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Abstract
Aims:	Alzheimer’s	disease	(AD)	is	one	of	the	leading	causes	of	death	in	elderly	people.	
Its	 pathogenesis	 is	 greatly	 associated	 with	 the	 abnormality	 of	 immune	 system.	
However,	only	a	few	immune‐relevant	AD	drug	target	genes	have	been	discovered	
up	to	now,	and	it	is	speculated	that	there	are	still	many	potential	drug	target	genes	of	
AD	(at	least	immune‐relevant	genes)	to	be	discovered.	Thus,	this	study	was	designed	
to	identify	novel	AD	drug	target	genes	and	explore	their	biological	properties.
Methods:	A	combinatorial	approach	was	adopted	for	the	first	time	to	discover	AD	
drug	 targets	 by	 collectively	 considering	 ontology	 inference	 and	 network	 analysis.	
Moreover,	a	novel	strategy	 limiting	the	distance	of	reasoning	and	 in	turn	reducing	
noise	interference	was	further	proposed	to	improve	inference	performance.	Potential	
AD	drug	target	genes	were	discovered	by	integrating	information	of	multiple	popular	
databases	 (TTD,	DrugBank,	PharmGKB,	AlzGene,	and	BioGRID).	Then,	 the	enrich‐
ment	analyses	of	the	identified	drug	targets	genes	based	on	nine	well‐known	path‐
way‐related	 databases	 were	 conducted	 to	 explore	 the	 function	 of	 the	 identified	
potential	drug	target	genes.
Results:	Eighteen	potential	drug	target	genes	were	finally	identified,	and	13	of	them	
had	been	reported	to	be	closely	associated	with	AD.	Enrichment	analyses	of	these	
identified	drug	target	genes,	based	on	nine	pathway‐related	databases,	revealed	that	
the	enriched	terms	were	primarily	 focus	on	 immune‐relevant	biological	processes.	
Four	of	those	identified	drug	target	genes	are	involved	in	the	classical	complement	
pathway	and	process	of	antigen	presenting.
Conclusion:	 The	 well‐reproducible	 results	 showed	 the	 good	 performance	 of	 the	
combinatorial	approach,	and	the	remaining	five	new	targets	could	be	a	good	starting	
point	for	our	understanding	of	the	pathogenesis	and	drug	discovery	of	AD.	Moreover,	
this	study	supported	validity	of	the	combinatorial	approach	integrating	ontology	in‐
ference	with	network	analysis	in	the	discovery	of	novel	drug	target	for	neurological	
diseases.
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1  | INTRODUC TION

Alzheimer’s	disease	(AD)	is	the	most	common	type	of	dementia	and	
one	of	the	leading	causes	of	death	in	elderly	people,	which	is	char‐
acterized	by	neurofibrillary	tangles	and	amyloid	β‐peptide	(Aβ)	de‐
posits	in	brain.1,2	Based	on	two	independent	studies,	the	number	of	
people	newly	diagnosed	with	AD	is	expected	to	reach	135	million	
around	the	world	and	16	million	in	USA	by	2050,	respectively.3,4

So	far,	the	deficiency	of	innate	immune	ability	to	clear	Aβ	deposits	
(rather	 than	overproduction	of	 them)	has	been	widely	 accepted	 as	
one	of	the	most	important	causes	of	AD	pathogenesis,	and	current	
research	was	gradually	moved	 from	blocking	 the	production	of	Aβ 
deposits	to	rebalancing	the	immune	system	of	AD	patients.5‒7	For	ex‐
ample,	interleukin	(IL)‐10,	one	of	the	best	known	inflammatory	cyto‐
kines,	was	a	major	regulator	of	macrophages.8	Recent	study	showed	
that	 the	 inhibition	of	 the	 IL‐10	pathway	could	 rebalance	 the	 innate	
immunity	and	mitigate	Alzheimer‐like	pathology.9	Another	member	
of	interleukin	family,	IL‐33,	was	found	to	play	a	potential	therapeutic	
role	for	AD.	A	previous	study	reported	that	IL‐33	could	modulate	the	
innate	immune	responses	to	reduce	the	accumulation	of	Aβ	depos‐
its	and	reverse	the	impairment	of	memory	and	synaptic	plasticity	in	
AD	mouse.10	The	genome‐wide	association	study	found	that	a	clus‐
ter	of	genes	implicated	in	innate	immune	pathways	was	upregulated	
together	with	the	downregulation	of	synaptic	plasticity	genes	in	AD	
patients.11,12	Moreover,	two	lymphatic	systems	involved	in	the	clear‐
ance	of	Aβ	deposits	 in	AD	were	 reported.	 In	particular,	glymphatic	
(glial+lymphatic)	 system	was	 a	 critical	 contributor	 to	 the	 clearance	
of	 interstitial	 solutes	 (including	 Aβ	 deposits)	 from	 the	 brain,13 and 
the	function	of	glymphatic	transport	was	suppressed	in	a	mouse	AD	
model.14	The	malfunction	of	meningeal	 lymphatic	vessel	 (the	other	
cleaner	of	Aβ	deposits	closely	related	to	lymphatic	system)	was	found	
to	be	greatly	associated	with	AD	pathogenesis.15‒17	In	the	meantime,	
some	immunotherapies	and	drugs	for	Aβ	clearance	have	attempted	
to	control	progress	of	AD.18‒20	For	example,	a	monoclonal	antibody‐
based	immunotherapeutic	drug	was	reported	under	development	in	
recent	year,	and	it	selectively	targeted	and	cleared	the	aggregated	Aβ 
in	brain	and	effectively	relieved	the	symptom	of	AD.21‒23

However,	only	 a	 few	of	drug	 target	 genes	of	AD	 implicated	 in	
immunity	had	been	discovered	up	 to	now.	Specifically,	 among	 the	
known	target	genes	of	therapeutic	drugs	for	AD,	only	four	of	them	
(about	10.5%)	belonged	to	the	family	of	innate	immune	genes	(Table	
S1,	based	on	the	information	of	InnateDB	with	over	1500	innate	im‐
mune	genes	collected	by	literature	review).24	Moreover,	the	studies	
showed	 that	 the	 total	 number	of	 the	 known	AD	drug	 targets	 had	
appeared	 to	 be	 also	 not	 complete	 enough,	 considering	 the	 wide	
range	of	pathologic	features.25	In	fact,	only	five	drugs	have	got	FDA	
approval	for	the	treatment	of	AD,	and	they	target	primarily	on	two	
therapeutic	targets:	Acetylcholinesterase and NMDA receptor.26	Since	
2003,	no	new	target	has	been	approved	for	treating	AD.	All	the	facts	
implied	that	there	were	still	potential	target	genes	of	AD	(especially	
the	innate	immune	genes)	remaining	to	be	discovered.

Due	to	the	time‐consuming	and	extremely	high	cost	of	modern	
drug	discovery,	computational	methods	have	emerged	as	one	of	the	

most	 effective	 approaches	 for	 the	 discovery	 of	 new	 targets.27‒32 
However,	 these	 computational	 methods	 focused	mainly	 on	 single	
biologic	perspective,	such	as	pathway	profile‐based,33	gene	expres‐
sion‐based,34‒36	 and	 similarity‐based37‒40	 methods.	 Important	 in‐
formation	might	be	neglected	by	these	methods,	as	many	essential	
relationships	 (such	 as	 gene‐gene,	 gene‐disease,	 and	 disease‐drug)	
systematically	 contributed	 to	 the	association	between	 the	disease	
and	their	corresponding	drug	targets.41	As	reported,	target	drugga‐
bility	was	found	to	be	collectively	defined	by	target’s	disease	rele‐
vance	and	its	roles	in	human	protein‐protein	interaction	network,42 
and	 a	 novel	 strategy	 integrating	 ontology	 inference	 and	 network	
analysis	was	thus	proposed	to	predict	the	candidate	targets	of	col‐
orectal	cancer	(CRC).41	 In	this	study,	the	inference	performance	of	
this	published	method41	was	substantially	enhanced	by	limiting	the	
distance	of	reasoning	and	in	turn	reducing	noise	interference	(predic‐
tion	accuracy	of	ontology‐based	inference	was	reported	to	be	highly	
dependent	on	the	distance	from	initial	nodes).43	Then,	relationships	
among	drug,	gene,	SNP,	disease,	and	haplotype	were	integrated	by	
combining	ontology‐based	inference	and	biological	network	analysis	
to	discover	potential	 target	of	AD.	Finally,	 the	enrichment	analysis	
to	the	in‐depth	investigation	of	the	biological	functions	for	AD	was	
conducted.	In	conclusion,	this	was	the	first	discovery	of	drug	targets	
for	neurological	disease	by	improving	the	inference	performance	of	
the	newly	proposed	combinatorial	method,	and	the	novel	candidate	
target	genes	identified	in	this	study	did	provide	significantly	added	
values	to	the	discovery	of	drugs	for	treating	AD.

2  | MATERIAL S AND METHODS

2.1 | Collection of AD drugs and their known 
targets

The	drugs	approved	by	US	FDA	or	 in	clinical	trial	for	the	treatment	
of	 AD	 were	 first	 collected	 from	 the	 Therapeutic	 Target	 Database	
(TTD)44	 which	 contained	 31	614	 drugs	 and	 2589	 targets	 covering	
over	 125	 diseases	 after	 its	 last	 update	 in	 2018.26	 Then,	 the	 drugs	
that	did	not	belong	to	PharmGKB	database	were	removed,	and	full	
list	of	AD	drugs	was	obtained	for	 further	analyses.	The	PharmGKB	
was	a	preeminent	worldwide	 resource	and	web	 interactive	 tool	 for	
the	knowledge	of	pharmacogenomics.	It	was	funded	by	the	National	
Institute	 of	 General	 Medical	 Sciences	 (NIGMS)	 and	 the	 National	
Institutes	 of	 Health	 (NIH),	 and	 the	 relationship	 data	 of	 PharmGKB	
could	 be	 used	 to	 research	 how	 the	 genetic	 variations	 affected	 the	
response	of	drugs.45	For	example,	rs1800460	polymorphism	was	re‐
lated	to	azathioprine,	mercaptopurine,	thioguanine	based	on	the	data	
of	PharmGKB,	and	many	studies	reported	this	variant	could	cause	ad‐
verse	reactions	to	these	drugs.45‒47	In	this	study,	PharmGKB	relation‐
ship	data	between	drugs	and	drugs,	drugs	and	haplotypes,	drugs	and	
SNPs,	drugs	and	genes,	diseases	and	genes,	diseases	and	haplotypes,	
diseases	and	SNPs,	diseases	and	diseases,	genes	and	haplotype	were	
collected	for	subsequent	study.	Finally,	the	known	targets	of	the	se‐
lected	AD	drugs	were	extracted	from	both	TTD	and	DrugBank.48,49
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2.2 | Discovery of the candidate AD target genes 
using ontology inference

Ontology	 was	 a	 hierarchically	 organized	 structure	 about	 exist‐
ences,	 types	 of	 them	 and	 their	 relationships,	 according	 to	 their	
innate	 logic.	 Based	 on	 ontology,	 semantic	 web	 technology	 was	
developed	to	 integrate	and	reason	the	heterogeneous	data.	As	a	
machine‐readable	 standard	 ontology	 language	 of	 semantic	 web	
technique,	the	web	ontology	language	(OWL)	effectively	inherited	
triple	model	(subject‐predicate‐object)	from	resource	description	
framework	(RDF).50‒54	Thus,	through	integrating	and	reasoning	re‐
lationships	among	drugs,	genes,	SNPs,	diseases,	and	haplotypes,	
the	 OWL	 could	 find	 the	 genes	 directly	 or	 indirectly	 connected	
with	an	AD	drug,	and	these	genes	were	defined	as	the	candidate	
AD	target	genes.	According	to	the	newly	proposed	strategy,41 in 
OWL	network,	all	of	the	drugs,	genes,	SNPs,	diseases,	haplotypes	
from	PharmGKB	were	defined	as	nodes	and	 the	 relationships	of	
them	were	defined	as	 links	based	on	 the	Portégé	 (an	editor	 and	
reasoner	 based	 on	OWL).	 Then,	 the	 AD‐related	 drug	 (ADDrug),	
gene	 (ADGene),	 SNP	 (ADSNP),	 disease	 (ADDisease),	 and	 hap‐
lotype	 (ADHaplotype)	 were	 defined	 according	 to	 the	 OWL	 de‐
scription	 logic	 rule.	 Specifically,	 a	 gene	 belonged	 to	 the	 class	 of	
ADGene	 if	 it	was	associated	with	one	of	these	defined	concepts	
(ADDrug,	 ADGene,	 ADSNP,	 ADDisease,	 and	 ADHaplotype)	 ac‐
cording	to	the	relationships	in	PharmGKB,	where	other	concepts	
were	defined	similar	as	the	ADGene.	The	distance	of	reasoning	for	
an	AD	drug	(ie	the	number	of	nodes	away	from	the	AD	drug	node)	
was	limited	according	to	the	location	containing	the	most	number	
of	their	known	target	genes.

2.3 | Collecting the AD disease genes

To	 further	 identify	 the	 potential	 AD	 target	 genes	 from	AD	 target	
genes,	 the	 levels	of	association	between	known	AD	disease	genes	
and	 each	 of	 the	 candidate	 AD	 target	 genes	 were	 compared	 and	
ranked.	 The	 AD	 disease	 genes	 were	 searched	 in	 the	 AlzGene,	 a	
publicly	available	database	collecting	AD	genetic	variants	from	the	
publications	of	genetic	association	study	about	AD.	To	the	best	of	
our	knowledge,	the	AlzGene	is	so	far	the	only	database	specialized	
in	the	selection	and	analysis	of	AD	risk	genes,	and	its	latest	version	
(updated	 in	 2011)	 contained	 695	 disease	 genes,	 2973	 polymor‐
phisms,	and	320	systematic	meta‐analyses	performed	for	genotype	
data	(including	at	least	three	case‐control	samples).55	To	ensure	the	
credibility	of	this	study,	the	significantly	associated	genes	with	AD	
(95%	confidence	interval	of	OR	values	should	not	include	1)56 were 
selected	 for	 the	 subsequent	 analyses	 based	 on	 the	 results	 of	 the	
meta‐analyses.

2.4 | Discovering potential AD target genes via 
association level test and aggregation rank

Based	on	the	hypothesis	that	the	drugs	will	more	efficiently	work	
on	 some	 disease	 genes	 if	 they	 show	 a	 tighter	 connection,41	 the	

levels	 of	 association	 between	 each	 of	 the	 candidate	 AD	 target	
genes	 and	 the	 AD	 disease	 genes	 were	 assessed	 to	 identify	 po‐
tential	 AD	 target	 genes.	 The	 human	 protein‐protein	 interaction	
(PPI)	network	was	thus	collected	for	conducting	such	calculation.	
The	BioGRID	(Mount	Sinai	Hospital,	Toronto,	ON,	Canada)	was	a	
monthly	updated	comprehensive	PPI	network	database.57	It	cap‐
tured	836	212	nonredundant	biological	 interactions	from	57	058	
published	 biomedical	 articles	 involving	 all	 major	 organisms	 and	
human	 beings	 by	 September	 2016.	Moreover,	 the	 different	 reli‐
ability	of	each	interaction	was	provided	in	the	BioGRID	based	on	
available	evidences	 that	how	many	 independent	 studies	 consist‐
ently	support	the	result.	First,	human	PPI	data	were	download	from	
BioGRID	(version	3.4.140),	and	the	high	reliability	data	supported	
by	at	least	two	independent	studies	were	selected.	Second,	after	
removing	 self‐interaction	 data,	 the	 human	 PPI	 networks	 which	
centered	on	each	of	the	candidate	target	genes	were	built.	Within	
these	networks,	the	nodes	directly	linked	with	the	candidate	tar‐
get	genes	were	defined	as	the	first‐degree	neighbor.	Similarly,	the	
nodes	linked	with	the	first‐degree	neighbors	(except	the	candidate	
AD	 target	 genes)	were	defined	as	 the	 second‐degree	neighbors,	
and	 the	 nodes	 linked	with	 the	 second‐degree	 neighbors	 (except	
first‐degree	 neighbors)	 were	 defined	 as	 the	 third‐degree	 neigh‐
bors,	 etc.	 Thirdly,	 the	 previous	 studies	 showed	 that	 the	 disease	
genes	were	mainly	 enriched	 in	 the	 first	 three	 degree	 neighbors	
of	 the	drug	target	genes.58,59	Thus,	 the	AD	disease	genes	 to	 the	
first‐,	 second‐,	 third‐degree	neighbors	of	 the	PPI	networks	were	
mapped,	and	their	percentages	in	each	neighbor	to	assess	the	lev‐
els	of	association	between	each	of	the	candidate	AD	target	genes	
and	AD	disease	genes	were	calculated.	Specifically,	for	a	given	AD	
candidate	gene,	 there	were	N	genes	 in	 its	 first‐degree	neighbor,	
and	of	which	n	genes	belong	to	AD	disease	genes.	Then,	the	closer	
that	this	ratio	(n/N)	was	to	1,	the	more	significant	association	was	
built	between	this	given	AD	candidate	gene	and	AD	disease	genes.	
Thus,	 this	given	candidate	gene	more	 likely	becomes	a	potential	
drug	target.	Similarly,	the	ratio	in	other	degree	neighbors	was	cal‐
culated	by	this	approach.	Finally,	based	on	the	ratios	in	the	three	
degree	neighbors,	the	candidate	AD	target	genes	were	ranked	in	
three	lists.

To	 identify	 the	 potential	 AD	 drug	 targets,	 robust	 rank	 aggre‐
gation	 (RRA)	method	was	used	 to	 integrate	 the	 three	 lists	of	 rank	
order.	RRA	was	a	 computationally	efficient	and	 statistically	 stable	
order	algorithm,	and	it	assigned	the	P‐value	to	measure	how	well	a	
candidate	gene	was	positioned	in	the	ranked	lists	than	expected	by	
chance.60	The	R	package	of	RRA	(RobustRankAggreg)	was	available	
at	the	Comprehensive	R	Archive	Network	(https://www.icesi.	edu.
co/CRAN/web/packages/RobustRankAggreg/).

2.5 | Enrichment analysis of the potential AD drug 
target genes

AD	was	 reported	 to	 be	 closely	 related	 to	 immune	 system,5,61	 but	
very	 little	 of	 immune‐relevant	 AD	 drug	 target	 genes	 had	 been	
discovered	 comparing	 with	 other	 target	 genes.	 Therefore,	 it	 was	

https://www.icesi
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possible	that	there	were	more	potential	immune‐relevant	genes	than	
others	among	the	undiscovered	AD	drug	target	genes.	However,	it	
was	 improper	 to	simply	compare	 the	numbers	of	 them	due	 to	 the	
different	backgrounds	(the	various	sizes	of	gene	sets).	So	far,	these	
backgrounds	(such	as	human	disease,	organism	system,	cellular	pro‐
cesses	and	signaling	pathways)	were	provided	in	Kyoto	Encyclopedia	
of	 Genes	 and	 Genomes	 (KEGG)	 for	 achieving	 this	 comparison.62 
Apart	from	KEGG,	there	were	several	other	data	sources	providing	
such	signaling	pathway	information,	including	MetaCyc63	(database	
of	the	metabolic	pathways	and	enzymes),	NetPath64	(resource	of	cu‐
rated	signal	transduction	pathways),	PathWhiz65	(database	of	biology	
pathways	and	web	server	for	creating	biologically	accurate	pathway	
diagram),	Pathway	Interaction	Database	PID66	(collection	of	curated	
and	peer‐reviewed	pathways	composed	of	human	molecular	signal‐
ing,	regulatory	event	and	cellular	process),	and	WikiPathways67	(mul‐
tifaceted	pathway	database	bridging	metabolomics	 to	other	omics	
research).	 Moreover,	 there	 were	 three	 ontology‐based	 databases	
offering	pathway‐related	data,	including	Gene	Ontology	GO68	(gene	
ontology	 organized	 by	 biological	 process,	 molecular	 function	 and	
cellular	component),	PANTHER69	 (gene	products	organized	by	bio‐
logical	 function),	 and	Reactome70	 (molecular	detail	of	 signal	 trans‐
duction,	transport,	metabolism,	and	other	cellular	processes).	Apart	
from	PID,	the	comprehensive	data	of	the	remaining	eight	databases	
were	fully	downloadable,	and	the	enrichment	analyses	of	the	poten‐
tial	AD	drug	target	genes	based	on	data	from	these	eight	databases	
were	 thus	conducted	using	 the	R	package	clusterProfiler71	 to	vali‐
date	the	presumption	of	this	study.

3  | RESULTS AND DISCUSSION

3.1 | Collecting AD drugs and limiting search criteria 
using their known targets

First,	by	selecting	AD	drugs	from	TTD	database72	and	removing	the	
drugs	 not	 belonging	 to	 PharmGKB	 database,73	 five	 approved	 and	
one	phase	 III	clinical	 trial	drugs	were	obtained.	Second,	23	known	
targets	of	these	drugs	were	collected	from	TTD	and	DrugBank.48,49 
Third,	to	limit	the	distance	of	reasoning,	the	number	of	the	known	
AD	target	genes	was	counted	in	each	degree	of	OWL	network.	As	
demonstrated	in	Table	1,	for	the	selected	drugs,	their	known	target	
genes	were	mainly	concentrated	in	a	specific	degree.	These	results	
implied	that	for	a	given	drug,	its	target	genes	were	mainly	distributed	
in	a	specific	scope	of	OWL	network.	In	this	study,	to	reduce	the	ef‐
fect	of	noise,	the	reasoning	distance	of	each	drug	was	thus	limited	
to	the	degree	where	most	of	its	known	target	genes	can	be	found.

3.2 | Discovering the candidate AD target genes 
using OWL ontology method

An	OWL	ontology	of	AD	drug,	 gene,	 SNP,	disease,	 and	haplotype	
was	built	based	on	their	relationship	in	PharmGKB,	and	the	reason‐
ing	was	performed	using	Portégé	in	a	specific	scope	limited	by	the	
previous	step.	The	process	of	reasoning	and	the	result	is	displayed	TA
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in	Figures	1	and	S1.	After	eliminating	duplicate	data,	623	candidate	
AD	target	genes	directly	or	indirectly	connected	with	one	of	the	AD	
drugs	were	discovered,	and	109	of	 them	had	been	reported	to	be	
closely	related	to	AD.

3.3 | Identifying the potential AD target genes by 
AD disease genes and RRA method

First,	41	AD	disease	genes	confirmed	by	meta‐analysis	(including	at	
least	three	case‐control	experiments)	were	collected	from	AlzGene	
database	(Table	S2).	Second,	623	human	PPI	networks	of	candidate	
AD	target	genes	were	built	by	BioGRID	data.	Third,	the	41	AD	dis‐
ease	 genes	 were	 mapped	 to	 the	 first‐,	 second‐,	 and	 third‐degree	
neighbors	of	the	623	PPI	networks,	and	the	percentages	of	AD	dis‐
ease	genes	 in	each	degree	neighbor	were	calculated	to	rank	these	
candidate	target	genes	at	3	different	levels.	Finally,	these	three	lev‐
els	of	rank	were	integrated	using	RRA	method.	As	shown	in	Table	2,	
18	potential	AD	target	genes	with	significant	P‐values	(<0.05)	were	
identified,	and	of	which	13	genes	were	reported	to	be	closely	associ‐
ated	with	AD	by	previous	studies.

Taking	RELN	gene	 (coding	reelin,	an	extracellular	matrix	glyco‐
protein)	as	an	example,	it	participated	in	the	regulation	of	neuronal	
migration,	position,	growth,	and	synaptic	plasticity	linking	memory/
learning	 formation,74	 and	 it	 could	 prevent	 synaptic	 dysfunction	
induced	by	accumulation	of	Aβ	deposits	 in	AD.75	Some	studies	re‐
ported	a	significant	association	between	RELN	and	AD	among	dif‐
ferent	populations.76‒78	Another	example	could	be	DNMBP,	which	
was	a	 scaffold	protein	 to	bring	dynamin	and	actin	 regulatory	pro‐
teins	together79	and	participated	in	synaptic	vesicle	trafficking.80‒82 
This	process	could	be	disturbed	by	accumulation	of	Aβ	deposits	 in	
AD.83	 Previous	 studies	 have	 reported	 significant	 association	 be‐
tween	 DNMBP	 and	 AD	 in	 Japanese	 population.84	 The	 following	
studies	 also	 found	 a	 significant	 association	 between	DNMBP	 and	
AD	in	Belgian	and	Chinese	populations.85,86

The	distribution	of	13	reported	genes	in	the	18	identified	poten‐
tial	AD	target	genes	were	calculated.	The	18	potential	target	genes	
identified	in	this	study	were	first	arranged	in	the	descending	order	of	
P‐values	of	robust	rank	aggregation	(RRA)	analysis.	Second,	the	cu‐
mulative	number	N	was	defined	as	the	first	N	potential	target	genes,	
and	 the	percentage	of	 reported	genes	 in	each	cumulative	number	

F I G U R E  1  Process	of	discovering	the	candidate	AD	target	genes	from	each	final	selected	AD	drug.	Each	part	of	this	figure	shows	the	
process	of	discovery	from	one	of	the	drugs,	respectively.	The	process	of	discovery	from	memantine	is	shown	in	Figure	S1	because	it	is	
relatively	complex.	Different	colors	of	the	nodes	mean	different	data	types.	In	particular,	green	represents	gene,	yellow	represents	drug,	red	
represents	disease,	purple	represents	haplotype,	and	gray	represents	SNP.	The	nodes	with	red	and	blue	circles	represent	known	targets	and	
linkage	nodes,	respectively.	The	annulus	areas	constituted	of	these	nodes	represent	different	discovery	degrees.	Only	the	linkage	nodes	and	
the	discovered	candidate	target	genes	are	retained	in	this	figure.	The	duplicate	data	have	been	eliminated.	This	figure	can	be	viewed	more	
clearly	by	enlarging	in	the	electronic	version
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was	calculated.	As	shown	in	Figure	2,	the	slope	of	the	fitted	curve	
is	 continually	 decreasing.	 This	 phenomenon	 reflected	 a	 good	 reli‐
ability	of	 the	applied	prediction	method	because	 it	was	consistent	
between	the	significance	of	potential	AD	target	genes	and	the	pos‐
sibility	of	it	being	an	AD	associated	gene.	Specifically,	nearly	half	of	
the	genes	reported	to	be	closely	associated	with	AD	were	gathered	
in	the	first	30%	identified	potential	target	genes.	Then,	another	phe‐
nomenon	was	observed	by	comparing	candidate	and	potential	AD	
target	genes.	Percentage	of	reported	genes	were	significantly	higher	
in	potential	AD	target	genes	(about	72.2%)	than	it	in	candidate	AD	
target	 genes	 (about	 17.5%),	which	 further	 reflect	 the	 reliability	 of	
the	prediction.

3.4 | Enrichment analysis of the potential target 
genes based on pathway‐related databases

To	explore	the	function	of	 those	18	 identified	potential	AD	target	
genes,	the	KEGG	enrichment	analysis	was	conducted.	As	shown	in	
Table	3,	two	KEGG	pathways	were	enriched	in	this	analysis	by	set‐
ting	the	P‐value	cutoff	as	0.01,	and	both	belonged	to	the	human	im‐
mune	disease.	If	the	P‐value	cutoff	was	further	set	as	0.05,	six	KEGG	

pathways	could	be	enriched,	and	they	all	belonged	to	immune	dis‐
ease	or	immune	system.	The	remaining	KEGG	pathway	(Type	I	diabe‐
tes	mellitus)	was	also	an	autoimmune	disease.87,88	Altogether,	these	
pathways	contained	 four	 immune	genes:	C1QB,	HLA‐B,	 IL‐10,	 and	
CD86.	Among	these	genes,	C1QB	coded	the	B	chain	of	complement	
C1q	which	was	 an	 activator	 in	 the	 classical	 complement	 pathway,	
and	the	remaining	were	involved	in	the	process	of	antigen	present‐
ing.	Major	histocompatibility	 complex	 (MHC)	 is	 a	 cell	 surface	pro‐
tein	to	bind	and	present	antigen	peptide	fragments	to	T	cell.	Studies	
demonstrated	that	the	expression	of	both	MHC	class	I	and	class	II	
was	markedly	increased	in	AD.89,90	HLA‐B	is	a	member	of	the	human	
leukocyte	antigen	gene	family,	and	coded	a	part	of	heavy	chain	of	
the	MHC	class	I.91	CD86	expresses	on	most	antigen‐presenting	cells	
and	 is	a	critical	co‐stimulatory	 factors	 for	antigen	presenting	from	
MHC	to	T	cell.92	 IL‐10	 is	 an	 inhibitory	 factor	of	excessive	 immune	
response,	and	strongly	downregulates	the	expression	of	both	MHC	
class II and CD86.93‒95	 A	 recent	 study	 showed	 that	 inhibiting	 the	
IL‐10	pathway	could	relieve	the	symptom	of	AD.9

Extensive	 enrichment	 analyses	 on	 these	 potential	 drug	 target	
genes	 based	 on	 eight	 databased	 providing	 the	 pathway	 informa‐
tion	 (MetaCyc,	 NetPath,	 PathWhiz,	 PID,	 and	 WikiPathways)	 and	

Gene symbol Protein name Gene ID P‐value Reported or NOT

RELN Reelin 5649 0.000546 Reported

DNMBP Dynamin	binding	protein 23268 0.003415 Reported

APOD Apolipoprotein	D 347 0.003759 Reported

LEP Leptin 3952 0.008264 Reported

HLA‐B Major	histocompatibility	
complex,	class	I,	B

3106 0.011278 Reported

C1QB Complement	C1q	B	chain 713 0.015038 Reported

HSPG2 Heparan	sulfate	
proteoglycan	2

3339 0.018797 Reported

MTTP Microsomal	triglyceride	
transfer	protein

4547 0.022556 NOT

IL−10 Interleukin	10 3586 0.024793 Reported

TF Transferrin 7018 0.026316 Reported

NOS1AP Nitric	oxide	synthase	1	
adaptor	protein

9722 0.027164 NOT

A2M Alpha−2‐macroglobulin 2 0.030075 Reported

NEK4 NIMA	related	kinase	4 6787 0.033058 NOT

CD86 CD86 molecule 942 0.033835 Reported

PIK3C2A Phosphatidylinositol−4‐
phosphate	3‐kinase	
catalytic	subunit	type	2	
alpha

5286 0.041353 NOT

ADAM12 ADAM	metallopeptidase	
domain 12

8038 0.044259 Reported

TARBP1 TAR	(HIV−1)	RNA	binding	
protein	1

6894 0.045113 NOT

GABRG2 Gamma‐aminobutyric	acid	
type	A	receptor	gamma2	
subunit

2566 0.048872 Reported

TA B L E  2  Summary	of	the	18	potential	
AD	drug	target	genes	identified	in	this	
study
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the	ontology‐based	data	(Gene	Ontology,	PANTHER	and	Reactome)	
were	 further	conducted	 to	 reveal	 their	 functions.	Apart	 from	PID,	
the	data	of	the	remaining	seven	databases	were	fully	downloadable,	
and	the	enrichment	analyses	of	the	potential	AD	target	genes	based	
on	 the	data	 from	 the	seven	databases	were	 thus	conducted	using	
R	package	clusterProfiler	to	validate	the	presumption	of	this	study.	
As	a	result,	no	term	was	enriched	based	on	the	data	of	PANTHER,	

PathWhiz,	MetaCyc,	and	NetPath,	and	the	enriched	terms	based	on	
GO,	Reactome,	and	WikiPathways	databases	are	provided	in	Tables	
4,	S3	and	S4,	respectively.	As	shown,	the	enriched	terms	based	on	
GO	and	Reactome	are	focused	on	the	biological	process	of	lipopro‐
teins	 (eg	 phosphatidylinositol)	 with	 P‐value	 <0.05,	 that	 is	 signifi‐
cantly	 associated	with	 the	 immunity.96	 Particularly,	 the	 activity	 of	
phosphatidylinositol	3‐kinase	affects	 the	expression	of	MHC	class	

F I G U R E  2  The	distribution	of	reported	genes	among	the	ranked	potential	AD	target	genes.	The	bar	graph	shows	percentage	of	reported	
genes	in	the	first	N	identified	potential	AD	genes	which	are	ranked	by	RRA	method.	For	example,	there	are	53.8%	reported	genes	in	first	
seven	identified	potential	AD	target	genes.	The	red	line	is	a	fitted	curve	of	the	percentage	values.	The	left	and	right	ordinates	show	the	
percentage	values	of	bar	graph	and	fitted	curve,	respectively

TA B L E  3  KEGG	enrichment	results	of	potential	AD	drug	target	genes

KEGG ID KEGG pathway Class Nominal P‐value Adjusted P‐value
Enriched 
genes

Cutoff	P‐value	=	0.01

hsa05330 Allograft	rejection Immune diseaseD 3.87	×	10−5 2.13	×	10−3 HLA‐B,	IL−10,	
CD86

hsa05320 Autoimmune	thyroid	
disease

Immune diseaseD 1.06	×	10−4 2.91	×	10−3 HLA‐B,	IL−10,	
CD86

Cutoff	P‐value	=	0.05

hsa05322 Systemic	lupus	
erythematosus

Immune diseaseD 1.66	×	10−3 2.93	×	10−2 C1QB,	IL−10,	
CD86

hsa05332 Graft‐versus‐host	disease Immune diseaseD 2.42	×	10−3 2.93	×	10−2 HLA‐B,	CD86

hsa04940 Type	I	diabetes	mellitus Endocrine	and	metabolic	
diseaseD

2.66	×	10−3 2.93	×	10−2 HLA‐B,	CD86

hsa04672 Intestinal	immune	network	
for	IgA	production

Immune	systemO 3.45	×	10−3 3.16	×	10−2 HLA‐B,	CD86

The	capital	letters	beside	the	class	name	represent	KEGG	categories.	Among	them,	D	means	human	disease;	O	means	organismal	systems.	The	adjusted	
P‐values	are	obtained	through	multiple	hypothesis	testing	to	correct	the	nominal	P‐values.
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II	gene.97	Moreover,	one	enriched	terms	based	on	WikiPathways	is	
related	 to	 lipid	metabolism,	 and	 the	 remaining	enriched	 terms	 are	
immunity	related	pathways	(Allograft Rejection & SIDS Susceptibility 
Pathways).	 SIDS	 neuroimmune	 disorder	 is	 reported	 as	 a	 neuroim‐
mune	disorder	in	brain,	which	is	involved	in	the	T‐cell	deficiency	in	
immune	 inflammatory	 response.98	 In	 sum,	 these	 in‐depth	analyses	
further	 supported	 the	discovery	of	KEGG	enrichment	 and	 further	
associated	AD	pathogenesis	with	the	immunity.

4  | CONCLUSIONS

A	total	of	18	potential	AD	target	genes	were	identified	by	the	com‐
binatorial	method	 of	 ontology‐based	 inference	 and	 biological	 net‐
work	 analysis.	 Further,	 the	 results	 of	 enrichment	 analysis	 showed	
that	these	18	potential	AD	target	genes	were	significantly	enriched	
in	the	immune‐related	pathways,	and	of	which	C1QB,	HLA‐B,	IL‐10,	
and	CD86	were	involved	in	the	process	of	antigen	presenting	from	
MHC	to	T	cell.	These	results	implied	that	the	pathogenic	mechanism	
of	AD	may	be	relevant	to	the	abnormal	process	of	antigen	present‐
ing	and	may	be	an	effective	point	of	further	drug	development.	 In	
summary,	 our	 findings	 showed	 the	 importance	 of	 immune‐related	
drug	target	genes	to	the	therapy	of	AD	and	would	benefit	to	the	AD	
research	in	the	future.
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