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Abstract: Background: Despite the substantial contribution of natural products to the FDA drug approval list, the 
discovery of anti-cancer drugs from the huge amount of species on the planet remains looking for a needle in a hay-
stack.  

Objective: Drug-productive clusters in the phylogenetic tree are thus proposed to narrow the searching scope by 
focusing on much smaller amount of species within each cluster, which enable prioritized and rational bioprospecting 
for novel drug-like scaffolds. However, the way anti-cancer nature-derived drugs distribute in phylogenetic tree has 
not been reported, and it is oversimplified to just focus anti-cancer drug discovery on the drug-productive clusters, 
since the number of species in each cluster remains too large to be managed. 
Methods: In this study, 260 anti-cancer drugs approved in the past 70 years were comprehensively analyzed by hier-
archical clustering of phylogenetic distribution. 

Results: 207 out of these 260 drugs were derived from or inspired by the natural products isolated from 58 species. 
Phylogenetic distribution of those drugs further revealed that nature-derived anti-cancer drugs originated mostly from 
drug-productive families that tend to be clustered rather than scattered on the phylogenetic tree. Moreover, based on 
their productivity, drug-producing species were categorized into productive (CPS), newly emerging (CNS) and less-
productive (CLS). Statistical significances in druglikeness between drugs from CPS and CLS were observed, and 
drugs from CNS were found to share similar drug-like properties to those from CPS. 

Conclusion: This finding indicated a great raise in drug approval standard, which suggested us to focus bioprospect-
ing on the species yielding multiple drugs and keeping productive for long period of time.. 

Keywords: Anti-cancer drugs, nature-derived drugs, druglikeness, medicinal chemistry, phylogenetic distribution, target and pathway.  

1. INTRODUCTION 

 Nature-derived drug contributes substantially to modern drug 
discovery [1-4]. Over one-third of the approved new molecular 
entities by U.S. Food and Drug Administration (FDA) from 1931 to 
2013 are derived from or inspired by the natural products [5-8]. 
When it comes to the anti-cancer drugs approved in the past five 
years [9-13], the percentage of nature-derived drugs is even higher 
(as demonstrated in Table 1, half of those drugs are derived from 
nature). With the emerging of automated separation coupling with 
structural analysis (like HPLC-NMR [14] and LC-MS/MS [15]), 
high-throughput screening [16-19], metabolic engineering [20-23], 
cheminformatics [24-30], and synthetic biology [31-34], discovery 
of anti-cancer drug from untapped natural resource is accelerated 
[35-37]. Moreover, a variety of computational methods have shown 
substantial ability to explore anti-cancer drug candidate [38-44]. 
These methods include computational polypharmacology [45], 
identification of synergistic anti-cancer drug combination by in silico 
approach [46], multi-tasking model for Quantitative Structure-
Biological Effect Relationship (mtk-QSBER) simultaneously predict-
ing pharmacological activities and ADMET properties [47-49], and  
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so on. So far, a variety of nature-derived anti-cancer drugs are ap-
proved, like ingenol mebutate from Euphorbia peplus [50], trabect-
edin from Ecteinascidia turbinate [51], homoharringtonine from 
Cephalotaxus fortunei [52] and romidepsin from Chromobacterium 
violaceum [53]. 

 Despite the advances of those emerging technologies, several 
critical difficulties in discovering nature-derived anti-cancer drugs 
are still existed, including the challenge in selecting and resupply-
ing of the drug-producing species [54], the complexity in identify-
ing and isolating drug-like scaffold [55], the tough task of determin-
ing cell-based biological activities [56], and so on. As illustrated  
in a pioneer and long-term study (across over 20 years) sponsored 
by the U.S. National Cancer Institute (NCI), over 35,000 species 
are randomly selected and screened in vitro and in vivo [57].  
However, this work is eventually abandoned with few drugs  
discovered [57]. For the comprehensive discovery of anti-cancer 
drugs from all species on the planet, it would be much more chal-
lenging to identify efficacious anti-cancer leads than the NCI’s 
study as mentioned above [58]. Therefore, the “drug-productive 
clusters” in phylogenetic tree are proposed to narrow down the 
searching scope by only focusing on a much smaller amount of 
species within “cluster” [59], and this clustered pattern can facili-
tate the discovery of new drug-producing species [59] and enable 
more prioritized and rational bioprospecting for the novel drug-like 
natural products [59, 60]. 

 However, the way nature-derived anti-cancer drugs distribute in 
phylogenetic tree has not been studied so far, and it is oversimpli-
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fied and challenging to just focus drug discovery on those “drug-
productive clusters” [61], because the number of species in each 
cluster (from several hundred to even tens of thousands) is too large 
to be managed by the medicinal chemist of natural product [59, 62]. 
In particular, some drug-producing species (such as Catharanthus 
roseus [63]) yield multiple drugs and keep productive for a long 
period of time, while others (like Streptomyces parvullus [2]) re-
main yield free for several decades after their first drug [59, 64-66]. 
Thus, to discover a nature-derived anti-cancer drug, it is essential to 
distinguish those “consistently productive species” from less-
productive ones based on multiple criteria, such as their phyloge-
netic distribution [64], the drug-likeness of their nature-derived 
drugs [1, 67] and their corresponding primary therapeutic target 

[59, 68-70]. Moreover, it is of great interest to conduct the above 
analyses on a comprehensive set of nature-derived drugs approved 
or marketed for cancer treatment. 

 In this study, 260 anti-cancer drugs approved in the past 70 
years (1946-2016) were systematically collected and 
comprehensively reviewed. Firstly, all drugs were binned into 7 
ten-year groups to analyze the discovery trends of anti-cancer 
drugs. Secondly, 207 drugs originated from 58 species were 
identified, and their species origins were divided into groups by 
their drug productivity. Thirdly, phylogenetic distributions of anti-
cancer drugs were illustrated. Finally, species’ productivity was 
statistically analyzed based on drugs’ drug-likeness, therapeutic 

Table 1. Nature-derived anti-cancer drugs approved by FDA in recent 5 years (2012-2016) [9-13]. 

Year of 
Approval Drug Name Indication Source Exemplar Species Origins Reference 

Axitinib Advanced RCC S*/NM Zea mays J. Med. Chem., 1996, 39(12), 2285-92 

Bosutinib CML S*/NM Zea mays Biochem. J., 1972, 130(4), 901-11 

Cabozantinib MTC S*/NM Zea mays PLoS One., 2012, 7(7), e39782 

Carfilzomib Multiple myeloma ND Actinomycete strain J. Antibiot., 1992, 45(11), 1746-52 

Crizotinib NSCLC S*/NM Lentzea albida Nat. Med., 1996, 2(5), 561-6 

Enzalutamide Prostate cancer S/NM Homo sapiens Drug Des. Devel. Ther., 2013, 7, 875-81 

Homoharringtonine CML N Cephalotaxus fortune J. Nat. Prod., 2016, 79(3), 629-61 

Ingenol mebutate Actinic keratosis N Euphorbia peplus Plant. Cell, 2014, 26(8), 3286-98 

Ponatinib CML S*/NM Lentzea albida Nat. Med., 1996, 2(5), 561-6 

Regorafenib Metastatic CRC S*/NM Lentzea albida Nat. Med., 1996, 2(5), 561-6 

2012 

Ziv-aflibercept Metastatic CRC B Homo sapiens Mol. Cancer Ther., 2014, 13(6), 1636-44 

Afatinib Metastatic NSCLC S*/NM Zea mays J. Med. Chem., 1996, 39(12), 2285-92 

Dabrafenib Melanoma S*/NM Zea mays Biochem. J., 1972, 130(4), 901-11 

Ibrutinib MCL S*/NM Zea mays PLoS One., 2012, 7(7), e39782 

Obinutuzumab CLL B Mus musculus Blood, 2015, 125(12), 1901-9 

Trametinib Melanoma S*/NM Zea mays J. Med. Chem., 1996, 39(12), 2285-92 

2013 

Kadcyla Breast cancer ND Maytenus ovatus J. Am. Chem. Soc., 1972, 94(4), 1354-6 

Blinatumomab B-ALL B Mus musculus J. Nat. Prod., 2016, 79(3), 629-61 

Ceritinib ALK-positive NSCLC S/NM Zea mays Biochem. J., 1972, 130(4), 901-11 

Idelalisib CLL, FL and SLL S*/NM Zea mays PLoS One., 2012, 7(7), e39782 

Nivolumab Melanoma B Homo sapiens Lancet Oncol., 2015, 16(3), 257-65 

Pembrolizumab Metastatic melanoma B Mus musculus N. Engl. J. Med., 2016, 374(26), 2542-52 

Ramucirumab Gastric cancer B Homo sapiens Cancer, 2015, 121(6), 883-92 

2014 

Siltuximab MCD B Homo sapiens Clin. Cancer Res., 2015, 21(5), 950-4 

Alectinib NSCLC S/NM Zea mays J. Nat. Prod., 2016, 79(3), 629-61 

Cobimetinib Melanoma S/NM Lentzea albida Nat. Med., 1996, 2(5), 561-6 

Daratumumab Multiple myeloma B Homo sapiens J. Immunol., 2011, 186(3), 1840-8 

Dinutuximab Neuroblastoma B Homo sapiens Clin. Cancer Res., 2017, 23(3), 804-813 

Elotuzumab Multiple myeloma B Homo sapiens Mol. Cancer Ther., 2009, 8(9), 2616-24 

Lenvatinib Thyroid cancer S/NM Zea mays J. Med. Chem., 1996, 39(12), 2285-92 

Necitumumab NSCLC B Homo sapiens Lancet Oncol., 2015, 16(3), 328-37 

Osimertinib NSCLC S/NM Zea mays Biochem. J., 1972, 130(4), 901-11 

Palbociclib Breast cancer S/NM Zea mays PLoS One., 2012, 7(7), e39782 

Imlygic Melanoma B Alpha-herpes virus J. Clin. Oncol., 2015, 33(25), 2780-8 

2015 

Lonsurf CRC ND Homo sapiens Invest. New Drugs, 2017, 35(2), 189-197 

Atezolizumab UCC B Homo sapiens Bioconjug. Chem., 2016, 27(9), 2103-10 
2016 

Olaratumab Soft tissue sarcoma B Homo sapiens Drugs, 77(1), 2017, 107-112 
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targets and pathways. In sum, this study provided a comparative 
analysis of the species producing approved anti-cancer drugs, which 
may facilitate the discovery of novel therapeutics. 

2. MATERIALS AND METHODS 

2.1. Data Collection and Definition of Drug Type 

 260 Approved anti-cancer drugs were collected from the FDA 
official website (Drugs@FDA) and the seminal work of Newman 
and Cragg [2]. Species origins of all anti-cancer drugs were system-
atically identified based on another comprehensive analysis of the 
nature-derived drugs [59] and a further literature review conducted 
in this study. The primary therapeutic target of each anti-cancer 
drug was identified based on the information provided in 
Therapeutic Target Database (TTD) [4, 6, 8]. For a drug with mul-
tiple approval years, only the earliest approval year was accepted. 

 By following the same definition as the work of Newman and 
Cragg [2], all 260 studied drugs were classified into nine drug types 
(B, N, NB, ND, S*, S*/NM, S/NM, S and V). In particular, “B” 
referred to the biologics, peptide or protein drugs either isolated 
from an organism/cell line or produced by biotechnological means 
in a surrogate host; “N” described natural products; “NB” stood for 
natural botanical drugs; “ND” represented the drugs derived from a 
natural product, usually with semisynthetic modification; “NM” 
represented natural product mimics; “S*” was the abbreviation of 
drugs made by total synthesis based on the pharmacophore of natu-
ral product; “S” denoted the totally synthetic drug; and “V” was 
recognized as the vaccine drug. 

2.2. Species Origins of Nature-Derived Anti-Cancer Drugs 

 Based on the previous studies [2, 59], 207 out of the 260 stud-
ied anti-cancer drugs were nature-derived. The species origin of 
each drug was identified by searching reputable literature using a 
combination of keywords: “drug name”, “species”, “natural prod-
uct” and “nature”. To further confirm drugs’ species origin, a spe-
cific statement in the literature was needed (such as drug “origi-
nates from”, “is derived from”, “is isolated from” a species). For 
drugs derived from a natural product, drug-leads were searched 
first, followed by a search of host species as described above. Fi-
nally, the families of drugs’ species origin, as well as all known 
species families in nature, were collected from the NCBI taxonomy 
database [62]. 

2.3. Species Categories Defined by Drug Productivity 

 Some drug-producing species yielded multiple drugs and kept 
productive for a relatively long period of time, while others re-
mained yield free for several decades after their first drug [59, 64]. 
As shown in Table S1, the number of drugs approved in each ten-
year binning group produced by those studied drug-producing spe-
cies was listed, and all 58 species were therefore classified into 
three categories by their productivity of drugs: (1) the productive 
species yielding >2 drugs (CPS); (2) the newly emerging species 
producing drugs in recent 2 decades (CNS); (3) the less productive 
species with ≤2 drugs and yield free for recent 2 decades (CLS). 

2.4. Illustrating Drugs’ Distribution on Phylogenetic Tree 

 To illustrate the phylogenetic distribution of those studied 207 
drugs, the phylogenetic tree on species family level was constructed 
using the automatic tree generator iTOL [71]. The name of species 
family was collected from the NCBI taxonomy database [62]. In the 
phylogenetic tree, drug-producing family and drug-productive clus-
ter were colored and labeled, and the family names were provided 
at branch ends. Drug-producing family with CPS was colored in 
orange, and the families with only CNS or CLS were highlighted in 
green and blue, respectively. The outer layer of phylogenetic tree 
denoted the number of drug-producing species, which was colored 

according to their species category (orange, green and blue for CPS, 
CNS and CLS, respectively). 

2.5. Calculating the Drug-like Properties 

 The physicochemical properties of the studied 207 drugs could 
be calculated using the MODEL [72]. Firstly, drug structures in 
SDF format were downloaded from the TTD [4, 6] and the NCBI 
PubChem database [73]. Five properties frequently used to reflect 
drug-likeness via Lipinski rule of five [74] were selected for evalua-
tion, including drugs’ molecular weight, cLogP, number of H-bond 
donors, number of H-bond acceptors and number of rotatable 
bonds. Moreover, two more properties frequently used to assess the 
drug-likeness (polar surface area [75] and number of heavy atoms 
[76]) were also included in the analysis of this study. Statistical 
difference was assessed by Student's t-test. The significant and 
moderate differences were shown by p-value <0.01 (**) and <0.05 
(*), respectively. 

3. RESULTS AND DISCUSSION 

3.1. Developmental Trends of Anti-Cancer Drugs during the 
Past 70 Years (1946-2016) 

 In total, there were 260 anti-cancer drugs approved in the past 
70 years. As shown in Fig. (S1), there was a clear rising trend in the 
number of approved anti-cancer drugs. In particular, the average 
number of approved drugs in the recent 30 years (~5.8 per year) 
was significantly higher than that approved before 1986 (~1.9 per 
year). The developmental trend of different drug types was illus-
trated in Fig. (1) and Fig. (S2) by binning them into 7 ten-year 
groups. The rising trend of approved anti-cancer drugs (orange) 
shown in Fig. (1) was clearer than that in Fig. (S1) with the recent 
10 years as the climax of drug production (~8.5 per year). The 
number of approved natural products (N and NB) and that of ap-
proved drugs derived from nature (B, ND, S*, S*/NM, S/NM and 
V) were colored in green and blue, respectively (Fig. 1). As shown, 
the nature-derived drugs constituted the major part of all approved 
anti-cancer drugs, and the approved natural products (green) played 
a constant role by contributing 0.34 anti-cancer drugs per year. 
Comparing with the approved natural products, the number of ap-
proved drugs derived from nature (shown in blue) increased signifi-
cantly, which was the main driver of the rising trend of approved 
anti-cancer drugs (shown in orange). As shown in Fig. (1), the 
booming era of nature-derived drugs started from the middle of 
1980s with a greatly increased number of biologics approved (espe-
cially antibodies [77] as shown in Fig. S2). In the recent 20 years, 
biologics still enjoyed a rapid growth, and the number of ND, S*, 
S*/NM and S/NM also increased substantially. This may come 
from the introduction of targeted therapy since the first discovery of 
Imatinib in 1996 [78]. 

3.2. Phylogenetic Distribution of Anti-Cancer Drugs 

 As shown in Table S1, there were 207 nature-derived anti-
cancer drugs originating from 58 species, and the majority of these 
species (81%, in Table 2) belonged to two species kingdoms (Bac-
teria and Viridiplantae). Many studied drugs were from species 
kingdom Metazoa with 84% originating from human. Therefore, 
the inclusion or exclusion of these drugs had a limited effect on our 
analysis. To study the phylogenetic distribution of those 207 stud-
ied anti-cancer drugs, 47 species within kingdoms of Bacteria and 
Viridiplantae were analyzed. As demonstrated in Table S1, these 
species were classified into three categories based on their produc-
tivity of drugs: (1) 11 productive species yielding >2 drugs (CPS); 
(2) 23 emerging species producing drugs in the recent 2 decades 
(CNS); and (3) 13 less productive species with ≤2 drugs and yield 
free for recent 2 decades (CLS). Phylogenetic distributions of anti-
cancer drugs on species family level in Bacteria and Viridiplantae 
were illustrated in Fig. (2) and Fig. (3), respectively. As illustrated 
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in Figure 2, Bacteria with 317 known families contained 9 drug-
producing families, and 7 out of these 9 concentrated in 2 drug-
productive clusters (Actinonycetales and Gammaproteobacteria). 2 
drug-producing families with only CNS located outside these 2 
clusters, but one of the families was in the previously identified 
clusters productive of drugs for all diseases [59]. Viridiplantae with 
821 known families contained 13 drug-producing families (Fig. 3) 
and 9 out of 13 located in 3 drug-productive clusters (Commelinids, 
Fabids and Lamiids). 4 remaining families were outside these 3 
clusters, but 3 of them were in previous clusters productive of drugs 
for all diseases [59]. 

 Statistical analysis further revealed that 87% and 67% of the 
approved anti-cancer drugs concentrated in 11 families producing 
multiple drugs and 5 drug-productive clusters, respectively (Table 
3), and the majority of CNSs located in clusters productive of anti-
cancer drugs (Figs. 2 and 3). Phylogenetic distribution of those 
studied drugs revealed that nature-derived anti-cancer drugs origi-
nated mostly from drug-productive families that tend to be clustered 
rather than scattered on phylogenetic tree. Comparing with the 
previous study [59], the number of clusters productive of anti-
cancer drugs significantly decreased from 14 to 5, which was thus 
much easier to be managed by medicinal chemists of natural prod-
uct. The clustered patterns of species origins of nature-derived anti-
cancer drugs suggested that it is necessary to focus the bioprospect-
ing effort on those specific families in the well-defined drug-
productive clusters. 

3.3. Discriminating the Druglikeness of Drugs Derived from 
CPSs and CLSs 

 Lipinski rule of five (RO5) was frequently used to assess the 
drug-likeness [74], which comprised 5 aspects of evaluation: mo-
lecular weight ≤500 Da, cLogP ≤5, No. H-bond acceptors ≤10, No. 
of H-bond donors ≤5, and No. of rotatable bonds ≤10. Moreover, 2 
more physicochemical properties frequently used to assess the 
drug-likeness (polar surface area [75] and a number of heavy atoms 

[76]) were also included in this study. The number of nature-
derived anti-cancer drugs with an available structure derived from 
CPSs, CLSs and CNSs was 56, 17 and 6, respectively. These 7 
drug-like properties mentioned above were calculated using 
MODEL [72] and fully provided in Table S2. The statistical differ-
ences in these 7 properties among drugs from CPS, CLS and CNS 
were shown in Fig. (4) and Fig. (S3). As shown, there was statisti-
cal significance in 4 properties (cLogP, No. of H-bond donors, No. 
of H-bond acceptors and polar surface area, shown in Fig. 4) be-
tween drugs from CPS and CLS, and the corresponding statistical 
differences (p-value between drugs from CPS and CLS) in molecu-
lar weight and No. of heavy atoms both equal to 0.07 (close to 0.05, 
shown in Fig. S3). Moreover, statistical significance was also ob-
served between drugs from CNSs and CLSs (Fig. 4), which re-
vealed a much more similar drug-likeness between drugs from CPS 
and CNS than that between drugs from CLS and CNS. In other 
words, drugs from newly emerging species (CNS) shared similar 
drug-like properties to those from productive species (CPS), while 
the distinct difference between the drugs from CLS and CNS was 
observed. With the significant raise of drug approval standards and 
biomedical technologies [79-81], it might be reasonable to extrapo-
late that drugs from CLS were poor in drug-likeness properties if 
they were assessed by the latest approval standards. Thus, this find-
ing suggested the researcher focus future bioprospecting on those 
species yielding multiple drugs and keeping productive for a long 
period of time, and it was necessary to assess, in advance, the drug-
likeness of the secondary metabolites isolated from the aimed spe-
cies, before this species was selected as a promising one for new 
drug discovery. 

3.4. Therapeutic Targets of the Nature-Derived Anti-Cancer 
Drugs 

 The targets of 86 drugs from drug-producing species within the 
kingdoms of Bacteria and Viridiplantae were reviewed, and 77 out 
of these 86 were identified with primary therapeutic targets 

 

 
Fig. (1). The number of anti-cancer drugs (colored in orange), natural products (N and NB, colored in green) and drugs derived from nature (B, ND, S*, S*/NM, 
S/NM and V, colored in blue) approved in the past 70 years by binning drugs into 7 ten-year groups. Digital numbers denoted the number of drugs per year. (The 
color version of the figure is available in the electronic copy of the article). 

 

Table 2. Distribution of 207 nature-derived anti-cancer drugs in different species kingdoms. 

Kingdoms Drug Species Family 

Bacteria 45 (21.7%) 26 (44.8%) 10 (30.3%) 

Viridiplantae 41 (19.8%) 21 (36.2%) 13 (39.4%) 

Metazoa 120 (58.0%) 7 (12.1%) 6 (18.2%) 

Others 4 (1.9%) 4 (6.9%) 4 (12.1%) 
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Fig. (2). Phylogenetic distribution of the studied drugs on the species family level in the Bacteria kingdom. Drug-producing family and drug-productive cluster 
were colored and labeled, respectively. The family name was provided at branch ends. Drug-producing family with CPS was colored in orange, and family with 
only CNS or CLS was colored in green and blue, respectively. The outer layer of the phylogenetic tree denoted the number of drug-productive species colored 
according to their species category (orange, green and blue for CPS, CNS and CLS, respectively). The cluster productive of anti-cancer drugs was defined as a 
relatively small branch of a phylogenetic tree with two or more drug-productive families (labeled in dark), while the previously identified clusters productive of 
drugs for all diseases [59] were labeled in grey. (The color version of the figure is available in the electronic copy of the article). 

 

 
Fig. (3). Phylogenetic distribution of the studied drugs on the species family level in Viridplantae kingdom. The definition and explanation of all colors and 
labels were fully described in the legend of Fig. (2). 
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Table 3. Number of drugs in drug-producing families and drug-productive clusters. Those families producing multiple drugs were highlighted in 
bold. 

Kingdom Clusters Productive of Anti-Cancer Drugs Drug-Producing Family Category 
No. of 
Drugs Example of Drugs 

Streptomycetaceae CPS 25 Actinomycin D 

Pseudonocardiaceae CPS 11 Imatinib 

Micromonosporaceae CNS 1 Mylotarg 

Mycobacteriaceae CLS 1 Mifamurtide 

Actinomycetales 

Corynebacteriaceae CNS 1 Ontak 

Enterobacteriaceae CLS 2 Asparaginase 
Gammaproteobacteria 

Pectobacteriaceae CNS 1 Erwinaze 

-- Neisseriaceae CNS 1 Romidepsin 

Bacteria 

-- Polyangiaceae CNS 1 Ixabepilone 

Apiaceae CPS 3 Alitretinoin 
Campanulids 

Asteraceae CNS 1 Arglabin 

Euphorbiaceae CNS 1 Ingenol mebutate 
Fabids 

Celastraceae CNS 1 Kadcyla 

Apocynaceae CPS 6 Vinblastine 

Icacinaceae CPS 3 Belotecan 

Loganiaceae CLS 1 Topotecan 

Rubiaceae CPS 3 Elliptinium acetate 

Lamiids 

Solanaceae CLS 1 Solamargines 

-- Poaceae CPS 19 Gefitinib 

-- Taxaceae CPS 4 Paclitaxel 

-- Cornaceae CPS 3 Irinotecan 

Viridiplantae 

-- Berberidaceae CLS 2 Etoposide 

 

 
Fig. (4). Statistical differences in 4 drug-like properties (cLogP, No. of H-bond donors, No. of H-bond acceptors and polar surface area) among drugs from 
CPSs, CLSs and CNSs. Significant and moderate differences were shown by p-value ≤ 0.01 (**) and ≤ 0.05 (*), respectively. 
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Fig. (5). The top-ranked therapeutic targets aimed by multiple anti-cancer drugs together with the number of their corresponding drugs. Drugs from CPS, CLS 
and CNS were in orange, blue and green, respectively. (The color version of the figure is available in the electronic copy of the article). 

 

(the number of targets was 31 in total, shown in Table S3). These 
31 targets were from several important target families such as 
kinase (52.7%), DNA related proteins and nucleic acids (24.7%), 
structural proteins (9.7%) and others (12.9%). As illustrated in Fig. 
(5), all drugs in CLS targeted DNA and DNA topoisomerase II, 
while drugs in CPS aimed at a much more diverse set of therapeutic 
targets (DNA topoisomerase II, VEGFR2, Tubulin, c-Kit and ABL 
were popular targets aimed by more than 5 anti-cancer drugs). 
There was a clear shift in drug targets from the previous DNA re-
lated molecules to the current kinase proteins. 

3.5. Pathways Affiliated by the Nature-Derived Anti-Cancer 
Drugs 

 Pathways affiliated by 86 drugs from drug-producing species in 
Bacteria and Viridiplantae were also studied. 72 out of these 86 
were identified as affiliated with at least one KEGG pathway [82], 
and these drugs aimed at 28 primary therapeutic targets (the total 
number of pathways was 22, shown in Table S4). The top-ranked 
pathways affiliated by a large number of drugs (≥5) were illustrated 
in Fig. (S4). As shown, drugs from CLS affiliated with DNA repli-
cation, transcription pathway and MAPK pathway, while drugs 
from CPS aimed at not only the same pathways as that from CLS 
but also several other diverse and popular pathways, including 
ErbB pathway, Ras pathway, tight and gap junction, PI3K-Akt 
pathway, VEGF pathway, mTOR pathway. It was clear (Fig. S4) 
that DNA replication, transcription pathway and MAPK pathway 
were crucial for the discovery of anti-cancer drug from both CLS 
and CPS. However, current new drug exploration was gradually 
shifted to those pathways enriched by kinase proteins (such as 
EGFR, ABL, VEGFR2, and so on). 

CONCLUSION 

 Our work revealed that nature-derived anti-cancer drugs origi-
nated mostly from drug-productive families that tend to be clustered 
rather than scattered on the phylogenetic tree. A significant differ-
ence in drug-likeness between drugs from CPS and CLS was ob-
served, and drugs from CNS shared similar drug-like properties to 
those from CPS, which indicated a significant improvement in 
drug-likeness for the current discovery of anti-cancer drugs. These 
findings suggested the researchers focus bioprospecting efforts on 
species yielding multiple drugs and keeping productive for long 
period of time, and it was necessary to assess, in advance, drug-
likeness of the secondary metabolites isolated from the aimed spe-
cies, before this species was selected for new drug discovery. 

LIST OF ABBREVIATIONS 

ALK = Anaplastic Lymphoma Kinase 

B-ALL = B-cell Acute Lymphoblastic Leukemia 

CLL = Chronic Lymphocytic Leukemia 

CML = Chronic Myelogenous Leukemia 

CRC = Colorectal Cancer 

EGFR = Epidermal Growth Factor Receptor 

FL = Follicular Lymphoma 

HDAC = Histone Deacetylase 

HER2 = Epidermal Growth Factor Receptor 2 

MCD = Multicentric Castleman Disease 

MEK = Mitogen-activated Protein Kinase Kinase 

MTC = Medullary Thyroid Cancer 

mTOR = Mammalian Target of Rapamycin 

NSCLC = Non-small Cell Lung Cancer 

PDGFR = Platelet-Derived Growth Factor Receptor 

RAR = Retinoic Acid Receptor 

RCC = Renal Cell Carcinoma 

SLL = Small Lymphocytic Lymphoma 

TOP = Topoisomerase 
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