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Abstract

The type IV bacterial secretion system (SS) is reported to be one of the most ubiquitous SSs in nature and can induce serious
conditions by secreting type IV SS effectors (T4SEs) into the host cells. Recent studies mainly focus on annotating new T4SE
from the huge amount of sequencing data, and various computational tools are therefore developed to accelerate T4SE
annotation. However, these tools are reported as heavily dependent on the selected methods and their annotation
performance need to be further enhanced. Herein, a convolution neural network (CNN) technique was used to annotate
T4SEs by integrating multiple protein encoding strategies. First, the annotation accuracies of nine encoding strategies
integrated with CNN were assessed and compared with that of the popular T4SE annotation tools based on independent
benchmark. Second, false discovery rates of various models were systematically evaluated by (1) scanning the genome of
Legionella pneumophila subsp. ATCC 33152 and (2) predicting the real-world non-T4SEs validated using published experiments.
Based on the above analyses, the encoding strategies, (a) position-specific scoring matrix (PSSM), (b) protein secondary
structure & solvent accessibility (PSSSA) and (c) one-hot encoding scheme (Onehot), were identified as well-performing
when integrated with CNN. Finally, a novel strategy that collectively considers the three well-performing models
(CNN-PSSM, CNN-PSSSA and CNN-Onehot) was proposed, and a new tool (CNN-T4SE, https://idrblab.org/cnnt4se/) was
constructed to facilitate T4SE annotation. All in all, this study conducted a comprehensive analysis on the performance of a
collection of encoding strategies when integrated with CNN, which could facilitate the suppression of T4SS in infection and
limit the spread of antimicrobial resistance.
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Introduction
Bacterial secretion system (SS) plays pivotal roles in the inva-
sion of pathogenic bacteria into the host cell by transporting
virulence factors [1]. Among those diverse types of SS charac-
terized [2], type IV SS (T4SS) is reported to be one of the most
ubiquitous ones in nature [3], which can induce whooping cough
[4], gastritis [5] and crown-gall tumor [6] by secreting type IV SS
effectors (T4SEs) into host cells [7]. Recent studies mainly focus
on annotating novel T4SEs from the huge amount of sequenc-
ing data [8] and revealing their mechanisms underlying the
bacteria invasion [9–12]. Particularly, a variety of experimental
methods, such as host hypersensitive response suppression [13],
immunoblot analysis [14] and pull-down assay [15], are applied
for characterizing novel T4SEs and result in the discovery of >450
T4SEs, which can be used to suppress T4SS and drug resistance
during infection [16].

However, the available experimental approaches are reported
to be very inefficient in identifying new T4SEs [17], and they
are incapable of accomplishing the large-scale screenings of the
entire bacterial genome [9, 18]. Therefore, various computational
methods are designed to ensure the comprehensive and timely
annotation of T4SEs [19], which can be classified into the meth-
ods based on the similarity [20] and machine learning [21]. On the
one hand, similarity-based methods identify T4SEs by sequence
homology or the similar secondary/tertiary structure to known
effectors [20, 22]. Since T4SEs show great sequence variations
among different bacterial species or even strains [7], these sim-
ilarity-based methods are reported to be not always applicable
[11]. On the other hand, the machine learning-based methods are
used to identify key characteristics of sequence, conservation
profile, regulatory element, cognate chaperone, secretion signal
or physicochemical property [10, 21, 23]. Because of their ability
in detecting new T4SEs regardless of the sequence similarity to
the existing effector [24], various machine learning-based methods
(such as T4SEpre [8] & T4EffPred [11]) are developed, but they
are reported to be dependent on the selected method and their
performance requires further enhancement [21].

To cope with the problems of similarity-based and machine
learning-based methods, a combinatorial strategy of the majority
votes by different machine learning-based methods is proposed,
and several novel tools, such as Bastion4 [9], are developed. Bas-
tion4 integrates six machine learning methods and is distinguished
by not only its independency on the sequence similarities but
also its higher prediction performance than any of these inte-
grated machine learning approaches [9]. However, the combina-
tion of multiple methods can heavily enhance the complexity
of the annotation model [9, 25], which makes it infeasible for
researchers, especially the non-programmers, to combine mul-
tiple approaches for T4SE annotation. As an independent tech-
nique, deep learning has been frequently and successfully applied
in sequence/omics analyses [26–29] and medical imaging/signal
processing [30–33], which shows the remarkable performance
[34–37]. Thus, it is essential to develop new tools to simultane-
ously enhance T4SE annotation performance and improve the
practical application of the annotation tool.

Herein, a novel convolution neural network (CNN) technique
was identified and applied to annotate T4SEs by integrating
multiple protein encoding strategies. First, the annotation
accuracies of multiple encoding strategies integrated with
CNN were assessed and compared with that of a variety
of popular T4SE annotation tools (Bastion4, T4SEpre_bpbAac,
T4SEpre_Joint & T4SEpre_psAac) based on an independent
benchmark. Second, false discovery rates (FDRs) of various

models were systematically evaluated by (1) scanning the
whole genome of Legionella pneumophila subsp. pneumophila (strain
Philadelphia 1/ATCC 33152/DSM 7513) and (2) predicting the real-
world true non-T4SEs validated using published experiment.
Based on above analyses, three encoding strategies, (a) position-
specific scoring matrix (PSSM), (b) protein secondary structure
& solvent accessibility (PSSSA) and (c) one-hot encoding scheme
(Onehot), were identified in this study to be powerful in T4SE
annotation when integrated with CNN. Finally, to ensure both
the high enrichment and low false positive rate (FPR), a novel
strategy that collectively considers the three newly identified
best-performing models (CNN-PSSM, CNN-PSSSA & CNN-
Onehot) was proposed, and a new software tool (CNN-T4SE) was
constructed to facilitate the annotation of T4SEs. All in all, this
study conducted a comprehensive analysis on the performance
of a collection of encoding strategies when integrated with CNN,
which could facilitate the suppression of T4SS during infection
and limit the spread of antimicrobial resistance.

Materials and methods
Benchmark datasets collected for the analyses in this
study

In total, 420 T4SEs and 1262 non-T4SEs were directly collected
from a pioneer study that annotated the T4SE protein [9]. Using
the same strategy in that study, these proteins were divided into
training and independent test datasets. Particularly, there were
390 T4SE and 1112 non-T4SE proteins in the training dataset
after considering sequence redundancy [9]. Meanwhile, the inde-
pendent test dataset was made up of 30 T4SEs and 150 non-
T4SEs from the same study [9].

Moreover, in order to assess the FDR of studied methods, two
additional datasets were collected. (1) 2950 proteins encoded in
the genome of Legionella pneumophila subsp. pneumophila (strain
Philadelphia 1/ATCC 33152/DSM 7513) were directly downloaded
from the UniProt database [38]. This strain was known as contain-
ing a rather exceptional number of SSs [39] as well as including
the largest number of validated T4SEs among other T4SE-related
strains [9, 40]. In other words, since it was estimated to encode
a repertoire of over 300 T4SEs [24, 40], this strain was selected
and collected here to evaluate the FDR of the studied method. (2)
1385 experimentally validated real-world true non-T4SEs were
collected from an independent study [21] that explored the
annotation of T4SE. Both datasets were used to assess the level
of false discovery in this study.

A variety of techniques adopted in this study for
protein sequence encoding

Currently, a variety of protein-encoding techniques were avail-
able for protein function prediction [9]. Particularly, ≥8 popular
techniques were frequently applied, which included the (1) PSS
[41], (2) protein solvent accessibility (PSA) [42], (3) Onehot [43],
(4) native disorder (Diso) [44], (5) PSSM [45], (6) smoothed PSSM
(SmoPSSM) [46], (7) amino acid composition (AAC) [47] and (8)
composition, transition & distribution (CTD) features [18]. All
these techniques were applied in this study to facilitate T4SE
annotation.

PSSSA

Three encoding strategies under this technique were adopted,
and their annotation performances were assessed, which
included PSS, PSA and PSSSA. Taking PSSSA as example, it
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Figure 1. Workflow of the CNN strategy applied in this study together with a graphic illustration of the encoding technique, combining solvent accessibility with

secondary structure, adopted in this study. The SCRATCH Protein Predictor [41] tool (both online version and stand-alone version) was applied to achieve the protein

encoding.

generated a 1000 × 5 binary array for any protein sequence.
As illustrated in the Protein Encoding part of Figure 1, an amino
acid (aa) sequence was first represented by its (a) secondary
structure (‘H’, ‘E’ and ‘C’ were applied to indicate helix, strand
and other, respectively, PSS in Supplementary Figure S1) and
(b) solvent accessibility (‘b’ and ‘e’ were used to denote buried
and exposed, respectively, PSA in Supplementary Figure S1). In
other words, PSS and PSA helped to transform the given aa
sequence to two new sequences. Second, each ‘aa’ represented
by PSS was encoded by a three-dimensional vector ([0,0,1], [0,1,0]
and [1,0,0] denoted ‘C’, ‘H’ and ‘E’, respectively), and each ‘aa’
represented by PSA was encoded by a two-dimensional vector
([0,1] and [1,0] indicated ‘e’ and ‘b’, respectively). Third, as shown
in the Convolution Layer part of Figure 1, each position of the
sequence could be encoded by a five-dimensional vector through
combining the vectors of PSS and PSA. Moreover, only the
proteins whose sequence length was no more than 1000 aa were
analyzed in this study. For sequence >1000, its C-terminal 1000-
aa fragment was chosen. For the sequence ≤1000, their empty
aa positions were complemented using [0,0,0,0,0]. To achieve the
protein encoding based on the above three strategies (PSS, PSA
and PSSSA) in this study, the SCRATCH Protein Predictor [41] was
applied.

Onehot

Onehot was applied to represent a studied protein based on its
aa sequence, which had been widely applied to predict acety-
lation site [48] and annotate RNA-binding protein [49]. It did
not require to convert sequence to other forms of feature. Each
aa was represented by a corresponding 20-dimensional vec-

tor, in which the legal combinations of values were only those
with a single ‘1’ bit and all the others ‘0’. In other words, as
illustrated in Supplementary Figure S2, a protein sequence of
length L was encoded as an L×20 matrix, where the number
20 was corresponding to the twenty common aas. Each row
in the matrix consists of nineteen ‘0’ and a single ‘1’, with
the position of the ‘1’ indicating the aa at that position in the
proteins. The aas other than these 20 were represented by a
20-dimensional vector with every dimension setting to ‘0’. For
the sequences >1000, their C-terminal 1000-aa fragment was
chosen, and for the sequences ≤1000, their empty aa positions
were complemented using twenty ‘0’. To achieve the one-hot
protein encoding, the corresponding program was realized by
Python programming.

Native disorder of proteins

The intrinsically disordered regions with the annotated protein-
binding site were applied in this study as another protein encod-
ing technique [44]. To get Diso encoding, DISOPRED3 [44] was first
adopted, which converted the protein sequences (fasta format) to
two types of file (.pbdat and .diso). In .pbdat file, protein-binding
disordered residues were marked with carets (∧), disordered
residues not binding proteins were marked with dashes (–) and
ordered residues were marked with dots (.). In .diso file, an
asterisk (∗) referred to disordered residue and a dot (.) referred
to ordered residue. Then, as shown in Supplementary Figure S3,
each residue represented by intrinsically disordered regions was
encoded by a two-dimensional vector ([0,1] and [1,0] referred to
‘∗’, and ‘.’, respectively), and each aa represented by annotated
protein-binding sites was encoded by a three-dimensional vec-
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tor ([0,0,1], [0,1,0] and [1,0,0] indicated ‘∧’, ‘–’ and ‘.’, respectively).
For the sequences >1000, their C-terminal 1000-aa fragment was
used, and for the sequences ≤1000, their empty aa positions were
complemented using five ‘0’. Finally, these two were combined
to construct a five-dimensional vector for each residue, and
a 1000×5 feature matrix was therefore generated to establish
annotation models in this study.

PSSM and SmoPSSM

PSSM was a global sequence encoding strategy that provided the
evolutionary information of protein. Supplementary Figure S4
illustrates a standard PSSM profile. As shown, the (i, j)-th entry of
the matrix indicated the log of the probability that residue in the
i-th position mutated to aa type j [50], which was realized by PSI-
BLAST [11] with default parameter j=3 & h=0.001. For sequences
>1000, their 1000-aa fragment was used, and for sequences
≤1000, their empty aa sites were complemented using 20 ‘0’.
As a result, it generated a 1000×20 binary array for any pro-
tein sequence. Moreover, as a derivation of the PSSM coding
strategy, SmoPSSM was a transformation of the standard PSSM
encoding by replacing the vector of residue αi with the sum of
surrounding row vectors [50]. The SmoPSSM profile considered
the first 50 aas at the protein’s N-terminus to generate a 50×20
matrix (shown in Supplementary Figure S4). Both standard PSSM
and SmoPSSM encodings could be achieved using the POSSUM
server [45].

CTD and AAC

CTD features were a popular encoding technique that converted
a protein sequence into a digital feature vector based on the
characteristics of each residue within that protein [18]. The
studied characteristics included (1) AAC, (2) hydrophobicity, (3)
PSS, (4) surface tension, (5) polarizability, (6) solvent accessibility,
(7) polarity, (8) charge and (9) van der Waals volume [51]. Then,
three features (composition, transition & distribution) were used to
describe each property [36]: (a) composition (number of residues
of particular property over the total number of residues; (b)
transition (the percentage of residues with a certain property was
followed by residues with a different property); (c) distribution
(the sequence lengths within which the 1st, one fourth, half,
three-quarters and all of the residues of specific property were
localized). Detailed information on how to construct the CTD
characteristics was provided in previous studies [52, 53]. More-
over, AAC was also a popular technique for protein encoding,
which converts a protein sequence to a 20-dimensional vector,
where each number referred to the global composition of a
given aa. In other words, the AAC was a simplified CTD tech-
nique that encoded the protein by a 188-dimensional feature
vector according to the characteristics of each residue within the
protein [53].

Based on the above analysis, nine protein encoding tech-
niques were applied in this study for annotating T4SE pro-
teins, which included the (1) PSSSA, (2) PSS, (3) PSA, (4) One-
hot, (5) Diso, (6) PSSM, (7) SmoPSSM, (8) AAC and (9) CTD. All
encoded features were analyzed using the newly constructed
CNN strategy in this study. Different from the first seven encod-
ing strategies, the AAC and CTD converted a sequence to a
vector other than a n×m binary array, which made them suit-
able to be analyzed by the traditional machine learning meth-
ods (such as support vector machine (SVM)) [52, 53]. Therefore,
these two techniques were further assessed using SVM in this
study.

The Deep Learning strategy adopted for T4SE annotation
in this work

To apply deep learning method to T4SE annotation, the CNN
technique was applied in this study to construct the function
annotation models. As illustrated in Figure 1, CNN consisted of
five distinct layers: one convolutional layer, one pooling layer,
two fully connected layers and one softmax layer. First, the
encoding array connected directly with the convolution layer
which scanned the encoding array through a mk×5 convolution
kernel and resulted in a feature vector. Second, a max pooling
layer was adopted, and the maximum neuron output value of
the feature vector was selected to be the output of the pooling
layer. To fully extract the protein feature, eight different lengths
of convolution kernel (there are 120 kernels for each length) were
used for scanning the protein encoding array. Thus, after the
pooling layer, a vector containing 960 outputs for each sequence
was obtained. Third, based on this vector, the fully connected
layers generated the output for each layer. Finally, the output
vector of the fully connected layer was further used as the input
of the softmax layer, which gave corresponding classification
probability (the y in Figure 1) to a query protein.

This newly constructed annotation model was implemented
with Python programming language and TensorFlow library. The
binary cross-entropy loss function was adopted to train the models,
and the adaptive moment estimation (Adam) [54–56] was used
to optimize the parameters through computing the adaptive
learning rates. Particularly, the Adam not only stored an expo-
nentially decaying average of the past squared gradients vt, but
also kept an exponentially decaying average of the past gradients
mt [57]. The mt and vt were estimates of the first moment (mean)
together with the second moment (uncentered variance) of the
gradients, respectively, and biased towards zero (especially in
initial time steps). Moreover, a variety of parameters were set as
default (which included (1) learning rate (η) = 0.001, (2) exponen-
tial decay rate β1 for the running average of gradient = 0.9, (3)
exponential decay rate β2 for the running average of the square
of gradient = 0.999 and (4) smoothing term (ε) = 10-8) during back-
propagation optimization. The weights of each neuron in the
neural network constructed in this study were initialized by the
He initialization method [58], and the biases were initialized to
zero. The batch normalization was applied in the fully connected
layers before ELU activation function for accelerating the speed
of convergence. To prevent the potential overfitting problem
of the constructed model, the effective strategy (dropout [59]
and regularization [60]) helping to avoid the model overfitting
dilemma was applied in this study. Particularly, a dropout strat-
egy (randomly removing a certain number of neurons at each
training step) was used to a fully connected layer by setting the
drop rate to 0.6 [59], and a weight decay parameter lambda of L2
regularization strategy (forcing weights to decay towards zero,
but not exactly zero) was set to 0.001 [59]. Detailed information
of this CNN strategy was fully provided in the Supplementary
Method S1.

The Machine Learning strategy applied for annotating
T4SEs in this study

The machine learning strategy assessed in this study was SVM,
which had been widely applied in protein function annotation
[51–53]. As one of the supervised learning methods, SVM was
used here to classify proteins into two groups (T4SEs versus non-
T4SEs). The details of the SVM algorithm and computational
procedure could be found in previous publications [51–53]. In this
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study, a nonlinear SVM was applied based on a kernel function
as follows:

K
(
xi, xj

) = e−|xj−xi|2
/2σ2

SVM first projects feature vectors (generated using CTD and
AAC techniques) into a high-dimensional feature space based
on the above function. Then, a linear hyper-plane was drawn
to divide all studied proteins into T4SEs and non-T4SEs. The
proteins in the training dataset included 390 T4SE and 1112 non-
T4SE proteins, and the independent test dataset was made up of
30 T4SEs and 150 non-T4SEs.

The T4SE annotation models studied and assessed in
this work

Based on the nine techniques for protein encoding, CNN and
SVM were applied and resulted in 11 T4SE annotation models,
which included CNN-PSSSA, CNN-PSS, CNN-PSA, CNN-Onehot,
CNN-Diso, CNN-PSSM, CNN-SmoPSSM, CNN-AAC, CNN-CTD,
SVM-AAC and SVM-CTD. All the models were comprehensively
analyzed and assessed in the following studies. Moreover, two
popular models in T3SE annotation were further assessed
and compared with these 11 models. First, the popular tool
T4SEpre [8] was assessed, which contained three powerful
models: T4SEpre_Joint (trained on the joint features of position-
specific AAC, secondary structure and solvent accessibility),
T4SEpre_bpbAac (trained on the bi-profile Bayesian aa compo-
sitions) & T4SEpre_psAac (trained on the position-specific single-
profile Bayesian & sequence-based aa compositions). These
models were found to considerably outperform previous models
in terms of sensitivity, specificity, accuracy, AUC and MCC and
expected to be combined in practice for T4SE annotations [8].
Second, another state-of-the-art annotation model assessed in
this study was Bastion4, which integrated six different machine
learning techniques and was distinguished by its independency
on sequence similarity and its higher prediction performance
than any of those integrated techniques [9, 61, 62].

Assessing the accuracy and FDR of the studied
annotation models

Five popular metrics, Accuracy (AC), Precision (PR), Sensitivity (SE),
Specificity (SP) and Matthews correlation coefficient (MCC) [9, 18],
were adopted in this study to evaluate the performance of each
T4SE annotation model. Particularly, AC denoted the percentage
of the correctly predicted T4SE and non-T4SE in all studied
sequences, and MCC reflected the stability of the particular
annotation model and described the correlation between the
prediction results and actual protein function [63]. AC was one
of the most popular metrics applied for assessing the perfor-
mances of protein function annotation, and MCC was considered
as one of the most comprehensive parameters in any category
of predictors due to its full consideration of multiple metrics.
To further estimate the performance of the annotation models,
5-fold cross validation (CV) was applied by dividing training
dataset into five subsets. In each CV step, one subset consti-
tuted the validation set and the remaining four subsets were
combined to form a training set. This procedure was repeated
five times until all subsets were used as both training and vali-
dation. The average performance across all five trials was then
calculated.

To assess the FDR of each studied model, a real-world appli-
cation of genome scanning was performed. Particularly, 2950
sequences encoded within the genome of Legionella pneumophila

subsp. pneumophila (strain Philadelphia 1/ATCC 33152/DSM 7513).
This strain contained the rather exceptional number of SSs [39]
and the largest number of validated T4SEs among other T4SE-
related strains [9, 40]. In other words, since it was estimated to
encode a repertoire of over 300 T4SEs [24, 40], this strain was
collected to evaluate FDR of each studied model. The FDR was
evaluated using enrichment factor (EF) for discovering T4SEs.
The value of EFs would be no less than zero, and only when
the EF value was larger than 1 was there an enrichment. The
larger the EF, the lower the false annotation rate of T4SE. The
detail information of the EF calculation could be found in the
Supplementary Method S2.

Results and discussion
Models’ performances assessed by 5-fold CV and
independent test data

Performances of the annotation models (CNN-PSSSA, CNN-PSS,
CNN-PSA, CNN-Onehot, CNN-Diso, CNN-PSSM, CNN-SmoPSSM,
CNN-AAC, CNN-CTD, SVM-AAC, SVM-CTD) constructed in this
study were calculated and assessed via the 5-fold CV based
on the training dataset of 390 T4SEs and 1112 non-T4SEs. As
illustrated in Table 1, SEs, SPs, PRs, ACs and MCCs of each
fold were provided. Taking CNN-PSSSA as an example, its
average SE, SP, PR, AC and MCC for the 5-fold CV equaled
to 71.5%, 93.5%, 81.4%, 87.8%, and 0.68, respectively. The ACs
of all models were within the range from 75.6% to 95.3%,
and their MCCs were from 0.44 to 0.88. Except for CNN–Diso
(MCC = 0.44), all the other models could reach an MCC higher
than 0.5.

Moreover, the same independent test data as that used for
constructing Bastion4 [9] were adopted to assess and compare
the annotation performances among those studied models.
As illustrated in Table 2, the SEs of all 11 newly constructed
models (from 63.3% to 96.7%) were found significantly higher
than that of those three T4SEpre models (43.3%, 50.0% and
36.7% for T4SEpre_bpbAac, T4SEpre_Joint and T4SEpre_psAac,
respectively); the SPs of some newly constructed models (such
as CNN-PSSSA, CNN-PSA, CNN-Onehot and CNN-PSSM) were
comparable to/slightly higher than that of the T4SEpre model
(98.0%, 98.7% and 99.3% for the T4SE_bpbAac, T4SE_Joint and
T4SE_psAac, respectively); the PRs of some new models (such
as CNN-PSSSA, CNN-PSA, CNN-Onehot and CNN-PSSM) were
higher than those of the T4SEpre tools (81.3%, 88.2% and
91.7% for T4SEpre_bpbAac, T4SEpre_Joint and T4SEpre_psAac,
respectively); the ACs of the majority of the new models (except
for CNN–Diso) were substantially higher than those of the
T4SEpre model (88.9%, 90.6% and 88.9% for T4SEpre_bpbAac,
T4SEpre_Joint and T4SEpre_psAac, respectively); the MCCs of
the majority of the 11 new models (except CNN–Diso) were
significantly higher than those of the three T4SEpre models
(0.54, 0.62 and 0.54 for T4SE_bpbAac, T4SE_Joint and T4SE_psAac,
respectively). Moreover, ROC curves of 14 studied models (11
newly constructed and 3 T4SEpre models) on independent test
datasets are illustrated in Figure 2. As shown, the majority of
those 11 models (CNN-PSSM, CNN-SmoPSSM, CNN-Onehot,
CNN-PSSSA, CNN-PSA, SVM-AAC, SVM-CTD & CNN-AAC)
outperformed those three T4SEpre models by providing higher
AUCs (from 0.928 to 0.996). All in all, based on the ROC curve
and overall performance assessment metrics (AC and MCC) on
independent data, these new models constructed using the CNN
technique were found to be capable of performing better than
those three models of T4SEpre.
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Table 1. The performances of 11 annotation models constructed in this study assessed by 5-fold CV. TP: true positive; FN: false negative; TN:
true negative; FP: false positive; SE: sensitivity; SP: specificity; PR: precision; AC: accuracy; MCC: Matthews correlation coefficient

Fold TP FN TN FP SE SP PR AC MCC

C
N

N
-P

S
S

S
A 1 66 12 195 28 84.6% 87.4% 70.2% 86.7% 0.68

2 52 26 215 8 66.7% 96.4% 86.7% 88.7% 0.69
3 48 30 219 3 61.5% 98.6% 94.1% 89.0% 0.70
4 58 20 213 9 74.4% 95.9% 86.6% 90.3% 0.74
5 55 23 198 24 70.5% 89.2% 69.6% 84.3% 0.60
AVE – – – – 71.5% 93.5% 81.4% 87.8% 0.68

C
N

N
-P

S
S

1 54 36 225 15 60.0% 93.8% 78.3% 84.5% 0.59
2 54 36 207 33 60.0% 86.2% 62.1% 79.1% 0.47
3 88 2 208 2 97.8% 99.0% 97.8% 98.7% 0.97
4 34 26 194 16 56.7% 92.4% 68.0% 84.4% 0.52
5 37 23 200 12 61.7% 94.3% 75.5% 87.1% 0.60
AVE – – – – 67.2% 93.2% 76.3% 86.8% 0.63

C
N

N
-P

S
A

1 41 49 231 9 45.6% 96.2% 82.0% 82.4% 0.52
2 53 37 214 26 58.9% 89.2% 67.1% 81.0% 0.50
3 57 33 182 28 63.3% 86.7% 67.1% 79.7% 0.51
4 33 27 203 7 55.5% 96.7% 82.5% 87.4% 0.60
5 40 20 201 11 66.7% 94.8% 78.4% 88.6% 0.65
AVE – – – – 57.9% 92.7% 75.4% 83.8% 0.56

C
N

N
-O

n
eh

ot 1 62 28 233 7 68.9% 97.1% 89.9% 89.4% 0.72
2 80 10 191 49 88.9% 79.6% 62.0% 82.1% 0.62
3 72 18 172 38 80.0% 81.9% 83.9% 85.6% 0.53
4 26 34 205 5 43.3% 97.6% 83.9% 85.6% 0.53
5 48 12 183 29 80.0% 96.3% 62.3% 84.9% 0.61
AVE – – – – 72.2% 88.5% 72.7% 84.7% 0.62

C
N

N
-P

S
S

M

1 74 16 215 25 82.2% 89.6% 74.7% 87.6% 0.70
2 90 0 239 1 100.0% 99.6% 98.9% 99.7% 0.99
3 72 18 239 1 80.0% 99.6% 98.6% 94.2% 0.85
4 51 9 210 0 85.0% 100.0% 100.0% 96.7% 0.90
5 58 2 180 2 96.7% 98.9% 96.7% 98.3% 0.96
AVE – – – – 88.8% 97.5% 93.8% 95.3% 0.88

C
N

N
-S

m
oP

S
S

M 1 67 23 235 5 74.4% 97.9% 93.1% 91.5% 0.78
2 72 18 216 24 80.0% 90.0% 75.0% 87.3% 0.69
3 80 10 189 21 88.9% 90.0% 79.2% 89.7% 0.76
4 44 16 208 2 73.3% 99.0% 95.7% 93.3% 0.80
5 49 11 205 7 81.7% 96.7% 87.5% 93.4% 0.80
AVE – – – – 79.7% 94.7% 86.1% 91.0% 0.77

C
N

N
-D

is
o 1 62 28 205 35 68.9% 85.4% 63.9% 80.9% 0.53

2 65 25 202 38 72.2% 84.2% 63.1% 80.9% 0.54
3 58 32 185 25 64.4% 88.1% 69.9% 81.0% 0.54
4 36 24 189 21 60.0% 90.0% 63.2% 83.3% 0.51
5 34 26 107 105 56.7% 50.5% 24.5% 51.8% 0.06
AVE – – – – 64.4% 79.6% 56.9% 75.6% 0.44

C
N

N
-A

A
C

1 53 37 235 5 58.9% 97.9% 91.4% 87.3% 0.66
2 76 14 209 31 84.4% 87.1% 71.0% 86.4% 0.68
3 73 17 181 29 81.1% 86.2% 71.6% 84.7% 0.65
4 57 3 191 19 95.0% 91.0% 75.0% 91.9% 0.79
5 43 17 192 20 71.7% 90.6% 68.3% 86.4% 0.61
AVE – – – – 78.2% 90.5% 75.4% 87.3% 0.68

C
N

N
-C

T
D

1 72 18 206 34 80.0% 85.8% 67.9% 84.2% 0.63
2 42 48 230 10 46.7% 95.8% 80.8% 82.4% 0.52
3 81 9 157 53 90.0% 74.8% 60.4% 79.3% 0.60
4 20 40 207 3 33.3% 98.6% 87.0% 84.1% 0.48
5 50 10 154 58 83.3% 72.6% 46.3% 75.0% 0.47
AVE – – – – 66.7% 85.5% 68.5% 81.0% 0.54

S
V

M
-A

A
C

1 36 42 212 11 46.2% 95.1% 76.6% 82.4% 0.50
2 34 44 218 5 43.6% 97.8% 87.2% 83.7% 0.54
3 37 41 214 8 47.4% 96.4% 82.2% 83.7% 0.54
4 39 39 213 9 50.0% 95.9% 81.2% 84.0% 0.55
5 44 34 210 12 56.4% 94.6% 78.6% 84.7% 0.57
AVE – – – – 48.7% 96.0% 81.2% 83.7% 0.54
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Table 1. (continued)

Fold TP FN TN FP SE SP PR AC MCC

S
V

M
-C

T
D

1 50 28 208 15 64.1% 93.3% 76.9% 85.7% 0.61
2 55 23 204 19 70.5% 91.5% 74.3% 86.0% 0.61
3 52 26 210 12 66.7% 94.6% 81.2% 87.3% 0.66
4 52 26 206 16 66.7% 92.8% 76.5% 86.0% 0.65
5 61 17 197 25 78.2% 88.7% 70.9% 86.0% 0.65
AVE – – – – 69.2% 92.2% 76.0% 86.2% 0.63

AVE: the average performance of 5-fold CV results of each model.

Table 2. Comparison among the annotation performances of different models based on the benchmark independent test data provided in a
previous study [9]. CNN: convolution neural network; SVM: support vector machine; PSSSA: protein secondary structure solvent accessibility;
PSS: protein secondary structure; PSA: protein solvent accessibility; Onehot: one-hot scheme; Diso: protein native disorder; PSSM: position-
specific scoring matrix; SmoPSSM: smoothed PSSM; AAC: amino acid composition; CTD: composition, transition & distribution features; TP:
true positive; FN: false negative; TN: true negative; FP: false positive; SE: sensitivity; SP: specificity; PR: precision; AC: accuracy; MCC: Matthews
correlation coefficient

Studied model TP FN TN FP SE SP PR AC MCC

C
N

N

PSSSA 23 7 149 1 76.7% 99.3% 95.8% 95.6% 0.83
PSS 22 8 146 4 73.3% 97.3% 84.6% 93.3% 0.75
PSA 21 9 148 2 70.0% 98.7% 91.3% 93.9% 0.77
Onehot 24 6 150 0 80.0% 100.0% 100.0% 96.7% 0.88
Diso 19 11 132 18 63.3% 88.0% 51.4% 83.9% 0.47
PSSM 29 1 149 1 96.7% 99.3% 96.7% 98.9% 0.96
SmoPSSM 25 5 142 8 83.3% 94.7% 75.8% 92.8% 0.75
AAC 21 9 141 9 70.0% 94.0% 70.0% 90.0% 0.64
CTD 22 8 143 7 73.3% 95.3% 75.9% 91.7% 0.70

SV
M AAC 20 10 145 5 66.7% 96.7% 80.0% 91.7% 0.68

CTD 25 5 141 9 83.3% 94.0% 73.5% 92.2% 0.74
Bastion4 29 1 142 8 96.7% 94.7% 78.4% 95.0% 0.84

T4SEpre_bpbAac 13 17 147 3 43.3% 98.0% 81.3% 88.9% 0.54
T4SEpre_Joint 15 15 148 2 50.0% 98.7% 88.2% 90.6% 0.62

T4SEpre_psAac 11 19 149 1 36.7% 99.3% 91.7% 88.9% 0.54

Figure 2. ROC curves of the 14 annotation models (9 CNN models of various

encoding strategies, 2 SVM models of distinct encoding strategies and 3 T4SEpre

models popular in the previous study) based on independent test data. The AUC

value for each model was provided in the lower-right corner, and all models were

arranged in the descending order of their corresponding AUC values.

When it came to another popular T4SE annotation tool Bas-
tion4, several new models could reach the comparable AC and

MCC to that of Bastion4. These new models included CNN-PSSM,
CNN-Onehot and CNN-PSSSA with the MCC equaling to 0.96,
0.88 and 0.83, respectively. These results indicated the similar
annotation accuracy on independent test datasets among those
four models. However, the SPs of the three new models (CNN-
PSSM, CNN-Onehot and CNN-PSSSA) were substantially higher
than that of Bastion4 (Table 2). As known, the bacteria genomes
were usually composed of thousands of proteins, and the slight
loss in annotation SP would result in greatly enhanced FDRs
[18, 51]. Therefore, it is essential to further assess the false
annotation rate of each model.

Considering that the benchmark data used in this study
were relatively small and CNN-based algorithm typically require
larger datasets for training a robust model, the overfitting
problem should be especially considered [59] and, if necessary,
an effective strategy helping to avoid the model overfitting
dilemma should thus be applied. The commonly applied
strategies include dropout [60] and regularization [64]. In this
study, both strategies were used. Particularly, the dropout
strategy (randomly removing a certain number of neurons at
each training step) was applied to the fully connected layers by
setting the drop rate to 0.6 [60], and the weight decay parameter
lambda of L2 regularization strategy (forcing the weights to decay
towards zero but not exactly zero) was set to 0.001 [60]. As shown
in Supplementary Table S1, the ACs and MCCs with and without
the application of dropout and regularization in training and
independent test datasets were provided. As demonstrated,
both ACs and MCCs of the training dataset with and without
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Table 3. 2950 proteins in the genome of Legionella pneumophila subsp. pneumophila (Philadelphia 1/ATCC 33152/DSM 7513) were scanned by 18
different models studied in this work (nine CNN models of various encoding strategies, two SVM models of distinct encoding strategies, four
T4SE models popular in the previous study and three voting strategies collectively considering three best-performing models) for assessing
their false annotation rates in real-world. The ‘Total no. of true T4SEs’ & ‘Total no. of proteins’ did not include the proteins used for model
construction

Studied model No. of T4SEs
predicted

No. of true T4SEs
identified

Total no. of true
T4SEs

Total no. of
proteins

EF

C
N

N
-T

4S
E VOTE 3/3 309 4 6 2950 6.36

VOTE 2/3 356 6 6 2950 8.29
VOTE 1/3 514 6 6 2950 5.74

C
N

N

PSSSA 366 5 6 2950 6.72
PSS 452 4 6 2950 4.35
PSA 385 3 6 2950 3.83
Onehot 382 5 6 2950 6.44
Diso 400 1 6 2950 1.23
PSSM 431 6 6 2950 6.84
SmoPSSM 497 5 6 2950 4.95
AAC 682 3 6 2950 2.16
CTD 573 3 6 2950 2.57

SV
M AAC 617 5 6 2950 3.98

CTD 435 2 6 2950 2.26
Bastion4 670 5 6 2950 3.67

T4SEpre_bpbAac 349 1 6 2950 1.41
T4SEpre_Joint 496 4 6 2950 3.96

T4SEpre_psAac 303 1 6 2950 1.62

dropout & regularization were roughly consistent with each
other, while the AC and MCC of independent test data with
dropout & regularization were substantially enhanced compared
to that without dropout & regularization. Taking CNN–PSSM
as an example, its AC was increased from 94.4% (without) to
98.9% (with), and its MCC was enhanced from 0.82 (without) to
0.96 (with), which indicated an effective overcome of the model
overfitting dilemma in this study.

Evaluating the false annotation rate based on genome
scanning and non-T4SE data

Besides SP, the EF was known as one of the most popular and
effective measures for assessing FDR of any functional anno-
tation method [18]. As known, the SP assessed FDR by only
considering the annotation performance on the independent
negative test data, while the EF evaluated the false annotation by
fully considering the real-world true T4SEs. Therefore, the EF was
used in this study to complement SP and make in-depth evalu-
ations on the FDR of studied models. In other words, in order to
assess the FDR of each model in the real world, all 15 models (11
new models and 4 popular previous models) were adopted for
scanning 2950 proteins in the genome of Legionella pneumophila
subsp. pneumophila (strain Philadelphia 1/ATCC 33152/DSM 7513).
As shown in Table 3, the total numbers of T4SEs predicted and
true T4SEs correctly identified from this particular genome by
all the models together with their corresponding EFs were pro-
vided. Particularly, five models (CNN-PSSSA, CNN-Onehot, CNN-
SmoPSSM, SVM-AAC & Bastion4) were identified to correctly
annotate five true T4SEs, and the CNN-PSSM was the only model
that could discover all six true T4SEs. This result was consistent
with above assessments that the annotation accuracies on inde-
pendent test datasets among the six models were comparable
with each other. However, the numbers of T4SEs identified by
the Bastion4 (670) and SVM-AAC (617) were extensively higher
than those of CNN-PSSM (431), CNN-PSSSA (366), CNN-Onehot
(382) and CNN-SmoPSSM (497), which made the EFs of the later

four models significantly higher than those of Bastion4 and
SVM-AAC. Especially, the EFs of CNN-PSSM (6.84), CNN-PSSSA
(6.72) & CNN-Onehot (6.44) were 1.75∼1.86 times of Bastion4’s EF
(3.67). Similar to Bastion4, T4SEpre_Joint correctly identified high
number of true T4SEs (4), but the number of T4SEs predicted by
T4SEpre_Joint (496) was much larger than that of the identified
models (CNN-PSSM, CNN-PSSSA & CNN-Onehot), which made
their EFs 1.63∼1.73 times of T4SEpre_Joint’s EF (3.96). These
results indicated the great improvement in controlling the FDRs
by three CNN-based models comparing with both Bastion4 and
T4SEpre_Joint.

Moreover, the numbers of T4SEs predicted by the T4SEpre_
bpbAac and T4SEpre_psAac equaled to 349 and 303, which were
smaller than all those 11 newly constructed models. However,
the numbers of true T4SEs correctly identified by these two
models (only one for both models) were much lower than those
of the three identified powerful models (CNN-PSSM, CNN-PSSSA
& CNN-Onehot), which made the EFs of CNN-PSSM (6.84), CNN-
PSSSA (6.72) & CNN-Onehot (6.44) 3.98∼4.85 times of EFs of
T4SEpre_bpbAac and T4SEpre_psAac. This result indicated great
improvement in controlling the FDR by these three newly identi-
fied powerful models compared with both T4SEpre_bpbAac and
T4SEpre_psAac. Additionally, FDRs could be further assessed by
1385 real-world true non-T4SEs reported in the previous study
[21]. As shown in Table 4, the FPRs of CNN-PSSSA, CNN-Onehot
and CNN-PSSM were <3%, which indicated relatively low FDR by
these models.

Constructing the software tool CNN-T4SE to facilitate
T4SE annotation

To construct the software tool of great functionality, the genome
scan results by those three identified powerful models were
further assessed. As illustrated in Figure 3(A), the Venn dia-
gram of the scanning results among these three models of the
best performance was provided. Although the majority of the
scanning results of these three models were overlapped with
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Table 4. 1385 real-world non-T4SEs that were reported in previous study [21] were predicted by 18 models (9 CNN models of various encoding
strategies, 2 SVM models of distinct encoding strategies, 4 T4SE models popular in previous study and 3 voting strategies collectively considering
three best-performing models) studied in this work to assess their FPRs

Studied model No. of T4SEs
predicted

Total no. of true
non-T4SEs reported

FPR

C
N

N
-T

4S
E VOTE 3/3 4 1385 0.3%

VOTE 2/3 12 1385 0.9%
VOTE 1/3 46 1385 3.3%

C
N

N

PSSSA 18 1385 1.3%
PSS 39 1385 2.8%
PSA 21 1385 1.5%
Onehot 15 1385 1.1%
Diso 65 1385 4.7%
PSSM 29 1385 2.1%
SmoPSSM 41 1385 3.0%
AAC 109 1385 7.9%
CTD 100 1385 7.2%

SV
M AAC 123 1385 8.9%

CTD 101 1385 7.3%
Bastion4 88 1385 6.4%

T4SEpre_bpbAac 23 1385 1.7%
T4SEpre_Joint 135 1385 9.7%

T4SEpre_psAac 4 1385 0.3%

Figure 3. (A) Venn diagram of three identified best-performing models (CNN-PSSSA, CNN-PSSM and CNN-Onehot) in scanning the genome (the numbers indicated the

T4SEs predicted by each model). (B) General workflow of the newly constructed T4SE annotation tool (CNN-T4SE), which was based on a voting strategy that collectively

considered the above three best-performing models.

each other (309 proteins were annotated as T4SEs by all three
models), there were substantial variations (15.6%∼28.3%) among
their scanning results. This finding indicated a great difference
among the underlying theories of the three encoding techniques
(PSSSA, Onehot & PSSM), which inspired us to further enhance
annotation performances by collectively considering three best-
performing models (CNN-PSSM, CNN-PSSSA and CNN-Onehot).
Thus, three additional novel strategies were considered: (VOTE
1/3) if a protein is annotated as T4SE by any of these three
models, this protein is considered to be predicted as a T4SE;

(VOTE 2/3) only if a protein is annotated as T4SE by no less than
two of these three models can it be considered to be a T4SE; and
(VOTE 3/3) only when a protein is annotated by all three models
can it be considered to be a T4SE. Based on these three additional
strategies, their performances were further assessed, as shown
in Tables 3 and 4. As demonstrated in Table 3, VOTE 2/3 achieved
the highest EF of 8.29, which is substantially higher than any of
the three best-performing models. Although VOTE 3/3 achieved
the best FPR, its EF value was significantly hampered by its
failure in predicting true T4SEs (EF = 6.36). To ensure both the
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high enrichment and the low FPR, VOTE 2/3 was finally selected
in this study to construct the T4SE annotation tool of great
functionality.

Therefore, a novel T4SE annotation tool CNN-T4SE (accessible
at: https://idrblab.org/cnnt4se/) was constructed to provide the
simultaneously enhanced accuracy and reduced FDR, which
could thus be adopted as effective complement to other avail-
able T4SE annotation tools. The CNN-T4SE was an executable
program that could run within both Windows and Linux oper-
ating systems. The users could fully download the program
package and the exemplar testing datasets directly from the
website. CNN-T4SE was written in Python, and a number of
python libraries were therefore utilized to ensure the full oper-
ation of this annotation tool (which included Pandas, Numpy,
tensorflow, re, sys, os, etc.). In the package downloaded from the
CNN-T4SE website, CNNT4SE.zip and CNNT4SE.tar.gz were for
Windows and Linux, respectively. The ‘predict’ file (predict.exe
for Windows, and predict for Linux) was the executable file for
T4SE annotations. The folders named as ‘PSSSA’, ‘Onehot’ and
‘PSSM’ contained the parameters of three constructed CNN mod-
els, and the ‘lib’ folder was composed of all python libraries
essential for CNN-T4SE. The files in the ‘mpl-data’ folder were
the system files, which could not be removed during prediction.
Most importantly, there were two types of input documents:
(T1) three files under the ‘CNNT4SE’ main folder with the file
name extension of .acc, .ss and .fasta, which provided the data
of solvent accessibility sequences (.acc), secondary structure sequences
(.ss) and protein sequence in FASTA format. The files of .acc and
.ss were generated by SCRATCH [41]. Since the calculation speed
of the online version of SCRATCH was relatively slow, its local
version was highlighted in the CNN-T4SE website. Please directly
download the local version of SCRATCH from its official website
(http://scratch.proteomics.ics.uci.edu/). (T2) the files under the
‘pssm_files’ folder with the file name extension of .pssm, which
gave the evolutionary information in the form of a PSSM for each
analyzed protein.

The general workflow of the new software tool CNN-T4SE is
illustrated in Figure 3(B). In STEP 1, those studied proteins were
provided in FASTA format. Since multiple sequences could be
annotated simultaneously by CNN-T4SE, this tool could also be
applied to scan the genome of a given bacteria. In STEP 2, the
studied proteins were converted using three protein encoding
strategies. The generated solvent accessibility sequence was
stored in .acc file; the generated secondary structure sequence
was put into the .ss file; the generated PSSM evolutionary infor-
mation was in the .pssm file; and sequence information was
provided in .fasta to conduct protein conversion using the One-
hots integrated in the CNN-T4SE source code. In STEP 3, CNN-
T4SE was applied to annotate all the studied protein sequences.
The program was available for both Windows and Linux operating
systems. Finally, a sequence was predicted as T4SE or non-T4SE
by three different models based on its corresponding prediction
probabilities. Only when a protein was annotated as T4SE by
no less than two of the three models could it be predicted as
T4SE. The CNN-T4SE manual was provided in Supplementary
Method S3 and could be downloaded from the CNN-T4SE website
(https://idrblab.org/cnnt4se/).

Conclusion
A CNN technique was applied in this study to annotate T4SEs
through integrating multiple protein encoding strategies, and
three encoding strategies (PSSM, PSSSA & Onehot) were iden-
tified to be powerful in T4SE annotation when integrated with

CNN. As a result, a novel strategy that collectively considers
the three identified best-performing models (CNN-PSSM, CNN-
PSSSA and CNN-Onehot) was proposed, and a new software
tool (CNN-T4SE, https://idrblab.org/cnnt4se/) was constructed to
facilitate the annotation. All in all, CNN-T4SE was expected to
annotate bacterial T4SEs with improved accuracy and reduced
false discovery.

Key Points
• Recent studies mainly focus on annotating new T4SEs

from the huge amount of sequencing data.
• Three encoding strategies were identified as powerful

in T4SE annotation when integrated with CNN.
• A software tool for T4SE was finally constructed and

could be downloaded for T4SE annotation.
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Supplementary data are available online at https://academic.
oup.com/bib.
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