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Abstract

The pathogenesis of multiple sclerosis (MS) is significantly regulated by long noncoding RNAs (lncRNAs), the expression of
which is substantially influenced by a number of MS-associated risk single nucleotide polymorphisms (SNPs). It is thus
hypothesized that the dysregulation of lncRNA induced by genomic variants may be one of the key molecular mechanisms
for the pathology of MS. However, due to the lack of sufficient data on lncRNA expression and SNP genotypes of the same
MS patients, such molecular mechanisms underlying the pathology of MS remain elusive. In this study, a bioinformatics
strategy was applied to obtain lncRNA expression and SNP genotype data simultaneously from 142 samples (51 MS patients
and 91 controls) based on RNA-seq data, and an expression quantitative trait loci (eQTL) analysis was conducted. In total,
2383 differentially expressed lncRNAs were identified as specifically expressing in brain-related tissues, and 517 of them
were affected by SNPs. Then, the functional characterization, secondary structure changes and tissue and disease specificity
of the cis-eQTL SNPs and lncRNA were assessed. The cis-eQTL SNPs were substantially and specifically enriched in
neurological disease and intergenic region, and the secondary structure was altered in 17.6% of all lncRNAs in MS. Finally,
the weighted gene coexpression network and gene set enrichment analyses were used to investigate how the influence of
SNPs on lncRNAs contributed to the pathogenesis of MS. As a result, the regulation of lncRNAs by SNPs was found to mainly
influence the antigen processing/presentation and mitogen-activated protein kinases (MAPK) signaling pathway in MS.
These results revealed the effectiveness of the strategy proposed in this study and give insight into the mechanism
(SNP-mediated modulation of lncRNAs) underlying the pathology of MS.
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Introduction

Multiple sclerosis (MS) is an immune-mediated neurodegen-
erative disease and is characterized by the inflammation and

demyelination in central nervous system (CNS) [1]. Currently,
the estimated number of individuals with MS has reached
approximately 2.3 million worldwide according to the Atlas
of MS investigation [2]. Although the etiology of MS has been
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extensively explored, the potential key factors contributing to
MS’s pathogenesis involving genetic variants and transcriptional
regulation in genomic regulatory regions remain poorly under-
stood [3, 4].

The long noncoding RNAs (lncRNAs), defined as non-protein-
coding transcripts of >200 nucleotides, are widely involved in
a variety of key biological and cellular processes [5]. Previous
studies showed that the expression of lncRNA is particularly
abundant in CNS [6], and the lncRNAs act as the critical reg-
ulators of the neural and immune system, such as the oligo-
dendrocyte maturation in neural cell fate determination [6, 7],
differentiation of CD4+ T cells and activation of inflammatory
molecules in the immune response [8]. The dysregulation of
lncRNAs influences the progression of numerous nervous sys-
tem disorders, including MS [6, 9–13]. For example, the lncRNA
NeST affects the susceptibility of MS by regulating T-cell response
[9]. The upregulation of lnc-OPC inhibits the differentiation of
the oligodendrocyte cells in glial progenitors of MS [10]. The
studies further reported that many lncRNAs (e.g. NEAT1, TUG1
and THRIL) are specifically expressed in the blood of MS patients
[11–13].

Moreover, previous studies showed that most of the disease-
related single nucleotide polymorphisms (SNPs) are located in
noncoding regions (approximately 93%) and play key roles in
the regulation of lncRNA expression, structure and function
[14, 15]. This specific regulation is significantly associated with
the pathogenesis of many complex diseases [14–18]. For MS,
more than 200 risk variants in the human genome have been
identified by genome-wide association studies (GWAS) [19–23],
and some of these variants affect the secondary structure of
RNA transcripts [24, 25]. Based on these findings, it can be
hypothesized that the regulation of many MS-related lncRNAs
is controlled by certain genomic variants, representing a poten-
tially important molecular mechanism in the pathology of MS.
However, to date, no systematic study has been performed to
detect the influence of SNPs on the disease-related lncRNAs in
MS and how this mechanism contributes to the pathogenesis
of MS.

Evidence shows that the expression quantitative trait loci
(eQTLs) have become an important tool for achieving this sys-
tematic research and understanding the mechanisms under-
lying the gene expression affected by variations [26–29]. For
example, Montgomery et al. [26] selected 60 Caucasian individ-
uals and performed eQTL analysis based on the next generation
sequencing and HapMap project. They found that a substantial
number of variants significantly affect the alternative splicing
of the transcripts. Pickrell et al. [27] sequenced RNA from 69 lym-
phoblastoid cell lines of the unrelated Nigerian individuals that
have been extensively genotyped by HapMap Project and fur-
ther performed eQTL analysis. They also demonstrated that the
genetic variants influence the expression levels or splicing of the
transcripts. Lappalainen et al. [28] performed an eQTL analysis
using lymphoblastoid cell line of 462 individuals from the 1000
Genomes project (GEUVADIS) and provide a deep understanding
of the transcriptome variation in the cellular mechanisms. The
GTEx project presented an expression analysis of 1641 samples
across 43 tissues from 175 individuals and genotyped the SNPs
of the samples according to 1000 Genomes Phase I. The results
described the landscape of gene expression across various tis-
sues and showed a tissue specific of the eQTL variants [29].

However, it is challenging to simultaneously obtain the data
of lncRNA expression and SNP genotype from the same MS
individual based on publicly available resources. Recently, next-
generation cDNA sequencing (RNA-seq) has emerged as a pow-

erful and effective tool to survey the entire transcriptome in
high-throughput and quantitative manner [30, 31]. On one hand,
RNA-seq is one of the most useful tools to measure the expres-
sion of lncRNAs by mapping and quantifying their transcrip-
tomes [32–35]. On the other hand, it can also be used to genotype
large-scale SNPs (tens to hundreds of thousands) in the entire
human genome [30, 36]. Moreover, compared with the traditional
methods (e.g. SNP arrays), RNA-seq requires fewer samples (typ-
ically tens to hundreds of individuals), is less susceptible to
the heterogeneity of populations and is more likely to discover
functional SNPs [36]. Herein, the differential expression of the
lncRNAs was first quantified, and the SNPs on a whole-genome
scale were genotyped based on the blood RNA-seq data from
51 patients and 91 controls of European descent. For the false
positive of SNP calling, a series of approaches were performed
to reduce it (Materials and methods). Combining the data of
expression and genotype, an eQTL analysis was further per-
formed to identify the cis-acting loci and the affected lnRNAs
in MS and assess tissue and disease specificity. Then, the func-
tional characterization of the cis-eQTL SNPs and their influence
on the secondary structure of lncRNAs were explored. Finally,
a weighted gene coexpression network analysis (WGCNA) and
gene set enrichment analysis (GSEA) of the affected lnRNAs
were conducted, and the differentially expressed protein-coding
genes were identified to investigate how the influence of SNPs
on lncRNAs contributes to the pathogenesis of MS. The flow
chart was shown in Figure 1.

Results and discussion
Quantification of the differentially expressed lnRNAs
in MS

We first selected the blood RNA-seq data of 51 MS patients
and 91 gender- and age-matched healthy individuals without
neurological diseases (for summary statistics, Table 1 and
Materials and methods) from Gene Expression Omnibus (GEO)
data set GSE89843 [37]. In total, approximately 3.2 billion
sequenced reads were obtained for the following steps. We next
merged the FASTA format files of lncRNA transcript sequences
(a total 172 216 transcript sequences of 96 308 human lncRNA
genes from NONCODE v5 database [38]) and protein-coding
genes transcript sequences (160 040 transcript sequences of
22 810 human protein-coding genes from Ensembl release 91
[39]) as the reference sequence. Subsequently, we calculated the
transcript per million (TPM) values to measure expression levels
of these transcripts in each individual by Kallisto software [40].
Then, based on the annotation file Transcript2Gene (the cor-
respondence between lncRNAs and their transcripts) from the
NONCODE database, we calculated the lncRNA expression levels
by integrating transcript-level abundance using the R package
‘tximport’ [41]. Finally, after the differential gene expression
analysis using the R package ‘DESeq’ with the parameters,
age and gender serving as covariates [42], we identified 2383
lncRNAs significantly differentially expressed between MS and
healthy subjects (fold-change (FC) ≥ 1.5 and P < 0.05), which
includes 1438 downregulated and 945 upregulated lncRNAs
(Supplementary Table S1). In addition, through a Pearson’s
correlation analysis, we also found that the expressions of
these lncRNAs are highly positively correlated before and after
adding the protein-coding genes in the quantifications (about
86.6% correlation coefficients are equal or higher than 0.9 with
the P < 0.05). We plotted a frequency histogram to show the
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Functions of eQTL lncRNAs in Multiple Sclerosis 1025

Figure 1. The flow chart of the study design for identification and function analysis of the eQTL lncRNAs in MS.

Table 1. Summary of the 142 individuals studied in this work

Individuals Institution Ethnicity Sample size Mean age (SD) Male/female (%)

MS patients VUMC European 51 46.14 (7.54) 25.5/74.5
Healthy controls VUMC and UMCU European 91 46.92 (8.50) 34.1/65.9
Total 142 46.64 (8.18) 31.0/69.0

VUMC: VU University Medical Center, Amsterdam, Netherlands UMCU: Utrecht Medical Center, Utrecht, Netherlands

distribution of these correlation coefficients (Supplementary
Figure S1).

According to the categories of lncRNAs in NONCODE
database, we found that these differentially expressed lncRNAs
mainly belong to the four classes including intergenic, exonic,

sense no exonic and antisense, and the proportion of intergenic
lncRNAs is significantly increased compared with other types.
Particularly, the intergenic lncRNAs account for approximately
83.59% and 87.94% of the downregulated and upregulated
lncRNAs, respectively (Figure 2c). Then, to test the tissue
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Figure 2. Characterization of differentially expressed lncRNAs. (a) A hierarchical clustering heatmap of the lncRNAs (significantly differentially expressed between MS

and healthy subjects) expression in primary human tissues and cell lines based on NONCODE data. The abscissa represents the differently expressed lncRNAs. HLF

indicates the human lung fibroblasts. The expression pattern of these lncRNAs in brain and in other tissues and cell lines is clearly classified into two different clusters.

(b) A hierarchical clustering heatmap of the lncRNAs in 13 brain regions and other primary human tissues based on GTEx data. The abscissa represents the differently

expressed lncRNAs. The expression pattern of these lncRNAs in the 13 brain regions and in other tissues is clearly classified into two different clusters. (c) Pie charts

indicating the percentage of each type of the differentially expressed lncRNAs. Most of these lncRNAs belong to the intergenic transcripts compared with the other types,

and this pattern is similar between the downregulated and upregulated lncRNAs. The details in the figure can be clearly viewed by enlarging the electronic version.
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specificity of these differentially expressed lncRNAs, we
downloaded the expression data of these lncRNAs in primary
human tissues and cell lines (including adipose, adrenal, brain,
breast, colon, foreskin, heart, kidney, liver, lung, lymph node,
ovary, placenta, prostate, skeletal muscle, thyroid, leukocyte,
lung fibroblasts and HeLa cells) from NONCODE database
and used these data to cluster lncRNAs based on Manhattan
distance by the R package ‘gplots’ (https://CRAN.R-project.org/
package=gplots). As noted in Figure 2a, although the samples are
obtained from blood, these lncRNAs are still highly specifically
expressed in brain tissue. To further verify these findings, we
downloaded the lncRNA expression data (a gene TPM file) in
a variety of human tissues from GTEx, which include adipose,
adrenal gland, bladder, blood vessel, breast, cervix uteri, colon,
esophagus, fallopian tube, heart, kidney cortex, liver, lung, minor
salivary gland, skeletal muscle, tibial nerve, ovary, pancreas,
pituitary, prostate, whole blood, skin, small intestine, stomach,
spleen, thyroid, uterus, vagina and 13 brain regions (amygdala,
anterior cingulate, caudate, cerebellum, cortex, frontal cortex,
hippocampus, hypothalamus, nucleus accumbens, putamen,
spinal cord and substantia nigra) [29]. After the lncRNA ID
conversion (from NONCODE ID to Ensembl ID), a total of 648
of these differentially expressed lncRNAs exist in the GTEx gene
TPM file. We calculated the average lncRNA expression levels
of the GTEx individuals in each tissue and performed a cluster
analysis by the same method used in NONCODE data. Similarly
with our previous findings, these lncRNAs are highly specifically
expressed in the 13 brain regions (Figure 2b). These findings
suggest that in addition to inflammation and demyelination
[1], MS also exhibits the characteristics of the CNS disorder in
lncRNAs dysregulation.

SNP genotyping and lncRNA cis-eQTLs identification

To obtain the SNP genotyping data of the same samples, we
first aligned the approximately 3.2 billion sequenced reads of
all the individuals to human reference genome (hg19) using
BWA software [43]. Then, we used these aligned reads to call
variant genotypes using SAMtools [44] and BCFtools software
[45]. Further, to obtain reliable variant genotypes, low-quality
results (according to the common threshold of read depth (DP)
< 10 or root mean square (RMS) mapping quality of < 10 or
minor allele frequency (MAF) of < 1%) and variants that devi-
ated from Hardy–Weinberg equilibrium (HWE) (P < 5 × 10−5,
calculated by the R package ‘Genetics’) were removed. Finally, we
annotated the qualified genotype data using ANNOVAR software
[46] and obtained a total of 600 872 genotyped SNPs and 19 467
indels.

Subsequently, to assess the cis-acting influence of variants on
the expression of lncRNAs in MS, we used the variant genotyping
data and the lncRNA expression data from the same samples to
perform an eQTL analysis using the R package ‘Matrix eQTL’ [47]
with the parameters, age, gender, three probabilistic estimation
of expression residuals (PEER) factors and population stratifica-
tion serving as covariates. Among these parameters, PEER factors
were obtained by the R package ‘PEER’ based on Bayesian method
[48], and population stratification was divided by source of the
individuals (Amsterdam or Utrecht). Previous studies reported
that the process of gene transcription is mainly affected by the
SNPs located within 100 kb around the corresponding genes
[49, 50]. Therefore, we established a ± 100 kb window (between
the variant loci and lncRNA genes) for this eQTL analysis (see
Materials and methods for details). After removing the 308

lncRNAs without genomic position information, we identified a
total of 23 661 variants affecting 1141 lncRNAs of the remaining
2075 differentially expressed lncRNAs with a significance level
of P < 0.05.

For the more stringent identification of eQTLs, we further
conducted two additional quality control procedures. First, we
added the interaction terms in our eQTL analysis model by the
‘lm’ function in R. Combining the results of eQTL analysis in
previous steps, we identified a total of 2552 variants affecting
868 lncRNAs only in MS and not in the healthy individuals with
a significance level of P < 0.05. Then, according to the previous
studies [29, 51], we performed the permutation procedure to
correct for multiple variants testing per gene expression and
the multiple testing corrections based on the false discovery
rates (FDR) using Storey approach (the threshold of q-value
< 0.05) (see Materials and methods for details). Finally, after
removing the 12 lncRNAs influenced by the indels, a total
of 1054 cis-eQTL SNPs affecting 517 lncRNAs were identified
(Supplementary Table S2).

The number of the cis-eQTLs per lncRNA is from a minimum
of 1 to a maximum of 23, and this distribution is in general
positively correlated with the length of lncRNA and the SNP
abundance in corresponding regions. Moreover, we further
explored the association between the P-values of these cis-eQTLs
and their distance from the transcription start site (TSS) of the
corresponding lncRNAs. We provided a plot with x-axis the
distance and y-axis the -log10 of P-values and found that
the cis-eQTLs are generally clustered around the TSS, especially
the cis-eQTLs with lower P-values (Supplementary Figure S2).

Disease specificity and functional characterization
of the lncRNA cis-eQTLs

We explored the disease specificity and functional character-
ization of the lncRNA cis-eQTLs by comparing them with the
non-eQTL SNPs. Therefore, we first selected the SNPs with
eQTL P > 0.5 from all the 178 451 variants located within 100 kb
around the lncRNAs and defined them as the non-eQTL SNPs
according to the previous study [50]. Then, to avoid the influence
of linkage disequilibrium (LD), we performed LD-based filtering
for the cis-eQTL and non-eQTL SNPs using HaploReg (version 4)
[52] based on the European data set of the 1000 Genomes
Project (the threshold of r2 > 0.5) [53]. Next, we further extracted
the non-eQTL SNPs with the MAF and distance from the TSS
matched to the cis-eQTL SNPs data set. Finally, we obtained 803
cis-eQTL and 18 803 non-eQTL SNPs, which are matched in MAF
and distance and independent of each other, after these filtering
processes (Supplementary Table S3) (see Materials and methods
for details).

For the disease-specificity analysis, we first downloaded the
tag SNP (identified by GWAS, P < 1.0 × 10−5) data from the
GWASdb (version 2) database [54]. Then, we used the tag SNPs to
identify the SNPs in LD with them (r2 > 0.4) by HaploReg, accord-
ing to the previous study [50], and collectively defined them as
the disease-related SNPs. We found that there are nine common
CNS and other disorders whose disease-related SNPs are over-
lapped with the cis-eQTL and non-eQTL SNPs, and we selected
them for the downstream analyses (see Materials and methods
for details). Finally, we compared the proportions of the cis-
and non-eQTL SNPs in the disease-related SNPs for each of the
disorders using the two-tailed Fisher’s exact test (the threshold
of P < 0.05). The lncRNA cis-eQTL SNPs are mainly enriched
in the CNS disease-related SNPs, which include the MS (odds
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Figure 3. The disease specificity and functional characterization of the lncRNA cis-eQTLs. (a) The disease specificity of the lncRNA cis-eQTLs. The two-tailed Fisher’s

exact test was used to explore enrichment of the lncRNA cis-eQTLs among nine common CNS and nonneurological diseases compared with non-eQTL SNPs. These

lncRNA cis-eQTL SNPs are mainly enriched in the CNS disorders including MS, rather than the nonneurological diseases. (b) The functional characterization of the

lncRNA cis-eQTLs. Enrichment analysis of the lncRNA cis-eQTLs among 10 functional types of variants was performed using a two-tailed Fisher’s exact test. Compared

with the non-eQTL SNPs, these lncRNA cis-eQTL SNPs are significantly and uniquely enriched in intergenic region. The black bars in histogram represent 95% confidence

intervals.

ratio (OR) = 17.67, P = 1.1 × 10−5), schizophrenia (OR = 10.32,
P = 1.6 × 10−5), Parkinson’s disease (OR = 5.88, P = 8.0 × 10−3)
and Alzheimer’s disease (OR = 3.58, P = 5.6 × 10−3), compared
with non-eQTL SNPs. In contrast, significant enrichment was not
observed among the SNPs associated with the nonneurological
diseases, e.g. type 2 diabetes (P = 1.1 × 10−1) and rheuma-
toid arthritis (P = 1.4 × 10−1) (Figure 3a). The results revealed
the association of these lncRNA cis-eQTL SNPs with MS and
suggested that the influence of lncRNA expression by genomic
variants has specificity and similarity in CNS diseases.

Further, to explore the functional characterization of the
lncRNA cis-eQTLs, we compared the proportions of each
functional class (including intergenic, intronic, exonic, ncRNA
intronic, ncRNA exonic, 5′/3′-UTR, upstream/downstream and
splicing variants; annotated by ANNOVAR software [46]; see
Materials and methods) in cis- and non-eQTL SNPs with the
threshold of two-tailed Fisher’s exact test P < 0.05. We found
that the lncRNA cis-eQTL SNPs are significantly and uniquely
enriched among variants in intergenic region (OR = 1.46, P =
2.3 × 10−6) compared with the non-eQTL SNPs (Figure 3b).
The results were consistent with the type distribution of the

differentially expressed MS lncRNAs observed in this study
(approximately 85.31% of them belong to intergenic lncRNAs)
and revealed specific regulation of the lncRNAs by SNPs in MS.

The influence of lncRNA secondary structure
by cis-eQTL SNPs

Previous studies reported that some SNPs can affect the sec-
ondary structure of noncoding RNAs in MS [24, 25]. Therefore,
to explore the influence of the secondary structure of the differ-
entially expressed lncRNAs by the cis-eQTL SNPs, we assessed
the maximal structural change of the lncRNA mutant regions
compared with wild type by RNAsnp software [55]. For this
purpose, we first selected the 41 cis-eQTL SNPs located within
34 differentially expressed lncRNA genes and obtained 38 tran-
script sequences of these lncRNA genes from NONCODE FASTA
files. Then, the effect of SNPs on short (< 1000 nt) and large
(> 1000 nt) lncRNA transcript sequences was calculated using
mode 1 and mode 2 of the RNAsnp software, respectively (see
Materials and methods for details). After these processes, we
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Figure 4. Secondary structure changes of the lncRNA transcripts by cis-eQTL SNPs. Subfigures (a) and (b) present the secondary structure of NONHSAT171752.1 and

NONHSAT230154.1 affected by rs8035889 and rs752806 polymorphisms, respectively. On the top of each subfigure, the graphic summary revealed the significantly

affected local region of the lncRNA transcript and the causative SNP. The affected local region detected with maximum secondary structural change is colored according

to the RNAsnp P-value (threshold of significance is set at P < 0.2). At the bottom left, the upper and lower triangle of the matrix represents the base-pair probabilities

in the affected local region of the wild-type (green dots) and mutant (red dots) sequences, respectively. At the bottom right, the planar graph displayed the secondary

structure differences between wild-type and mutant lncRNA transcripts based on the MFE change.

found that the secondary structure of six transcripts belonging
to six lncRNAs (approximately 17.6%) is significantly influenced
by at least one of the cis-eQTL SNPs (P < 0.2) (Supplementary
Table S4). Given that secondary structure changes in RNAs are
an important factor affecting their expression level, we hypoth-
esized that a part of the lncRNA dysregulation in MS arises
from secondary structure changes caused by genomic variants.
Figure 4 presents the secondary structure changes of the two

short lncRNA transcripts affected by the cis-eQTL SNPs. Par-
ticularly, the rs8035889 T to C allele substitution changed the
minimum free energy (MFE) of local region fold (53 bp around the
SNP) of NONHSAT171752.1 from −72.0 (wild type) to −71.1 kcal/
mol (mutant type) (P = 6.8 × 10−2). The A to T allele substitu-
tion of rs752806 led the MFE change of NONHSAT230154.1 local
region fold (53 bp around the SNP) from −120.9 (wild type) to
−120.2 kcal/mol (mutant-type) (P = 0.186).
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Figure 5. The coexpression network of eQTL lncRNAs and differentially expressed protein-coding genes. (a) Five clustered modules in the coexpression network. The

scale of MEturquoise module is significantly increased compared with the others. The yellow and green nodes represent the eQTL lncRNAs and the differentially

expressed protein-coding genes, respectively. (b) Heatmap of associations between modules and phenotype (including gender, age and disease status). Each row

represents a module, and each cell contains the correlation r and corresponding P-value (in brackets). The MEblue is associated with gender, and the MEgrey module is

most relevant to MS, while there is no module associated with age. (c) Detailed information on the MEgrey.
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Functions of eQTL lncRNAs in Multiple Sclerosis 1031

Figure 6. The GO, KEGG, Reactome and NetPath pathway enrichment in the different modules. (a) The enrichment for MEblue. The protein-coding genes coexpressed

with the eQTL lncRNAs in this module are mainly related to the leukocyte immune functions, MAPK and IFN. (b) The enrichment for MEgrey. The coexpressed

protein-coding genes in this module are mainly related to the folding and binding of the antigen processing and presentation related protein. (c) The enrichment

for MEyellow. The coexpressed protein-coding genes in this module are mainly associated with the regulation of IFN. The threshold of significance is set at FDR

q < 0.05. More detailed information is presented in Supplementary Table S6.

Inference of the eQTL lncRNA functions by WGCNA

To explore the functions of differentially expressed lncRNAs
regulated by cis-eQTL SNPs in MS, we performed WGCNA by
integrating the expression data of protein-coding genes and
lncRNAs and further conducted GSEA using the protein-coding
genes coexpressed with the lncRNAs. First, based on the Ensembl
release 91 reference sequences [39], we obtained 324 protein-
coding genes significantly differentially expressed between MS
and healthy subjects by the approach used to identify the dif-
ferentially expressed lncRNAs (Supplementary Table S5). Then,
combining the TPM values of the 517 eQTL lncRNAs and 324
protein-coding genes, we constructed a coexpression network
of these genes using the R package ‘WGCNA’ [56] with the soft
threshold power β = 7 (see Materials and methods for details).
Finally, a total 455 lncRNAs and 262 protein-coding genes were
included in this coexpression network. As shown in Figure 5a
and Supplementary Figure S5, all these lncRNAs and protein-
coding genes in the network were clustered into five mod-
ules (i.e. MEyellow, MEturquoise, MEgrey, MEblue and MEbrown)
according to the interconnectedness of gene pairs. Among these
modules, the scale of MEturquoise was significantly increased
compared with the others, which included 389 lncRNAs and
123 protein-coding genes (approximately 71.41% of the total).
In addition, although the highly interconnected genes existed
within a module, some genes in different modules were also
linked by the interaction edges, and these edges mainly existed
between the MEturquoise and other small modules. Moreover,
through the analysis of module significance to the physiologi-
cal traits (including gender, age and disease status), we found
that the MEblue module is associated with both gender and
disease status, and MEyellow is associated with disease status
(P < 0.05), while there is no module associated with age. The
MEgrey module is most relevant to MS (r = 0.46, P = 1 × 10−8)

(Figure 5b), containing 19 lncRNAs and 25 protein-coding genes
(Figure 5c).

Pathway and ontology enrichment analysis of the
differentially coexpressed lncRNAs

Given the strong interaction between lncRNAs and protein-
coding genes within a module, we performed the GSEA of
the protein-coding genes in each module to infer the eQTL
lncRNA functions in MS by R package ‘clusterProfiler’ [57]. We
used four common databases, Kyoto Encyclopedia of Genes and
Genomes (KEGG), Gene Ontology (GO), NetPath and Reactome,
as the reference. Interestingly, most of the enriched terms
are associated with the pathogenesis of MS (the threshold of
q < 0.05). Particularly, the protein-coding genes in MEblue are
mainly related to the leukocyte immune functions, mitogen-
activated protein kinases (MAPK) and interferon (IFN) (Figure 6a
and Supplementary Table S6). Previous studies identified the
involvement of the human leukocyte antigen (HLA) complex
in susceptibility to MS and numerous genomic variants in HLA
gene cluster significantly associated with MS [58, 59]. Moreover,
a previous study found that some subtypes of HLA occurs more
commonly in females than males [60], which may explains the
result of WGCNA that the MEblue module is associated with
gender. In addition, other studies found that the expression of
MAPK is elevated about 5-fold in MS, and the cytokines (e.g. IL-6
and IL-17A) and neuroantigen-specific Th1 and Th17 depend
on MAPK to affect the pathological process of MS [61–63]. The
protein-coding genes in MEgrey are mainly associated with the
folding and binding of the antigen processing and presentation-
related protein (e.g. ubiquitin protease and heat shock protein)
(Figure 6b). Previous studies showed that ubiquitin protease and
heat shock protein participate in the major histocompatibility
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complex (MHC)-mediated antigen processing and presentation
[64–66], and the overexpressed heat shock protein has been
discovered to provide a neuroprotection from ischemia-induced
cell death in MS [67, 68]. Interestingly, one of our recent studies
found that the drug target genes of Alzheimer’s disease are
also significantly associated with T-cell antigen presentation via
MHC and HLA [69], suggesting a similarity of these CNS disorders
and providing new insight into the drug therapy of MS. Moreover,
similarly to the MEblue, the enriched terms of MEgrey are also
involved in the MAPK signaling pathway. The protein-coding
genes in MEyellow are mainly associated with the regulation of
IFN (Figure 6c). The previous studies reported that the IFN can
reduce the serum concentration of the cytokines (such as IL-17)
in MS, and it is widely used for the treatment of MS [70, 71]. The
protein-coding genes in MEbrown and MEturquoise are mainly
involved in the pathways of systemic arterial blood pressure and
cyclic nucleotide, respectively. Given that the MEgrey module
is most relevant to MS, we inferred that the dysregulation of
lncRNAs caused by the genomic variants mainly influences
antigen processing/presentation and MAPK signaling pathway
in MS.

Conclusions
In this study, we provided a strategy to obtain simultaneously
SNP genotypes and lncRNA expression levels of the same sam-
ples by RNA-seq data. A total of 600 872 SNPs are genotyped, and
2383 lncRNAs are significantly differentially expressed between
MS and healthy subjects. These differentially expressed lncR-
NAs mainly consist of the intergenic lncRNAs and are highly
specifically expressed in brain tissue. After the eQTL analysis,
1054 cis-eQTL SNPs were identified that significantly affect the
expression of 517 differentially expressed lncRNAs. These cis-
eQTL SNPs are specifically enriched in the CNS disease-related
SNPs (including MS) and the intergenic region compared with
the non-eQTL SNPs. In addition, the transcript secondary struc-
ture of approximately 17.6% of these lncRNAs is significantly
influenced by the cis-eQTL SNPs. Further, WGCNA and GSEA
results demonstrated that the dysregulation of lncRNAs caused
by the genomic variants mainly influences antigen processing/
presentation and MAPK signaling pathway in MS. In summary,
our work is the first study to explore dysregulation of lncRNAs
induced by genomic variants in MS. The strategy in this study
may provide an idea to conduct the lncRNA eQTL analysis of
many orphan diseases for which the suitable lncRNA expression
and SNP genotype data are difficult to obtain directly from public
databases. Further, our findings demonstrated that the influ-
ence of genomic variants on lncRNAs is specific and important
to the pathogenesis of MS and would benefit MS research in
the future. However, the false positive of genotype calling by
RNA-seq may still exist and is a general limitation of our study
because the existing approaches are imperfect for reducing the
false positive. Therefore, it is necessary to develop the effective
methods to solve the false positive problem, which can further
increase the accuracy of our approach to explore the influence
of genomic variants on lncRNAs in the orphan diseases.

Materials and methods
Blood RNA-seq data from 142 individuals

The blood samples of the 142 individuals (including 51 MS
patients and 91 healthy controls) were obtained from the VU
University Medical Center (VUMC) and the Utrecht Medical

Center (UMCU) in Netherlands [37]. The average age of these MS
patients and controls are 46.1 and 46.9 years, respectively. The
sex ratios (male to female) in the two groups are 0.34 and 0.52,
respectively. Then, total RNA of the samples was extracted using
the mirVana miRNA isolation kit and further subjected to the
cDNA synthesis and SMARTer amplification. Subsequently, the
Truseq Nano DNA Sample Preparation Kit was used to prepare
the sequencing libraries, and pooled sample library sequencing
was performed by the Illumina Hiseq 2500 platform. Finally, RNA
read quality control was conducted using Bioanalyzer 2100 with
RNA 6000 Picochip, DNA High Sensitivity chips measurements
and Trimmomatic [37]. We downloaded these sequence data
from the NCBI Sequence Read Archive (SRA) database (SRA
project accession number: SRP093349; BioProject: PRJNA353588;
GEO: GSE89843) and converted them into FASTQ files using the
SRA Toolkit software.

Quantification of transcript abundance and differential
expression analysis

The reference sequences of lncRNAs were downloaded in
FASTA format from NONCODE database (version 5). NONCODE
is a systematic database dedicated to noncoding RNAs and
presents the most complete collection and annotation of these
RNAs, including 172 216 transcript sequences of 96 308 human
lncRNA genes [38]. Similarly, the reference sequences of protein-
coding genes were obtained in FASTA format from Ensembl
release 91 (December 2017) [39]. Ensembl is a database and
genome browser that aggregates, integrates and annotates the
large-scale genome reference data from Genome Reference
Consortium [72], UCSC Genome Browser [73], UniProt [74] and
NCBI [75]. After removing pseudogene transcripts, we obtained a
total of 160 040 transcript sequences from 22 810 human protein-
coding genes. Next, we merged the two FASTA format files of
lncRNAs and protein-coding genes reference sequences. Then,
quantification of the lncRNA and protein-coding transcripts
was performed simultaneously by mapping the RNA-seq reads
to the merged reference sequences and calculating the TPM
values using the Kallisto software, which is a fast and highly
accurate tool to quantify transcript abundance from large-scale
RNA-seq data using a k-mer lookup (instead of the traditional
alignment step) [40]. The recommended parameters were used in
this study according to the manual of Kallisto, i.e. the estimated
average fragment length (−l) and SD of fragment length (−s) were
set to 200 and 20, respectively. Subsequently, a previous study
demonstrated that the quantification results of the integrated
gene-level abundance are more accurate and interpretable
compared with transcript-level results [41]. Therefore, we further
used the R package ‘tximport’ with the default parameter set-
tings (type = kallisto, ignoreAfterBar = TRUE) [41] to calculate the
gene-level TPM values of lncRNAs and protein-coding genes by
integrating their corresponding transcript-level TPM values
according to the annotation files (correspondence between
genes and transcripts) from NONCODE and Ensembl, respec-
tively. Finally, the differential expressed lncRNAs and protein-
coding genes between MS and healthy subjects were identified
according to the common threshold of FC ≥ 1.5 and P < 0.05
using the R package ‘DESeq’ with the default parameter settings
(the functions in this package use the last variable in the formula
for building results). We used the parameters, gender and age of
each sample, as the covariates for the differential expression
analysis. DESeq is a reliable differential expression analysis
tool for the sequence count data based on a negative binomial
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distribution [42]. The P-values are corrected for multiple testing
by Benjamini–Hochberg method.

SNP genotyping and annotation

RNA-seq data of all the individuals were used to genotype the
SNPs on a whole-genome scale. First, the Sequence Alignment/
Map (SAM) files of each sample were generated by aligning the
sequenced short reads to the human reference genome (hg19)
using BWA software with the default parameter settings (bwa aln
hg19.fa) [43]. Second, we used the SAMtools software to convert
the SAM files to the sorted Binary Alignment/Map (BAM) files,
which are the SAM’s binary representation [44], and further used
the BAM files to perform variant calling on these aligned reads
using the BCFtools software with default parameter settings
(bcftools view -vcg -D100) [45]. The results were stored in the
VCF file. Third, the previous studies reported that increasing read
depth can effectively reduce the false positive in SNP calling
when using the RNA-Seq approach. Particularly, they found that
at >10 × coverage, the false positive rate of the RNA-seq SNP
calling is less than 15% [76, 77]. So, the quality control was
performed according to the following criteria: the sub-fields of
INFO in VCF file DP ≥ 10, RMS mapping quality≥ 10, MAF ≥ 1%
and P-value of HWE ≥ 5 × 10−5. HWE test was performed by R
package ‘Genetics’ that is based on a noncontinuity correction
chi-squared approach with 10 000 simulation iterations in each
locus. After filtering the low-quality results, we obtained 867 961
genotyped variants.

The previous studies demonstrated that removing the results
that are not catalogued in dbSNP can effectively reduce the
false positive of SNP calling [78–81]. Cirulli et al. [79] found that
the percent of the true positive cDNA SNVs corresponded to a
dbSNP entry (about 94%) is far more than the percent of false
positives (about 23%). Further, we used the annotation databases,
refGene and snp138 (hg19), to annotate these genotyped vari-
ants using ANNOVAR software, which is a Perl command-line
tool for rapidly and efficiently annotating the genomic variants
from high-throughput sequencing data (e.g. VCF file) [46]. Par-
ticularly, the information of functional annotation was stored
in the refGene database (hg19) [82]. According to the informa-
tion, the variants were categorized into the following classes:
intergenic, intronic, exonic, ncRNA intronic, ncRNA exonic, 5′/3′-
UTR, upstream/downstream and splicing site. The snp138 (hg19)
provided information about SNP genomic position and the cor-
responding ID based on the dbSNP database (version 138) [83].
After the annotation by snp138, we removed 247 622 unqualified
results that are not catalogued in dbSNP and obtained a total of
19 467 indels and 600 872 genotyped SNPs with the correspond-
ing ID (e.g. rs375781).

Identification of the lncRNA cis-eQTL SNPs

We considered all the lncRNA and SNP pairs if the distance
between them is less than 100 kb for the eQTL analysis because
previous studies reported that the process of gene transcription
is mainly affected by the SNPs located within 100 kb around the
corresponding genes [49, 50]. For this purpose, we first removed
308 unsuitable lncRNAs, which have no annotation about the
location in genome according to the NONCODE, from all the
2383 differentially expressed lncRNAs. Then, we compared
the genomic locations of all the 620 339 genotyped variants and
the remaining 2075 lncRNAs (hg19) and selected 178 451 variants
located within 100 kb around the lncRNAs. Subsequently, we

used the TPM values of the 2075 lncRNAs in combination with
the genotype data of the 178 451 variants to perform the eQTL
analysis by the R package ‘Matrix eQTL’, which is based on a
linear regression model [47]. Based on the expression data of
the lncRNAs, we applied the Bayesian regression and factor
analysis modules to perform the PEER analysis by the R package
‘PEER’ [48]. Finally, we obtained three PEER factors for each of
the individuals and added them to the covariates of the eQTL
analysis. All the individuals in our study are form Amsterdam
(VUMC) and Utrecht (UMCU) of Netherlands. Therefore, we
account for the population stratification based on the two
geographic ethnicities and the information to the covariates
of the eQTL analysis. We used the parameters, age, gender, three
PEER factors and population stratification, as the covariates for
the eQTL analysis to control for potential confounding factors.
The threshold of significance was set at P < 0.05.

To find genetic variants that are specific to MS individuals,
we added the interaction terms in our eQTL analysis model by
the ‘lm’ function in R. Particularly, we first coded the ‘disease
states’ factor with values 1 and 0 for MS and health. Then, we
fitted the function that includes the lncRNA expression levels as
dependent variable, ‘variant genotype’ and ‘disease states’ factor
as independent variables and a ‘variant genotype’ × ‘disease
states’ interaction term by the ‘lm’ function in R. Further, we per-
formed a permutation procedure to further correct for multiple
variants testing per gene expression according to the previous
studies [29, 51]. Briefly, we calculated the permuted P-values by
randomizing the sample labels (including PEER factors, popula-
tion stratification, age and gender covariates) of each lncRNA
expression data, while holding fixed the genotype data of the
corresponding variants. The permutations are from a minimum
of 1000 to a maximum of 10 000 and exited when at least 15
permuted P-values less than the nominal P-values. Then, the FDR
were calculated to perform the multiple testing corrections using
the Storey approach (the threshold of q-value < 0.05). Finally, we
removed the lncRNAs whose expression level affected by indels
and selected the cis-eQTL SNPs and corresponding lncRNAs.

Production of independent cis- and non-eQTL SNPs
as well as disease-related SNPs

We first selected the SNPs with eQTL P > 0.5, which are unlikely
to be associated with lncRNA expression, from all the 178 451
variants located within 100 kb around the lncRNAs and defined
them as the non-eQTL SNPs. Then, we compared the MAF and
distance from the TSS between non-eQTL and cis-eQTL SNPs
data sets and extracted the 87 618 non-eQTLs with the MAF and
distance from the TSS matched to the cis-eQTL data set. Then, to
generate a set of the cis-eQTL SNPs that affect the expression of
the lncRNAs independently of each other, we used the HaploReg
(version 4) to remove the SNPs in strong LD with each other (r2 >

0.5) from all the 1054 lncRNA cis-eQTL SNPs. HaploReg is an LD
information discovery tool for variants from the four ancestral
super-populations, i.e. African, American, Asian and European
ancestry, based on the 1000 Genomes Project Phase 1 release
[52, 53]. We selected the European reference data set for this
LD analysis to be consistent with the ethnicity of the samples
in this study. Finally, according to the same procedure used for
generating the independent cis-eQTL SNPs, we performed the LD
analysis to obtain the independent non-eQTL SNPs.

To generate the disease-related SNPs, we first downloaded
the tag SNPs data from the GWASdb (version 2) database [54]. The
GWASdb database provides comprehensive information about
genomic variants associated with human traits and diseases,
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and the association of these variants with corresponding pheno-
types was limited to GWAS P < 1.0×10−5. Then, a previous study
reported that the variants in LD with tag SNPs are potentially
associated with the corresponding diseases [52]. Therefore, to
ensure completeness of the data, we extended the tag SNPs
based on their LD information according to the previous study
[50]. Briefly, the HaploReg was used to select the SNPs in strong
LD with the tag SNPs based on the European data set of the
1000 Genomes Project Phase 1 release, and these tag SNPs and
SNPs in LD were collectively defined as disease-related SNPs.
Finally, we selected four CNS diseases, i.e. MS (tag SNPs N = 913),
Alzheimer’s disease (N = 7717), Parkinson’s disease (N = 2294)
and schizophrenia (N = 2537) and five nonneurological diseases,

i.e. type 2 diabetes (N = 13 982
)
, rheumatoid arthritis (N = 2495),

prostate cancer (N = 1710), lung adenocarcinoma (N = 522) and
coronary artery disease (N = 1176), whose disease-related SNPs
are overlapped with the cis-eQTL and non-eQTL SNPs.

The influence of lncRNA secondary structure
by cis-eQTL SNPs

To assess whether the lncRNA secondary structure can be
affected by the corresponding cis-eQTL SNPs, we first mapped
the location of all the cis-eQTL SNPs to the regulated lncRNAs
according to annotation information of the NONCODE BED
format files [38] and dbSNP snp138 (hg19) [83]. Then, we
selected the cis-eQTL SNPs located within the lncRNAs and
the corresponding lncRNA transcript sequences from the
NONCODE FASTA files [38]. Finally, combining the alleles of the
selected cis-eQTL SNPs and the lncRNA transcript sequences, we
performed lncRNA secondary structure analysis using RNAsnp
software [55]. RNAsnp uses the Boltzmann ensemble to assess
the maximal structural change between mutant and wild-
type RNAs, which makes it more stable and reliable than
traditional methods [55]. Particularly, mode 1 of RNAsnp used
a global folding method to calculate the impact of SNPs on the
Boltzmann ensemble of secondary structure for short (< 1000 nt)
RNAs, whereas mode 2 used the local-folding approach with the
default parameters (−W 200 and −L 120) to calculate this impact
for large (> 1000 nt) RNAs [55]. Therefore, we used modes 1
and 2 of the RNAsnp to assess the effect of the cis-eQTL SNPs
on the lncRNA transcript sequences < 1000 nt and > 1000 nt,
respectively. According to the manual and the original article
of RNAsnp, if the P-value is less than 0.2, this means that a
significant RNA secondary structural change is caused by the
corresponding SNPs [55]. So, the threshold of significance was
set at P < 0.2.

WGCNA and GSEA

We performed WGCNA to construct a coexpression network
of the eQTL lncRNAs and differentially expressed protein-
coding genes. Based on the TPM values of the lncRNAs and
protein-coding genes, we first conducted a sample clustering
for the quality control using the ‘hclust’ function of R package
‘WGCNA’ [56] and removed four outlier samples (GSM2390870,
GSM2390800, GSM2390738 and GSM2390848) (Supplementary
Figure S3). Then, we chose the satisfactory soft threshold power
β to ensure that the coexpression network follows scale-free
topology criterion using the ‘pickSoftThreshold’ function of
R package ‘WGCNA’. When the β value equals seven, the
model fitting index R-squared reaches 0.87 for the first time,
and simultaneously the mean connectivity approaches zero [56]

(Supplementary Figure S4). Further, to identify the coexpression
modules where genes have high topological overlap with each
other, we calculated the weighted correlation of gene pairs
using Pearson’s method with the parameter β = 7 to generate
an adjacency matrix and used it to construct the hierarchical
clustering dendrogram using a dynamic cut-tree algorithm [56]
(Supplementary Figure S5). The visualization of these modules
in the coexpression network was realized by Cytoscape software
[84]. Finally, we measured the average correlation of the genes
in each module with the disease states (MS or healthy), gender
(male or female) and age of the 138 individuals to assess the
module significance by the functions ‘moduleEigengenes’, ‘cor’
and ‘corPvalueStudent’ in R package ‘WGCNA’ [56].

To investigate the functions of the eQTL lncRNAs in MS, we
further used the protein-encoding genes coexpressed with these
lncRNAs in each module to perform the GSEA. The data of two
common signaling pathway databases (KEGG [85] and NetPath
[86]) and two ontology-based databases (GO [87] and Reactome
[88]) were first downloaded for the GSEA. Particularly, KEGG
provided information about human disease, organism system,
cellular processes and signaling pathways [85]. NetPath is a
public resource of curated human signal transduction pathways
[86]. GO is an ontology database of genes organized by biolog-
ical process, molecular function and cellular component [87].
Reactome offers the molecular details of signal transduction,
transport, metabolism and other cellular processes [88]. Then,
we used the R package ‘clusterProfiler’ [57] to conduct the GSEA
of each module in the four reference databases. The threshold of
significance was set at q < 0.05.

Key Points
• This study provided a strategy to identify lncRNA eQTLs

in MS only based on RNA-seq data.
• We observed a specific expression of the eQTL

lncRNAs in brain-related tissues and a significant
enrichment of the cis-eQTL SNPs among neurological
disease-associated loci (including MS).

• We also found that the cis-eQTL SNPs are substantially
and specifically enriched in intergenic regions, which is
consistent with distribution of the eQTL lncRNAs types
in MS.

• We demonstrated that the dysregulation of lncRNAs
induced by genomic variants mainly influences antigen
processing/presentation and MAPK signaling pathway
in MS.

Supplementary Data

Supplementary data are available at https://idrblab.org/Zhu.
Table.S1-S6.rar
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