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Abstract

Microbial community (MC) has great impact on mediating complex disease indications, biogeochemical cycling and
agricultural productivities, which makes metaproteomics powerful technique for quantifying diverse and dynamic
composition of proteins or peptides. The key role of biostatistical strategies in MC study is reported to be underestimated,
especially the appropriate application of feature selection method (FSM) is largely ignored. Although extensive efforts have
been devoted to assessing the performance of FSMs, previous studies focused only on their classification accuracy without
considering their ability to correctly and comprehensively identify the spiked proteins. In this study, the performances of 14
FSMs were comprehensively assessed based on two key criteria (both sample classification and spiked protein discovery)
using a variety of metaproteomics benchmarks. First, the classification accuracies of those 14 FSMs were evaluated. Then,
their abilities in identifying the proteins of different spiked concentrations were assessed. Finally, seven FSMs (FC, LMEB,
OPLS-DA, PLS-DA, SAM, SVM-RFE and T-Test) were identified as performing consistently superior or good under both criteria
with the PLS-DA performing consistently superior. In summary, this study served as comprehensive analysis on the
performances of current FSMs and could provide a valuable guideline for researchers in metaproteomics.
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Introduction

Microbial community (MC) has great impacts on mediating the
global-scale biogeochemical cycling [1–3], revealing the patho-
genesis of various diseases [4–7] and enhancing the agricultural
productivities [8]. Investigation of the protein abundance in a
given MC has enabled an unprecedented view of the adaptive
response of microbes to the external stimuli or their interactions
with other organism/host cells [9]. This makes metaproteomics
powerful technique for quantifying diverse and dynamic com-
position of proteins or peptides [10–13]. Due to the enormous
demands on discovering diagnostic/prognostic protein markers
of high specificity and sensitivity [14], various feature selection
methods (FSMs) have been constructed and applied to identify
the relationship between microbe and host phenotype [15], facil-
itate the diagnosis of cognitive dysfunctions [16] and achieve
the rapid and accurate identification of infectious strains that
is essential for appropriate therapeutic management and timely
intervention [17–20].

However, there are substantial challenges available in current
metaproteomics researches, which include the heterogeneity
among microbial samples [21–23], expanded search space
[24–26], vast dynamic range of protein abundances [24, 27], great
variation among sample preparations or experimental runs
[28–30], complex processing steps [31, 32] and the absence of
effective bioinformatics tool [31, 33]. Among these challenges,
the key role of biostatistical strategy in microbiome study is
found to be underestimated [34], especially the appropriate
application of FSMs is largely ignored [34–36]. Particularly,
the classification performance of the discovered features and
the identification rate of the spiked proteins by several FSMs
are found to be poor [37]. On one hand, the FSM should
identify a minimal and optimal subset of features (e.g. the
serum markers in predictive medicine) that are relevant to the
development of prediction model with high accuracy [38], but
its performances are frequently hampered, which decrease the
quality of the feature discovery prior to experiment validation
[39, 40]. On the other hand, an ideal FSM should select the
complete list of discriminative features (e.g. the spiked proteins
of known concentrations and spiked at different levels into
background samples have been widely applied for analyzing the
performances of various statistical methods in identifying the
true difference in protein abundances) [14, 41, 42], but the sets
of features identified by different FSMs are found sharing little
in common [43–45]. Therefore, it is essential in current metapro-
teomics studies to simultaneously improve the performances of
FSMs in both classification and spiked protein discovery [14].

Till now, no less than 14 FSMs have been developed and
applied to analyze the mass spectrometry (MS)-based microbial
proteomics data, which can be classified into the following
two groups [46–48]: univariate filter and wrappers/embedded
methods. The univariate filter FSMs (such as student’s t-test
and Wilcoxon rank-sum test) assess the relevance of features by
looking only at the intrinsic properties of data but not for sample
classification [49]. The wrappers/embedded FSMs select a list
of features that provides the best classification for predefined
sample groups. Since it remains unclear which FSM performs
the best in recent metaproteomics [34], the comparisons among
FSMs are reported [14]. Particularly, the abilities of six FSMs in
clinical proteomics-based marker discovery are compared [14];
the capacities of three feature selection and three classification
methods in enhancing information from overnight oximetry in
the context of apnea diagnosis are assessed [50]. Some novel
methods are compared with available ones on realistic microbial

data sets [51]. However, the performance assessments in these
reported metaproteomics studies focus only on sample classifi-
cation, and FSMs’ performances on identifying spiked proteins
are not fully considered. Moreover, no more than six FSMs have
been assessed in previous publications. Therefore, it is critical to
comprehensively assess the performances of all available FSMs
for current metaproteomics by systematically considering both
classification and spiked protein discovery.

In this study, the performances of 14 FSMs were com-
prehensively assessed from two perspectives (both sample
classification and spiked protein discovery) using a variety of
metaproteomics benchmark data sets. First, three metapro-
teomics benchmark data sets (each containing two distinct
sample groups) were collected. Second, the classification
performances of those 14 FSMs were evaluated using these
benchmarks. Third, another 3 benchmark data sets with the
spiked proteins of 5 different concentrations were collected, and
10 subsequent data sets of different concentration combinations
were generated. Finally, the abilities of FSMs in identifying
the proteins of different spiked concentrations were assessed.
All in all, this study served as a comprehensive analysis
on the performances of current popular FSMs and could
provide a valuable guideline for the researchers in the field of
metaproteomics.

Materials and methods
Collection of the metaproteomics benchmark data sets

To enable a comprehensive assessment on FSMs, a variety of
metaproteomics benchmark data sets were collected from the
PRIDE database [52] by searching the keywords ‘Metaproteomic’,
‘Microbiota’ and ‘Microbiome’, which resulted in 106 records
relevant to metaproteomics. The corresponding literatures of
the resulting records were then comprehensively reviewed. By
considering several additional criteria [the label-free quantifi-
cation (LFQ), the availability of raw intensity data file and the
protein database or library to search against, the well-defined
parameters such as isolation scheme and range of retention
time, the clear description on distinct sample groups and so on],
10 metaproteomics benchmark data sets were then identified.
Literature reviews discovered one additional metaproteomics
benchmark data set (the CPTAC dataset [53]; three technical
replicates of UPS1 proteins spiked into a yeast proteome digest-
ing with a variety of concentrations—0.25, 0.74, 2.2, 6.7 and
20 fmol/μl). As shown in Table 1, 11 benchmark data sets were
collected in total, and the number of samples and a brief descrip-
tion on each data set were provided. In order to effectively
assess the classification performance of each FSM, only the
benchmarks with >10 samples in either sample groups [54]
were included in the analyses of this study, which resulted in
three datasets: PXD006224 [55] (60 ‘metabolic phase’ and 24
‘equilibrium phase’ fecal samples); PXD002882 [56] (21 Crohn’s
disease patients and 10 control healthy subjects); PXD006129
[57] (14 western-style diet and 14 chow-fed mice). Moreover,
to accurately evaluate the identification performance of spiked
proteins, only the benchmark data sets spiked with multiple
proteins were analyzed, which brought about another three sets
of metaproteomics data (PXD002099 [58], PXD001819 [41] and
CPTAC-ST6 [53], as shown in Table 1). There were eight data sets
included in the CPTAC study [53], and only the fifth and sixth
data sets contained the spiked proteins. The fifth data set only
spiked by one protein of single concentration, which was not a
control–case study and not suitable for the analysis. Thus, only
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Table 1. Description and statistics of the benchmark metaproteomics data sets collected for the analysis of this study

Data sets Dataset ID Dataset description Spiked
proteins

Number of
proteins

Quantification
software tool

J Proteome Res.
14:4118–26, 2015

PXD002099 The UPS1 mixtures of
different concentrations (2,
4, 10, 25 and 50 fmol/μL)
were spiked into yeast
proteome [three runs for
each concentration]

48 spiked
proteins

1442 Progenesis

Data Brief .
6:286–94, 2014

PXD001819 The Sigma UPS1 of different
concentrations (0.5, 5, 12.5,
25 and 50 fmol/μg) were
spiked into a background of
yeast lysate [three runs for
each concentration]

48 spiked
proteins

868 MaxQuant

J Proteome Res.
9:761–76, 2010

CPTAC-ST6 The UPS1 proteins of
different concentrations
(0.25, 0.74, 2.2, 6.7 and
20 fmol/μL) were spiked into
a yeast proteome [three runs
for each concentration]

48 spiked
proteins

1570 MaxQuant

Microbiome.
5:144, 2017

PXD006224 60 metabolic phase fecal
samples; 24 equilibrium
phase fecal samples

No spiked
proteins

9761 MaxQuant

Nat Commun.
7:13419, 2016

PXD002882 21 Crohn’s disease patients;
10 control subjects

No spiked
proteins

4169 MaxQuant

Cell Host Microbe.
23:27–40, 2018

PXD006129 14 western-style diet mice;
14 chow-fed mice

No spiked
proteins

3243 MaxQuant

Front Microbiol.
8:1605, 2017

PXD006070 nine corn silage-based
samples; nine grass
silage-based samples

No spiked
proteins

8163 MaxQuant

Genome Med.
8:44, 2016

PXD003028 eight people before
breakfast; eight people after
breakfast

No spiked
proteins

6431 MaxQuant

Mol Cell Proteomics.
13:2277–87, 2014

PXD000987 four transverse colon
samples; four descending
colon samples

No spiked
proteins

2817 MaxQuant

Front Microbiol.
8:1215, 2017

PXD005929 three surfaces exposed;
three whole cell extracts

No spiked
proteins

1570 MaxQuant

J Biol Chem.
292:17337–50, 2017

PXD006810 three NleB1-infected cells;
three wild-type cells

No spiked
proteins

1195 MaxQuant

the sixth dataset (CPTAC-ST6, with five different concentrations)
was selected as one of the three benchmarks analyzed here.
All in all, each of these three data sets was spiked with UPS1
proteins of five different concentrations, and any two concentra-
tions could be combined to form a pair with two distinct groups,
which resulted in 10 different pairs of data sets. Taking the
PXD002099 as an example, 10 pairs of data sets with 10 different
ratios of concentration (2 versus 4, 2 versus 10, 2 versus 25, 2
versus 50, 4 versus 10, 4 versus 25, 4 versus 50, 10 versus 25, 10
versus 50 and 25 versus 50 fmol/μL) were generated by randomly
combining any two concentrations in PXD002099.

Preprocessing of the collected metaproteomics data

The raw LFQ intensities of proteins were downloaded from Pro-
teomeXchange repository [59]. The metaproteomics data were
reported to be characterized by sparsity, which could be repre-
sented by a substantial amount of missing values (∼40%) and
affected up to 80% of protein features [60]. To cope with these
problems, the metaproteomics data sets collected in this study

were preprocessed using the following four steps: (i) the LFQ
intensities were extracted from the downloadable raw data files;
(ii) the MaxQuant [61] was then applied to generate protein
group data files by setting the false discovery rate to 0.01 and
requiring each protein group to have at least one unique or razor
peptide [62]; (iii) the K-nearest neighbor (KNN) algorithm was
applied to impute the missing intensities [63]; and (4) all LFQ
intensities were finally normalized using the variance stabiliza-
tion normalization (VSN) method [64]. In particular, the missing
values occurred frequently in proteomics data set and critically
affected the downstream analyses [65, 66]; it was thus a common
practice to impute these missing values. The KNN imputation
aimed at identifying K proteins that were similar to the proteins
with missing values, where the similarity was estimated by
Euclidean distance, and the missing values were imputed with
the values of weighted average from the neighboring proteins
[67]. KNN was reported to outperform other imputation methods
(such as Bayesian principal component analysis and local least
squares) in current proteomics study [67]; it was thus adopted to
impute the missing values in this study. Moreover, the normal-
ization was essential for metaproteomics analysis that aimed at
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reducing systematic bias or technical variations for improving
the comparability of data and the reliability for downstream
analyses [68–70]. Among all normalizations, the VSN was one
of the most popular approaches [65, 68, 71]. VSN could not only
reduce the unwanted variations among technical replicates in all
examined data sets [68] but also performed consistently well in
the differential expression analysis [65]; it was therefore adopted
to normalize the benchmark datasets in this study.

The FSMs assessed in this study

In total, 14 FSMs popular in current metaproteomics studies
were assessed in this study, which included (i) Chi-square
(CHIS): judging the independence of two events and being
erratic for very small expected count [72]; (ii) empirical
Bayesian analysis of microarray (EBAM): identifying differ-
entially expressed genes and being used in many multiple
testing situations [73]; (iii) entropy-based filters (ENTROPY):
filter-based feature ranking techniques including information
gain, gain ratio and symmetrical uncertainty [74]; (iv) fold
change (FC): generating more reproducible features than the
ordinary and modified t-statistics [75]; (v) linear models and
empirical Bayes (LMEB): assessing the differential intensities
by measuring features based on t-statistics and fold changes
simultaneously [76]; (vi) orthogonal partial least squares
discriminant analysis (OPLS-DA): an upgraded version of PLS-
DA method to discriminate two or more groups using the multi-
variate data [77]; (vii) partial least squares discriminant analysis
(PLS-DA): the chemometrics technique used for classification
purposes by trying to find a proper compromise between
describing the data set and predicting the response [78]; (viii)
random forest (RF): an ensemble, supervised machine-learning
algorithm for pattern recognition in OMIC data sets [79]; (ix)
random forest—recursive feature elimination (RF-RFE): recursive
backward feature elimination procedure [80]; (x) significance
analysis for microarrays (SAM): permutation-based (non-
parametric) hypothesis testing method for the identification
of quantities that differ greatly between two measurement
sets [81, 82]; (xi) sparse partial least squares discriminant
analysis (SPLS-DA): a direct application of sparse partial least
squares with competitive computational efficiencies and
interpretability of results via valuable graphical outputs [83];
(xii) support vector machine—recursive features elimination
(SVM-RFE): wrapper FSM generating the ranking of features via
backward feature eliminations [84]; (xiii) student’s t-test (T-Test):
one of the most prevalent tests used in medical field and the
most powerful unbiased test under normal curve theory [85];
(xiv) Wilcoxon rank-sum test (Wilcox): a non-parametric method
under extremely skewed distribution [85]. Detailed information
of each FSM was provided in the Supplementary Methods.

Assessing FSMs’ performance by classification
accuracy and identified spiked proteins

Classification accuracy was used to judge the reliability of the
selected biomarker candidates [14], which was applied in this
study to assess FSMs’ performances. First, the discriminative
proteins were identified and ranked using the FSMs. Then, the
top-ranked proteins (top 20, top 50, top 100, top 150, top 200, top
250, top 300, top 350, top 400 and top 450) were identified. Third,
SVM [86] was applied to assess the performances of FSMs based
on 10 different sets of top-ranked proteins using 5-fold cross
validation. Considering the influence of parameters used in the

machine-learning algorithms [87], all SVM models constructed
based on the features derived by the FSMs underwent the pro-
cess of parameter optimization in this study. All calculations
were conducted using R (http://www.r-project.org) version 3.5.3
running on Linux v6.5 operating system of 128GB RAM and CPU
E7-4820 × 32 cores.

An ideal FSM should screen a complete list of differential
features that are related to the spiked proteins [88, 89]. In this
study, the performances of 14 FSMs were thus evaluated by
measuring each algorithm’s capacity of constructing an optimal
feature set, which would only contain those features related to
spiked peptides (true positives). To accomplish this, three bench-
mark data sets (PXD002099 [58], PXD001819 [41] and CPTAC-ST6
[53], shown in Table 1) with spiked proteins were first collected.
Then, each FSM was used to three benchmarks for identifying
different sets of features, which contained spiked proteins (true
positives) and non-spiked proteins (false positives). Finally, the
total number of the spiked proteins identified by each FSM was
used to assess the performance of FSMs [14].

The relationship among FSMs’ performances identified
by hierarchical clustering

The classification accuracy and the number of identified
spiked proteins of the FSMs were calculated to assess their
performances. The hierarchical clustering of the FSMs based on
the above two metrics was applied to identify the relationship
among the performances of various FSMs. On one hand, the
accuracy values of a specific FSM among top N differentially
expressed proteins (20, 50, 100, 150, 200, 250, 300, 350, 400 and
450) were used to generate a 10-dimensional vector. On the other
hand, the number of spiked proteins identified by a specific
FSM among 10 pairs of data sets with 10 different ratios of
concentration could also be used to construct a 10-dimensional
vector. Then, the hierarchical clustering was applied to explore
the relationship among 14 vectors (corresponding to 14 FSMs).
To measure the distance between any two vectors, the Euclidean
distance was adopted, and the clustering method was the Ward’s
minimum variance [90], which could reduce the total within-
cluster variance to the maximum extents. In this work, the
Ward’s minimum variance module in R package was used [91].

Results and discussion
Data preprocessing for removing unwanted variations

Unwanted experimental/biological variations may hamper the
identification of differentially expressed proteins and affect the
effectiveness of metaproteomics analysis [69, 92]. Thus, the VSN
was applied to normalize the six benchmark data sets to remove
specific types of unwanted variations, which was reported to be
the one that can well reduce variation among studied samples
[68]. The relative log abundances (RLA) plot and the pooled
median absolute deviation (PMAD) were commonly accepted
and widely used measures to assess the performance of normal-
ization [93]. Compared with the RLA plot of unnormalized data
(Figure 1A), the plots after VSN normalization (Figure 1B) gave a
median closer to zero and lower variations around the median
(Supplementary Figures S1–S3). Moreover, all benchmark data
sets gave PMAD values less than 0.14 after VSN (Figure 1C and
Supplementary Figure S4), which indicated a superior normal-
ization [94]. All in all, the VSN performed very well on removing
the unwanted variation as indicated by both RLA plot and PMAD
values.
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Figure 1. The RLA plots before and after the VSN normalization and the PMAD for six benchmark data sets. (A) The RLA plots for unnormalized intensities; (B) the RLA

plots for normalized intensities; (C) the distributions of PMAD values. Purple: control group; Green: case group.

The performance of FSMs assessed by classification
accuracies

An ideal FSM would be capable of identifying the optimal set
of features with satisfactory classification accuracy (ACC). In
this study, the ACCs of all 14 FSMs were assessed based on
5-fold cross validations [87, 95]. Table 2 provided the ACCs of
all FSMs trained by 10 different sets of top-ranked proteins
(top 20, top 50, top 100, top 150, top 200, top 250, top 300, top
350, top 400 and top 450) using 5-fold cross validation based
on SVM classification. As shown, there were great variations
among the ACCs of FSMs across three benchmark data sets.
On one hand, the ACCs of a specific FSM across different
data sets varied. Taking the CHIS (top 50) as an example, the
ACCs of three benchmarks ranged from 0.677 (PXD002882) to
0.821 (PXD006224). On the other hand, the ACCs of various
FSMs on a particular data set differed significantly. Taking
the PXD006224 (top 50) as an example, the ACCs of different
FSMs varied from 0.714 (Wilcox) to 0.929 (SPLS-DA, LMEB and
EBAM). Because of this significant variation, it is of great interest

to identify FSMs consistently well-performing across multiple
benchmarks and based on different sets of top-ranked protein
features.

Identification of the FSMs with consistently high
classification accuracies

The ACCs of a specific FSM among 10 different sets of top-ranked
proteins were calculated to construct a 10-dimensional vector.
Since the total number of features identified by RF-RFE was less
than 10, there were 13 vectors corresponding to the remaining
13 FSMs. The hierarchic clustering of these 13 vectors resulted
in Figure 2. As shown, 13 FSMs were divided by the dendrogram
on the left side of each figure, which could be further grouped
into three areas: top, middle and bottom colored in green, blue
and gray, respectively. Clearly, three methods (SVM-RFE, SPLS-DA
and PLS-DA) were consistently grouped to the top area across
three benchmarks, while one method (Wilcox) always stayed in
the bottom area. Thus, all FSMs could be further categorized to
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Table 2. Assessing the performances of different FSMs based on their ACC value for three metaproteomics benchmark data sets (PXD006129,
PXD002882 and PXD006224). ACC was calculated based on 5-fold cross validation, which was defined as (true positive + true negative)/(true
positive + false positive + true negative + false negative)

FSM PRIDE ID The ACC values of different features size across three benchmark data sets
20 50 100 150 200 250 300 350 400 450

CHIS PXD006129 0.571 0.679 0.536 0.714 0.679 0.536 0.679 0.786 0.857 0.821
PXD002882 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.774 0.871
PXD006224 0.786 0.821 0.845 0.869 0.857 0.881 0.881 0.881 0.929 0.929

EBAM PXD006129 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
PXD002882 0.677 0.677 0.677 0.677 0.710 0.742 0.774 0.839 0.903 0.903
PXD006224 0.905 0.929 0.917 0.905 0.940 0.952 0.952 0.964 0.964 0.976

ENTROPY PXD006129 0.750 0.643 0.571 0.643 0.786 0.679 0.643 0.679 0.786 0.857
PXD002882 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.839 0.871
PXD006224 0.786 0.810 0.869 0.857 0.881 0.869 0.881 0.917 0.929 0.929

FC PXD006129 0.964 0.893 0.893 0.929 0.893 0.857 0.893 0.929 0.857 0.786
PXD002882 0.677 0.677 0.742 0.710 0.774 0.774 0.774 0.839 0.871 0.806
PXD006224 0.810 0.821 0.857 0.845 0.845 0.857 0.881 0.845 0.881 0.833

LMEB PXD006129 0.929 0.893 0.964 0.964 0.893 0.929 0.929 0.786 0.786 0.750
PXD002882 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.935 0.935
PXD006224 0.917 0.929 0.929 0.929 0.929 0.940 0.940 0.940 0.940 0.976

OPLS-DA PXD006129 0.893 0.821 0.893 0.821 0.821 0.821 0.786 0.750 0.786 0.750
PXD002882 0.968 0.935 0.935 0.935 0.935 0.968 0.968 0.935 0.935 0.968
PXD006224 0.917 0.905 0.929 0.929 0.940 0.940 0.940 0.952 0.952 0.940

PLS-DA PXD006129 0.929 0.893 0.964 0.893 0.929 0.964 0.929 0.964 0.893 0.929
PXD002882 0.935 0.968 0.935 0.968 0.968 0.968 0.968 0.968 0.968 0.968
PXD006224 0.929 0.917 0.929 0.917 0.940 0.917 0.940 0.976 0.952 0.976

RF PXD006129 0.893 0.929 0.964 0.893 0.929 0.857 0.964 0.964 0.857 0.821
PXD002882 0.677 0.677 0.710 0.710 0.677 0.742 0.806 0.839 0.903 0.935
PXD006224 0.774 0.786 0.786 0.821 0.857 0.881 0.893 0.905 0.940 0.952

SAM PXD006129 0.929 0.929 0.929 0.893 0.929 0.821 0.964 0.821 0.857 0.857
PXD002882 0.710 0.710 0.710 0.710 0.806 0.839 0.839 0.903 0.903 0.903
PXD006224 0.821 0.833 0.845 0.857 0.869 0.881 0.869 0.869 0.869 0.857

SPLS-DA PXD006129 0.893 0.964 0.893 0.929 0.964 0.893 0.929 0.964 0.821 0.929
PXD002882 0.935 0.935 0.968 0.968 1.000 0.968 0.968 0.968 0.968 0.968
PXD006224 0.917 0.929 0.929 0.917 0.917 0.940 0.917 0.952 0.952 0.964

SVM-RFE PXD006129 1.000 1.000 0.964 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PXD002882 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PXD006224 0.929 0.905 0.917 0.929 0.917 0.952 0.964 1.000 0.988 1.000

T-Test PXD006129 0.893 0.857 0.929 0.929 0.929 0.929 0.893 0.929 0.893 0.929
PXD002882 0.935 0.935 0.935 0.968 0.968 0.968 0.968 0.968 0.935 0.935
PXD006224 0.857 0.893 0.905 0.893 0.893 0.881 0.905 0.893 0.917 0.893

Wilcox PXD006129 0.643 0.643 0.786 0.714 0.714 0.607 0.714 0.750 0.893 0.893
PXD002882 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.742
PXD006224 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.726 0.738 0.762

four classes by comprehensively considering their ACCs (Table 2
and Figure 2) across three benchmarks. As shown in Figure 3,

the FSMs of orange boxes in class C-A (SVM-RFE, SPLS-DA and
PLS-DA) provided the best classification accuracies among FSMs,
which made this class of Superior performance. This result

was partially consistent with previous publications that (i) the
predictive performance of SVM-RFE was reported to be the best
among other FSMs [34, 96] and (ii) PLS-DA was discovered as
robust and well-performing method in proteomics for various
sample size of biological samples [14]. Moreover, the remaining

10 methods could be further divided into C-B1 (including 6
FSMs occasionally grouped to the top area but absent in the

bottom of Figure 2 and 1 FSM staying in the middle area of
Figure 2, yellow boxes with Good performance), C-B2 (including
2 FSMs occasionally grouped to the bottom area of Figure 2,
blue boxes with Fair performance) and C-C (including 1 FSM
consistently performing the worst across all benchmarks in
Figure 2, grey boxes with Poor performance). Although the FSMs

in C-B1 slightly underperformed compared with that in C-A, they
resulted in very good ACCs across 10 different sets of top-ranked
protein features. However, the remaining three FSMs in C-B2 and
C-C were not as well as that in C-A and C-B1, especially Wilcox
method. Moreover, the variation in ACCs across benchmarks
may be attributed to existing individual statistical biases [97].

The performance of FSMs evaluated by the number of
identified spiked proteins

Another important measure employed to characterize the per-
formance of FSMs was the extent to which they successfully
identified the whole set of spiked proteins [14]. In this study,
the total number of spiked proteins identified by each FSM was
therefore calculated based on differential expression analyses
[14]. Figure 4 illustrated the distribution of the number of spiked
proteins identified by each FSM. As shown, for three benchmark
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Figure 2. Clustering analysis of the studied FSMs using their classification accuracies (ACCs) across 10 different sets of top-ranked protein features based on 3 benchmark

data sets (PXD006129, PXD002882 and PXD006224). The black-colored numbers indicated the number of protein features identified by FSMs (leaves of the hierarchical

trees). Each cell in heat map represents the ACC values. The cell of the highest value was set as exact orange with the lower ones gradually fading towards gray (the

lowest value).

Figure 3. The classes of the studied FSMs defined in this study based on the top, middle and bottom areas in Figure 2. The FSMs in class A provided the best classification

accuracies, which made the class A (C-A, orange boxes) with Superior performance. The FSMs in class C-B1 were occasionally classified to the top area but absent in

the bottom of Figure 2 (yellow boxes with Good performance). The FSMs in C-B2 were occasionally classified to the bottom area of Figure 2 (blue boxes with Fair

performance). The FSMs in class C-C performed consistently the worst across three benchmarks in Figure 2 (grey boxes with Poor performance).
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Figure 4. The distributions of the numbers of the spiked proteins identified by FSMs based on benchmark data sets (PXD002099, CPTAC-ST6 and PXD001819). The bar

plots consisted of 10 pairs of data sets with 10 different ratios of concentration.

Figure 5. Clustering analysis of the studied FSMs using their numbers of identified spiked proteins across 10 different ratios of spiked protein concentrations based

on 3 benchmark data sets (PXD002099, CPTAC-ST6 and PXD001819). The black-colored ratios indicated different ratios of spiked protein concentrations, and the FSMs

were the leaves of the hierarchical trees. Each cell in the heat map represents the number of identified spiked proteins. The cell of the highest number was defined as

exact orange with the lower ones gradually fading towards gray (the exact gray indicated zero).
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Figure 6. The classes of the studied FSMs defined in this study based on the top, middle and bottom areas in Figure 5. The FSMs in class A provided the highest number

of identified spiked proteins, which made the class A (C-A, orange boxes) with Superior performance. FSMs in C-B1 were occasionally grouped to the top area but

absent in the bottom of Figure 5 (yellow boxes with Good performance). The FSMs in C-B2 were occasionally classified to the bottom area of Figure 5 (blue boxes with

Fair performance). FSMs in class C-C performed consistently the worst across three benchmarks in Figure 5 (grey boxes with Poor performance).

data sets, the distribution of the number of identified spiked
proteins differed among FSMs. For PXD002099, the mean values
of the numbers of spiked proteins identified by 14 FSMs were
in the range from 0.4 (RF-RFE) to 45 (PLS-DA). Particularly, the
mean values of 10 FSMs (CHIS, FC, LMEB, OPLS-DA, PLS-DA, SAM,
SPLS-DA, SVM-RFE, T-test and Wilcox) were >24, which denoted
a high identification rate (>50%) of spiked proteins by these
FSMs. Meanwhile, the mean values of the remaining four FSMs
(EBAM, ENTROPY, RF-RFE and RF) were <24, and three FSMs
(ENTROPY, RF-RFE and RF) were even smaller than 10, which
indicated relatively low identification rate. For CPTAC-ST6, the
mean values of the numbers of spiked proteins identified by the
FSMs ranged from 0.6 (RF-RFE) to 32.7 (FC). Particularly, the mean
values of nine FSMs (CHIS, FC, OPLS-DA, PLS-DA, SAM, SPLS-
DA, SVM-RFE, T-test and Wilcox) were >24, which were roughly
consistent with the results of PXD002099. In the meantime, the
mean values of the remaining five FSMs (EBAM, ENTROPY, LMEB,
RF-RFE and RF) were <24, and three FSMs (ENTROPY, RF-RFE
and RF) were even smaller than 10, which were also relatively
consistent with the results of PXD002099. For PXD001819, the
mean values of total numbers of spiked proteins identified by all
14 FSMs ranged from 0.4 (RF-RFE) to 46.1 (SVM-RFE). Particularly,
the mean values of 10 FSMs (CHIS, FC, LMEB, OPLS-DA, PLS-DA,
SAM, SPLS-DA, SVM-RFE, T-test and Wilcox) were >24, which was
similar to that of PXD002099. Meanwhile, the mean value of the
remaining four FSMs (ENTROPY, RF-RFE, RF and Wilcox) were
<24, and three FSMs (ENTROPY, RF-RFE and Wilcox) were even
smaller than 10.

Discovery of the FSMs capable of consistently
identifying high number of spiked proteins

The numbers of the spiked proteins identified based on 10 pairs
of data sets with different concentration ratios by each FSM
were used to construct a 10-dimensional vector. The resulting 14
vectors were then hierarchically clustered. As shown in Figure 5,
14 FSMs were divided by the corresponding dendrogram on the
left side of each subfigure into three areas: top, middle and
bottom colored in green, blue and gray, respectively. Clearly, two
methods (OPLS-DA and PLS-DA) were consistently grouped into
the top area across three benchmarks, while three methods
(ENTROPY, RF and RF-RFE) always stayed in the bottom area.
Thus, all FSMs could be further categorized into four classes
by comprehensively considering their numbers of the identified
spiked proteins (Figures 4 and 5) across three benchmark data
sets. As illustrated in Figure 6, the FSMs of orange boxes in the
class C-A (OPLS-DA and PLS-DA) performed consistently the best
among all FSMs, which made this class with Superior perfor-
mance. Moreover, the remaining 12 methods could be further
divided into C-B1 (including seven FSMs occasionally grouped
to the top but absent in the bottom of Figure 5, yellow boxes
with Good performance), C-B2 (including two FSMs occasionally
grouped to the bottom of Figure 5, blue boxes with Fair perfor-
mance) and C-C (including three FSM consistently performing
the worst across three benchmarks in Figure 5, grey boxes of
Poor performance). Although the FSMs in C-B1 were slightly
underperformed compared with that in the C-A, they identified
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high number of spiked proteins across 10 pairs of data sets with
different concentration ratios.

Generally, the protocol of processing metaproteomics data
was organized into five sequential procedures [31]: (i) sample-
specific database construction, (ii) protein identification and
quantification, (iii) data preprocessing, (iv) statistical analyses
and (v) protein taxonomy/function analysis. Particularly, the
database construction/selection aimed at generating reduced,
sample-specific protein database from original large databases
[31]. MS data from microbe needed be searched against the
constructed database based on various search engines for the
peptide and protein identification. Meanwhile, various quantita-
tive techniques could be used to measure the expression level of
proteins, and protein abundance estimation counted the num-
ber of the identified protein [31]. Then, the data preprocessing
consisted of data transformation, normalization and missing
value imputation [98], which were frequently performed before
the statistical analysis aiming at identifying the protein markers.
Finally, function analyses aimed at investigating the enrichment
of predefined groups with functionally related proteins [99].

Conclusions
Collective consideration of both classification accuracy and the
identification of spiked proteins resulted in a comprehensive
assessment of FSMs’ performance. Based on the data of Figures 3
and 6, seven FSMs (FC, LMEB, OPLS-DA, PLS-DA, SAM, SVM-
RFE and T-Test) performed consistently Superior or Good under
both criteria, with the PLS-DA performing consistently Supe-
rior. Meanwhile, four FSMs (CHIS, EBAM, RF and SPLS-DA) were
found to perform inconsistently under two criteria: (i) three
FSMs (EBAM, RF and SPLS-DA) performed Superior or Good in
their classification accuracy but performed Fair or Poor in the
identification of spiked proteins; (ii) one FSM (CHIS) performed
Good in identifying spiked proteins but with Fair classification
accuracy. Moreover, two methods (ENTROPY and Wilcox) per-
formed consistently Fair or Poor under both criteria. All in all,
this study highlighted the importance of choosing appropriate
FSMs in the biomarker discovery of metaproteomics study and
identified several FSMs performing consistently well under two
key criteria based on a variety of benchmark data sets.

Key Points
• The performances of feature selection methods (FSMs)

in current metaproteomics studies were comprehen-
sively assessed.

• The assessment was conducted based on two key crite-
ria (sample classification and spiked protein discovery)
using a variety of metaproteomics benchmarks.

• Seven FSMs were identified as performing consistently
superior or good under both criteria, with the PLS-DA
performing consistently superior.
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Supplementary data are available online at https://academic.
oup.com/bib.
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