature identified in this
study was then mapped into this network, and Cytoscape [61]
was utilized to visualize the interactions among DEGs. DEGs of
high interaction degree (≥5) were selected as the hub gene in
SCZ.

(iv) The role in SCZ played by the identified signature based on
enrichment analysis

Enrichment analysis on the identified signature was
conducted to identify the significantly overrepresented GO
terms and KEGG pathways using hypergeometric test (P < 0.05)
provided by Gene Set Enrichment Analysis (GSEA) tool [62]. Based
on the comprehensive literature review on the pathways playing
important role in SCZ, the pathways enriched in this study were
compared with that of previous reports to validate the signature
identified in this work.

(v) The classification capacity of the identified signature
assessed by the independent test dataset

Classification performance of signature identified from the
combined dataset was evaluated by predicting the SCZ outcomes
of independent test dataset (GSE62191 [44], the most recently
published data among all datasets in Table 1) based on the
SVM classifier. The performance was assessed by two popular
metrics [accuracy (ACC) and Matthews correlation coefficient
(MCC)]. ACC indicates the number of true samples successfully
predicted divided by the number of samples in the independent
test dataset:

ACC = TP + TN
TP + TN + FP + FN

(3)

where TP, TN, FP and FN represent the number of true cases, true
controls, false cases and false controls, respectively. MCC reflects
the stability of classifier based on the identified signature, which
is considered as one of the most comprehensive metrics due to
its full consideration of TP, TN, FP and FN.

MCC = (TP ∗ TN - FP ∗ FN)√
(TP + FP) ∗ (TN + FP) ∗ (TP + FN) ∗ (TN + FN)

(4)

ACC and MCC are within the range of [0,1] and [−1,1],
respectively. The higher value of each indicates better predictive
performance. MCC of −1 represents total disagreement between
the prediction results and independent test dataset, 0 denotes
no better than random prediction and 1 refers to perfect
prediction. The performance of the signature identified in
this study was compared with that of two pioneer studies
[21, 23].
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Reproducibility of the new strategy cross-validated by
multiple studies

The stability among signatures identified based on inde-
pendent studies [52] and the predictive performance of one
study on another and vice versa [63, 64] were two critical
criteria for assessing the reproducibility of the applied fea-
ture selection methods. Herein, three representative stud-
ies of large sample size (>50) were firstly chosen from
Table 1. Each of these three studies was used as a train-
ing dataset, and the remaining studies were used as two
independent test datasets, which resulted in six sets of
unique training-test data for cross-validation. Secondly, CS
(2) was used to assess the stability among signatures iden-
tified from those three studies. Thirdly, ACC (3) and MCC
(4) of classifier were used to assess the predictive per-
formance among three studies (performance of one study
on another and vice versa). Finally, a systematic compari-
son on the reproducibility among popular feature selection
methods (SAM [25] and Student’s t-test [14] with FDR-BH
[55]) and the new strategy constructed in this study was
conducted.

Transcription binding motif analysis

Enrichment analysis on the identified signature was conducted
to identify the significantly overrepresented TF binding site
using hypergeometric test (P < 0.05) in GSEA [62]. The catalog
is based on the work reporting 57 commonly conserved
regulatory motifs in the promoter regions of human genes
[65] and makes it possible to link changes in a microarray
experiment to a conserved, putative cis-regulatory element.
There were 615 gene sets that share upstream cis-regulatory
motifs, which function as the potential TF binding site.
Based on the comprehensive literature review on the TFs
playing key role in SCZ, those TFs enriched in this study were
compared with that of previous reports to validate the signature
identified here. Moreover, the newly identified TFs were further
proposed as novel factors regulating the development of
SCZ.

Results and discussion
Consistent signature derived using the newly
constructed strategy

The most comprehensive set of microarray data from eight
published studies (Table 1) were combined by pre-processing
and batch effect removal. The resulting dataset contained 166
SCZ patients and 172 healthy controls with 12 331 genes after
quality control, and no marked distinction in gender, age and
postmortem interval between case and control was discovered
(Supplementary Table S1). Meanwhile, the level of brain pH was
statistically lower in SCZ patients than control, but it should not
be a confounding factor here since no strong correlation with

each DEG (
∣∣∣r

∣∣∣≤ 0.38, Supplementary Table S1) was observed, and

the relatively low level of brain pH in SCZ patients was reported
to come from the increased anaerobic respiration and hypoxic
conditions [21, 23, 66]. As a result, a signature comprising 135
DEGs (Supplementary Table S2) was consistently identified by
all 20 sampling groups using the new strategy constructed in
this study, and the total number of down-regulated genes (76
genes) was larger than the up-regulated ones (59 genes), which

agreed well with previous studies [67]. Additionally, due to the
lack of medication information, it was impossible to incorporate
it into this study. However, a comparative analysis between the
135 DEGs identified in this work and the DEGs representing
antipsychotic drug function [68] further revealed that there was
no overlap between these two signatures, which might indirectly
indicate that the signature identified was unaffected by this
extraneous factor. Despite the antipsychotics, illicit drugs and
smoking are also possible factors that confounded the study of
SCZ-related gene expression, but the completely absence of such
information made it unlikely to be integrated into this study.
As a result, since the influence of these factors could not be
entirely excluded, it should be admitted that the lack of such
information might be a limitation of the analysis conducted in
this study.

The stability and reliability of the identified signature
confirmed by five lines of evidence

Evidence a: a high-stability among signatures from different
sampling groups or datasets

Firstly, a highly stable signature among all 20 sampling
groups was identified using the new strategy. As shown
in Figure 2A and Supplementary Table S3, the number of
DEGs identified by each sampling group varied from 191
to 203, and 135 DEGs were consistently discovered by all
sampling groups (taking up to 66.5%–70.7% of all DEGs
identified). Twenty-one genes were only selected by a single
group (taking up to <2.1% of all DEGs identified), which
suggested a highly stable signature among all sampling
groups.

Secondly, the stability among signatures of independent
datasets identified in this study was substantially enhanced
compared with the traditional feature selection method. The
number of DEGs identified from eight independent datasets
using the new strategy varied from 191 to 245, and the resulting
CS among signatures equaled to 1412. By contrast, the Student’s
t-test and SAM were applied, and their CSs among eight datasets
increased with the enlargement of the selected top-ranked DEGs
(Figure 2B; from 11 to 308 for Student’s t-test, from 17 to 402
for SAM). However, these CSs were substantially lower than
that of the new strategy, which indicated a great enhancement
in the stability of signatures identified from independent
datasets.

Evidence b: a great DR of the identified SCZ signature

The SCZ signature comprising 135 DEGs was consistently
identified by 20 sampling groups, and a great DR (53.3%,
Table 2 and Supplementary Table S4) of the identified SCZ
signature was discovered. Compared with the DRs of the
signatures identified by two pioneer studies [21, 23], the DR
of this study slightly outperformed that of Mistry’s study [21]
(DR = 37.8%, Table 2 and Supplementary Table S5) and Perez-
Santiago’s study [23] (DR = 43.1%, Table 2 and Supplementary
Table S6). Among these identified DEGs, eight genes (AGT,
CYP26B1, LPL, MYL5, SCN1B, SELENBP1, SNN and TIAL1) were
identified by recent prominent studies [69–71]. CYP26B1 was
involved in the transport of retinoic acid, which was implicated
in SCZ’s pathogenesis [72]. LPL was an attractive candidate
gene for SCZ and SNPs in LPL may confer risk for SCZ [73].
SCN1B was identified as a dysregulated gene in SCZ patients
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Figure 2. The high-stability among signatures identified from (A) sampling groups and (B) independent datasets. (A) A highly stable signature among all 20 sampling

groups was identified using the new strategy. A total of 135 DEGs (>66.5%) were consistently discovered, while 21 (<2.1%) were only selected by a single group. (B) The

stability among signatures identified from eight independent datasets by new strategy was substantially enhanced compared with the Student’s t-test (orange bars)

and SAM (blue bars).

Table 2. Performance comparison of three different lists of DEGs identified by two pioneer combined microarray studies [21, 23] and this study
from three different perspectives: (1) the level of relevance between the identified DEGs and SCZ, (2) the level of relevance between the enriched
pathways and SCZ and (3) the predictive performance of the identified DEGs on independent test dataset (GSE62191 [44] of 29 patients and 30
controls)

Study DR of genes
associated with SCZ

DR of pathways
associated with SCZ

Predictive performance on independent test dataset
TP FP TN FN ACC (%) MCC

Pérez-Santiago et al. 2012 43.06% 62.50% 19 11 18 11 62.71 0.25
Mistry et al. 2013 37.84% 66.67% 12 2 27 18 62.71 0.29
This study 53.33% 100.00% 21 7 22 9 72.88 0.46

Note: ACC, classification accuracy; MCC, Matthews correlation coefficient.

by microarray study [23]. The level of mRNA expression of
SELENBP1 was significantly up-regulated in the dorsolateral PFC
of SCZ patients [14]. SNN was found down-regulated with high
confidence in SCZ patients compared with the normal controls
[17].

Evidence c: the hub genes discovered in this study played a key role
in SCZ’s development

The topological characteristics of a PPI network could give great
insights into the development of SCZ at the molecular level [66].
Herein, a PPI network was constructed using those 135 DEGs,
and a network with 29 PPIs were constructed (Figure 3). As a
result, two hub genes (CDC42 and LPAR1) were identified, both
of which were reported to play a key role in SCZ’s development.
Particularly, the reduced expression of CDC42 contributed to the
decreased density of dendritic spines in the PFC of SCZ patients
[74], and the altered CDC42 signaling promoted the spine deficits
observed in the layer three pyramidal neurons in SCZ patients
[75]. Moreover, the prenatal exposure to lysophosphatidic acid
(LPA) alone phenocopied many SCZ-like alterations in serum
model, whereas the treatment with antagonist against LPAR1

could prevent many of those behavioral and neurochemical
alterations [76].

Evidence d: GO terms and pathways enriched by the identified
signature played a key role in SCZ

As demonstrated in Supplementary Table S7, many enriched
GO terms were related to such SCZ-related biological process as
ion channel activity [77] and metabolic process [78]. Meanwhile,
21 KEGG pathways were enriched (Supplementary Table S8),
10 out of which agreed with Gardiner’s study on miRNA
expression profile [79]. As shown, the calcium signaling pathway
was discovered to be involved in SCZ’s etiology based on
a genome-wide association studies [80], and the tyrosine
metabolism pathway was found to be peripheral marker of
dopamine synthesis associated with SCZ [78]. Moreover, a
comprehensive literature review reveals that all 21 pathways
were reported at least once by previous studies as SCZ-
related (Table 2 and Supplementary Table S9). Compared to
the pathways enriched based on two pioneer studies [21,
23], the percentage of SCZ-related pathway of this study was
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Figure 3. PPI network constructed using 135 gene signatures identified in this study. Up-regulated and down-regulated genes in SCZ patients were illustrated in red

and blue, respectively. Genes (LPAR1 and CDC42) of the highest degree were identified as the hubs of this network.

Table 3. The reproducibility of two popular feature selection methods (Student’s t-test [14] with FDR-BH [55] and SAM [25]) and the newly
proposed strategy assessed by (1) the CS among signatures identified from three representative studies and (2) the differentiating ability (ACC
and MCC) of one study on another and vice versa

Train and test sets Measure This study Student’s t-test [14] (FDR-BH [55]) SAM [25]
Top 100 Top 200 Top 300 Top 100 Top 200 Top 300

The CS among three signatures identified by
different method

98 13 38 68 17 51 91

Training: Stanley Bahn [18] ACC (%) 75.9 63.0 68.5 68.5 61.1 66.7 64.8
Test: GSE21138 [19] MCC 0.52 0.28 0.37 0.36 0.25 0.36 0.34
Training: Stanley Bahn [18] ACC (%) 77.4 56.7 61.7 58.3 60.0 58.3 56.7
Test: Haroutunian [16] MCC 0.53 0.15 0.24 0.17 0.21 0.25 0.22
Training: GSE21138 [19] ACC (%) 75.4 60.0 69.2 67.7 61.5 69.2 70.8
Test: Stanley Bahn [18] MCC 0.51 0.20 0.38 0.35 0.26 0.38 0.47
Training: GSE21138 [19] ACC (%) 71.7 63.3 56.7 68.3 61.7 61.7 65.0
Test: Haroutunian [16] MCC 0.51 0.27 0.19 0.39 0.25 0.24 0.31
Training: Haroutunian [16] ACC (%) 75.9 53.8 58.5 53.8 50.8 58.5 58.5
Test: Stanley Bahn [18] MCC 0.52 0.20 0.17 0.13 0.17 0.16 0.20
Training: Haroutunian [16] ACC (%) 77.8 57.4 57.4 57.4 59.3 57.4 57.4
Test: GSE21138 [19] MCC 0.50 0.21 0.21 0.21 0.19 0.21 0.21

Note: FDR-BH, false discovery rate corrected using Benjamini–Hochberg algorithm.

higher than that of Mistry’s study [21] (66.7%, Table 2 and
Supplementary Table S10) and Perez-Santiago’s study [23] (62.5%,
Table 2 and Supplementary Table S11).

Moreover, the pathways of Reactome database were enriched
by hypergeometric test (FDR P < 0.05) based on all 135 DEGs
(Supplementary Table S12). Some enriched pathways were
validated by reported publications: an enrichment of miRNA
targets in ‘axon guidance’ (identified by this study) was
discovered as reflecting key cellular effects in SCZ [81],
dysfunction of the ‘gamma-aminobutyric acid (GABA)ergic
neuronal system’ was reported to contribute to the pathogenesis
of SCZ [82], a dysregulation of both ‘innate and adaptive immune
systems’ was found contributing to the SCZ symptoms [83,
84], ‘transmission across chemical synapses’ was discovered
as related to SCZ-related gene [85], decreased expression
of ‘regulation of ornithine decarboxylase’ in the ornithine–
polyamine metabolism was found to be responsible for higher

concentration of ornithine in SCZ [86] and the etiology of
SCZ had been linked to an altered ‘metabolism of lipids’ in
neuronal membranes resulting from an increase in the activity
of phospholipase A2 [87, 88].

Evidence e: the SCZ signature demonstrated strong ability to
differentiate patients from controls

Differentiating ability of the identified signature was evaluated
by independent test dataset (GSE62191 [44]) using the SVM clas-
sifier. As shown in Table 2, ACCs of this study, Mistry’s study [21]
and Perez-Santiago’s study [23] were 72.88%, 62.71% and 62.71%,
respectively, with their corresponding MCCs equaling to 0.46, 0.25
and 0.29. These results suggest that the SCZ signature identified
by the new strategy demonstrated a much better ability to differ-
entiate patients from controls compared with previous reports
[21, 23].
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Figure 4. Two novel TFs (NF1 and GABP) identified in this study together with 17 DEGs regulated by them. Co-regulated DEGs were colored in blue, and the DEGs solely

regulated by NF1 and GABP were colored in green and red, respectively.

Cross-validating the reproducibility of the new feature
selection strategy

Two critical criteria were considered when assessing the repro-
ducibility of feature selection methods: (1) the stability among
signatures identified from different independent studies [52]
and (2) the differentiating ability of one study on another and
vice versa [63]. Herein, three representative studies of large sam-
ple size (>50) were selected to discover SCZ signatures (Table 1).
Each of these three studies was selected as training dataset,
and the remaining ones were chosen as two independent test
datasets, which resulted in six sets of unique training-test data
for cross-validation. Firstly, the stability (CS) of the new strategy
equaled to 98 (Table 3), which was higher than that of Student’s
t-test (13, 38 and 68 for top 100, top 200 and top 300, respec-
tively) and that of SAM (17, 51 and 91 for top 100, top 200
and top 300, respectively). As the top 100 DEGs were the most
frequently applied and widely accepted criterion in DEG selec-
tion [89], the new strategy showed a substantially higher stabil-
ity than these traditional feature selection methods. Secondly,
the differentiating abilities of Student’s t-test, SAM and the
new strategy among three representative datasets were assess
by the ACC and MCC on the corresponding cross-validating
datasets (Table 3). The ACCs for Student’s t-test, SAM and the
new strategy were in the range of 53.8%–69.2%, 50.8%–70.8% and
71.7%–77.8%, respectively, and the ranges of MCCs were 0.13–
0.39, 0.16–0.47 and 0.50–0.53, respectively. It was evident that
there were great improvements on the differentiating ability of
the new strategy compared with those traditional methods. As
the top 100 DEGs were the most frequently used and widely
accepted criterion in the identification of DEG [89], the ACCs
for Student’s t-test and SAM would further decrease to 53.8%–
63.3% and 50.8%–61.7% with MCCs reduced to 0.15–0.28 and 0.17–
0.26. This finding showed significantly higher differentiating
ability of the new strategy than the popular methods used
in current SCZ studies. The possible reasons of the enhanced
performance of this newly proposed strategy could be as fol-
lows: (1) integrating repeated random sampling with consensus
scoring and evaluating the ranking consistency among multiple
datasets have the ability to avoid erroneous elimination of pre-

dictor genes due to noises in microarray data, which ensured
the high stability for the selected signatures; and (2) a huge
number of parameters were scanned and a variety of feature
elimination iterations were assessed for each sampling, and
the globally optimized parameters and suitable iteration runs
were discovered, which resulted in the highest differentiating
ability of the signature. Thus, these steps made sure the bet-
ter performance on stability and differentiating ability of the
new strategy than those traditional methods in current SCZ
studies.

Discovering the key TFs in the development of SCZ

TF-binding sites with hypergeometric test P < 0.005 using GSEA
[62] were enriched based on 135 DEGs, and 19 TFs were overrep-
resented (Supplementary Table S13). A total of 17 (89.47%) out of
these 19 were reported to be closely related to SCZ by previous
study, and 2 novel TFs (NF1 and GABP) without any relation to
SCZ reported so far were identified. These two TFs may have
strong association with the mechanism of SCZ, since NF1 was
found to be susceptible to autism [90] and GABP was regulated
by the ERK signaling [91] (which was found involved in the
pathology of SCZ [92]). Among those 135 DEGs identified, 17 were
regulated by NF1 and GABP (Figure 4) with 3 (ARRB2, CACNA1D
and FAM13B) co-regulated by both. As shown in Supplementary
Table S4, ARRB2 was associated with tardive dyskinesia in Chi-
nese SCZ patients [93], and CACNA1D was over-expressed in SCZ
animal models [94]. These findings could be additional strong
support to the novel and key roles played by NF1 and GABP in
SCZ.

Conclusion
The SCZ signature identified in this study using the newly con-
structed strategy demonstrated significantly enhanced stability
and better differentiating ability compared with those popular
feature selection methods used in current SCZ research. There-
fore, those identified 135 DEGs underneath this SCZ signature
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would provide important clues for discovering the etiology, diag-
nostic molecule and potential drug target of SCZ. Moreover, 2
novel TFs and 17 previously reported TFs identified here showed
great potential in revealing the developmental mechanism and
etiology of SCZ, which required additional in-depth study in the
future.

Author Contributions
FZ conceived the idea and supervised the work. QY performed
the researches. QY and BL developed and wrote the C++ scripts.
QY, BL, JT, XC, YW, XL, JH, YZC, WX, YL and YQ prepared and
analyzed the data. FZ wrote the manuscript.

Key Points
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damental puzzles in current medical research. However,
its diagnosis is limited by the lack of objective molecular
criteria, and the SCZ gene signatures identified by the
independent studies are found highly inconsistent.

• It is crucial to develop new tools of novel strategy for
ensuring a stable discovery of gene signature for SCZ,
and a novel feature selection strategy was therefore
constructed.

• This new strategy demonstrated significantly enhanced
stability and better differentiating ability compared
with the feature selection methods popular in current
SCZ research, and 2 novel and 17 previously reported
TFs were identified for revealing the etiology of SCZ.
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