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Abstract
Aims: Alzheimer’s disease (AD) is one of the leading causes of death in elderly people. 
Its pathogenesis is greatly associated with the abnormality of immune system. 
However, only a few immune‐relevant AD drug target genes have been discovered 
up to now, and it is speculated that there are still many potential drug target genes of 
AD (at least immune‐relevant genes) to be discovered. Thus, this study was designed 
to identify novel AD drug target genes and explore their biological properties.
Methods: A combinatorial approach was adopted for the first time to discover AD 
drug targets by collectively considering ontology inference and network analysis. 
Moreover, a novel strategy limiting the distance of reasoning and in turn reducing 
noise interference was further proposed to improve inference performance. Potential 
AD drug target genes were discovered by integrating information of multiple popular 
databases (TTD, DrugBank, PharmGKB, AlzGene, and BioGRID). Then, the enrich‐
ment analyses of the identified drug targets genes based on nine well‐known path‐
way‐related databases were conducted to explore the function of the identified 
potential drug target genes.
Results: Eighteen potential drug target genes were finally identified, and 13 of them 
had been reported to be closely associated with AD. Enrichment analyses of these 
identified drug target genes, based on nine pathway‐related databases, revealed that 
the enriched terms were primarily focus on immune‐relevant biological processes. 
Four of those identified drug target genes are involved in the classical complement 
pathway and process of antigen presenting.
Conclusion: The well‐reproducible results showed the good performance of the 
combinatorial approach, and the remaining five new targets could be a good starting 
point for our understanding of the pathogenesis and drug discovery of AD. Moreover, 
this study supported validity of the combinatorial approach integrating ontology in‐
ference with network analysis in the discovery of novel drug target for neurological 
diseases.
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1  | INTRODUC TION

Alzheimer’s disease (AD) is the most common type of dementia and 
one of the leading causes of death in elderly people, which is char‐
acterized by neurofibrillary tangles and amyloid β‐peptide (Aβ) de‐
posits in brain.1,2 Based on two independent studies, the number of 
people newly diagnosed with AD is expected to reach 135 million 
around the world and 16 million in USA by 2050, respectively.3,4

So far, the deficiency of innate immune ability to clear Aβ deposits 
(rather than overproduction of them) has been widely accepted as 
one of the most important causes of AD pathogenesis, and current 
research was gradually moved from blocking the production of Aβ 
deposits to rebalancing the immune system of AD patients.5‒7 For ex‐
ample, interleukin (IL)‐10, one of the best known inflammatory cyto‐
kines, was a major regulator of macrophages.8 Recent study showed 
that the inhibition of the IL‐10 pathway could rebalance the innate 
immunity and mitigate Alzheimer‐like pathology.9 Another member 
of interleukin family, IL‐33, was found to play a potential therapeutic 
role for AD. A previous study reported that IL‐33 could modulate the 
innate immune responses to reduce the accumulation of Aβ depos‐
its and reverse the impairment of memory and synaptic plasticity in 
AD mouse.10 The genome‐wide association study found that a clus‐
ter of genes implicated in innate immune pathways was upregulated 
together with the downregulation of synaptic plasticity genes in AD 
patients.11,12 Moreover, two lymphatic systems involved in the clear‐
ance of Aβ deposits in AD were reported. In particular, glymphatic 
(glial+lymphatic) system was a critical contributor to the clearance 
of interstitial solutes (including Aβ deposits) from the brain,13 and 
the function of glymphatic transport was suppressed in a mouse AD 
model.14 The malfunction of meningeal lymphatic vessel (the other 
cleaner of Aβ deposits closely related to lymphatic system) was found 
to be greatly associated with AD pathogenesis.15‒17 In the meantime, 
some immunotherapies and drugs for Aβ clearance have attempted 
to control progress of AD.18‒20 For example, a monoclonal antibody‐
based immunotherapeutic drug was reported under development in 
recent year, and it selectively targeted and cleared the aggregated Aβ 
in brain and effectively relieved the symptom of AD.21‒23

However, only a few of drug target genes of AD implicated in 
immunity had been discovered up to now. Specifically, among the 
known target genes of therapeutic drugs for AD, only four of them 
(about 10.5%) belonged to the family of innate immune genes (Table 
S1, based on the information of InnateDB with over 1500 innate im‐
mune genes collected by literature review).24 Moreover, the studies 
showed that the total number of the known AD drug targets had 
appeared to be also not complete enough, considering the wide 
range of pathologic features.25 In fact, only five drugs have got FDA 
approval for the treatment of AD, and they target primarily on two 
therapeutic targets: Acetylcholinesterase and NMDA receptor.26 Since 
2003, no new target has been approved for treating AD. All the facts 
implied that there were still potential target genes of AD (especially 
the innate immune genes) remaining to be discovered.

Due to the time‐consuming and extremely high cost of modern 
drug discovery, computational methods have emerged as one of the 

most effective approaches for the discovery of new targets.27‒32 
However, these computational methods focused mainly on single 
biologic perspective, such as pathway profile‐based,33 gene expres‐
sion‐based,34‒36 and similarity‐based37‒40 methods. Important in‐
formation might be neglected by these methods, as many essential 
relationships (such as gene‐gene, gene‐disease, and disease‐drug) 
systematically contributed to the association between the disease 
and their corresponding drug targets.41 As reported, target drugga‐
bility was found to be collectively defined by target’s disease rele‐
vance and its roles in human protein‐protein interaction network,42 
and a novel strategy integrating ontology inference and network 
analysis was thus proposed to predict the candidate targets of col‐
orectal cancer (CRC).41 In this study, the inference performance of 
this published method41 was substantially enhanced by limiting the 
distance of reasoning and in turn reducing noise interference (predic‐
tion accuracy of ontology‐based inference was reported to be highly 
dependent on the distance from initial nodes).43 Then, relationships 
among drug, gene, SNP, disease, and haplotype were integrated by 
combining ontology‐based inference and biological network analysis 
to discover potential target of AD. Finally, the enrichment analysis 
to the in‐depth investigation of the biological functions for AD was 
conducted. In conclusion, this was the first discovery of drug targets 
for neurological disease by improving the inference performance of 
the newly proposed combinatorial method, and the novel candidate 
target genes identified in this study did provide significantly added 
values to the discovery of drugs for treating AD.

2  | MATERIAL S AND METHODS

2.1 | Collection of AD drugs and their known 
targets

The drugs approved by US FDA or in clinical trial for the treatment 
of AD were first collected from the Therapeutic Target Database 
(TTD)44 which contained 31 614 drugs and 2589 targets covering 
over 125 diseases after its last update in 2018.26 Then, the drugs 
that did not belong to PharmGKB database were removed, and full 
list of AD drugs was obtained for further analyses. The PharmGKB 
was a preeminent worldwide resource and web interactive tool for 
the knowledge of pharmacogenomics. It was funded by the National 
Institute of General Medical Sciences (NIGMS) and the National 
Institutes of Health (NIH), and the relationship data of PharmGKB 
could be used to research how the genetic variations affected the 
response of drugs.45 For example, rs1800460 polymorphism was re‐
lated to azathioprine, mercaptopurine, thioguanine based on the data 
of PharmGKB, and many studies reported this variant could cause ad‐
verse reactions to these drugs.45‒47 In this study, PharmGKB relation‐
ship data between drugs and drugs, drugs and haplotypes, drugs and 
SNPs, drugs and genes, diseases and genes, diseases and haplotypes, 
diseases and SNPs, diseases and diseases, genes and haplotype were 
collected for subsequent study. Finally, the known targets of the se‐
lected AD drugs were extracted from both TTD and DrugBank.48,49
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2.2 | Discovery of the candidate AD target genes 
using ontology inference

Ontology was a hierarchically organized structure about exist‐
ences, types of them and their relationships, according to their 
innate logic. Based on ontology, semantic web technology was 
developed to integrate and reason the heterogeneous data. As a 
machine‐readable standard ontology language of semantic web 
technique, the web ontology language (OWL) effectively inherited 
triple model (subject‐predicate‐object) from resource description 
framework (RDF).50‒54 Thus, through integrating and reasoning re‐
lationships among drugs, genes, SNPs, diseases, and haplotypes, 
the OWL could find the genes directly or indirectly connected 
with an AD drug, and these genes were defined as the candidate 
AD target genes. According to the newly proposed strategy,41 in 
OWL network, all of the drugs, genes, SNPs, diseases, haplotypes 
from PharmGKB were defined as nodes and the relationships of 
them were defined as links based on the Portégé (an editor and 
reasoner based on OWL). Then, the AD‐related drug (ADDrug), 
gene (ADGene), SNP (ADSNP), disease (ADDisease), and hap‐
lotype (ADHaplotype) were defined according to the OWL de‐
scription logic rule. Specifically, a gene belonged to the class of 
ADGene if it was associated with one of these defined concepts 
(ADDrug, ADGene, ADSNP, ADDisease, and ADHaplotype) ac‐
cording to the relationships in PharmGKB, where other concepts 
were defined similar as the ADGene. The distance of reasoning for 
an AD drug (ie the number of nodes away from the AD drug node) 
was limited according to the location containing the most number 
of their known target genes.

2.3 | Collecting the AD disease genes

To further identify the potential AD target genes from AD target 
genes, the levels of association between known AD disease genes 
and each of the candidate AD target genes were compared and 
ranked. The AD disease genes were searched in the AlzGene, a 
publicly available database collecting AD genetic variants from the 
publications of genetic association study about AD. To the best of 
our knowledge, the AlzGene is so far the only database specialized 
in the selection and analysis of AD risk genes, and its latest version 
(updated in 2011) contained 695 disease genes, 2973 polymor‐
phisms, and 320 systematic meta‐analyses performed for genotype 
data (including at least three case‐control samples).55 To ensure the 
credibility of this study, the significantly associated genes with AD 
(95% confidence interval of OR values should not include 1)56 were 
selected for the subsequent analyses based on the results of the 
meta‐analyses.

2.4 | Discovering potential AD target genes via 
association level test and aggregation rank

Based on the hypothesis that the drugs will more efficiently work 
on some disease genes if they show a tighter connection,41 the 

levels of association between each of the candidate AD target 
genes and the AD disease genes were assessed to identify po‐
tential AD target genes. The human protein‐protein interaction 
(PPI) network was thus collected for conducting such calculation. 
The BioGRID (Mount Sinai Hospital, Toronto, ON, Canada) was a 
monthly updated comprehensive PPI network database.57 It cap‐
tured 836 212 nonredundant biological interactions from 57 058 
published biomedical articles involving all major organisms and 
human beings by September 2016. Moreover, the different reli‐
ability of each interaction was provided in the BioGRID based on 
available evidences that how many independent studies consist‐
ently support the result. First, human PPI data were download from 
BioGRID (version 3.4.140), and the high reliability data supported 
by at least two independent studies were selected. Second, after 
removing self‐interaction data, the human PPI networks which 
centered on each of the candidate target genes were built. Within 
these networks, the nodes directly linked with the candidate tar‐
get genes were defined as the first‐degree neighbor. Similarly, the 
nodes linked with the first‐degree neighbors (except the candidate 
AD target genes) were defined as the second‐degree neighbors, 
and the nodes linked with the second‐degree neighbors (except 
first‐degree neighbors) were defined as the third‐degree neigh‐
bors, etc. Thirdly, the previous studies showed that the disease 
genes were mainly enriched in the first three degree neighbors 
of the drug target genes.58,59 Thus, the AD disease genes to the 
first‐, second‐, third‐degree neighbors of the PPI networks were 
mapped, and their percentages in each neighbor to assess the lev‐
els of association between each of the candidate AD target genes 
and AD disease genes were calculated. Specifically, for a given AD 
candidate gene, there were N genes in its first‐degree neighbor, 
and of which n genes belong to AD disease genes. Then, the closer 
that this ratio (n/N) was to 1, the more significant association was 
built between this given AD candidate gene and AD disease genes. 
Thus, this given candidate gene more likely becomes a potential 
drug target. Similarly, the ratio in other degree neighbors was cal‐
culated by this approach. Finally, based on the ratios in the three 
degree neighbors, the candidate AD target genes were ranked in 
three lists.

To identify the potential AD drug targets, robust rank aggre‐
gation (RRA) method was used to integrate the three lists of rank 
order. RRA was a computationally efficient and statistically stable 
order algorithm, and it assigned the P‐value to measure how well a 
candidate gene was positioned in the ranked lists than expected by 
chance.60 The R package of RRA (RobustRankAggreg) was available 
at the Comprehensive R Archive Network (https://www.icesi. edu.
co/CRAN/web/packages/RobustRankAggreg/).

2.5 | Enrichment analysis of the potential AD drug 
target genes

AD was reported to be closely related to immune system,5,61 but 
very little of immune‐relevant AD drug target genes had been 
discovered comparing with other target genes. Therefore, it was 

https://www.icesi
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possible that there were more potential immune‐relevant genes than 
others among the undiscovered AD drug target genes. However, it 
was improper to simply compare the numbers of them due to the 
different backgrounds (the various sizes of gene sets). So far, these 
backgrounds (such as human disease, organism system, cellular pro‐
cesses and signaling pathways) were provided in Kyoto Encyclopedia 
of Genes and Genomes (KEGG) for achieving this comparison.62 
Apart from KEGG, there were several other data sources providing 
such signaling pathway information, including MetaCyc63 (database 
of the metabolic pathways and enzymes), NetPath64 (resource of cu‐
rated signal transduction pathways), PathWhiz65 (database of biology 
pathways and web server for creating biologically accurate pathway 
diagram), Pathway Interaction Database PID66 (collection of curated 
and peer‐reviewed pathways composed of human molecular signal‐
ing, regulatory event and cellular process), and WikiPathways67 (mul‐
tifaceted pathway database bridging metabolomics to other omics 
research). Moreover, there were three ontology‐based databases 
offering pathway‐related data, including Gene Ontology GO68 (gene 
ontology organized by biological process, molecular function and 
cellular component), PANTHER69 (gene products organized by bio‐
logical function), and Reactome70 (molecular detail of signal trans‐
duction, transport, metabolism, and other cellular processes). Apart 
from PID, the comprehensive data of the remaining eight databases 
were fully downloadable, and the enrichment analyses of the poten‐
tial AD drug target genes based on data from these eight databases 
were thus conducted using the R package clusterProfiler71 to vali‐
date the presumption of this study.

3  | RESULTS AND DISCUSSION

3.1 | Collecting AD drugs and limiting search criteria 
using their known targets

First, by selecting AD drugs from TTD database72 and removing the 
drugs not belonging to PharmGKB database,73 five approved and 
one phase III clinical trial drugs were obtained. Second, 23 known 
targets of these drugs were collected from TTD and DrugBank.48,49 
Third, to limit the distance of reasoning, the number of the known 
AD target genes was counted in each degree of OWL network. As 
demonstrated in Table 1, for the selected drugs, their known target 
genes were mainly concentrated in a specific degree. These results 
implied that for a given drug, its target genes were mainly distributed 
in a specific scope of OWL network. In this study, to reduce the ef‐
fect of noise, the reasoning distance of each drug was thus limited 
to the degree where most of its known target genes can be found.

3.2 | Discovering the candidate AD target genes 
using OWL ontology method

An OWL ontology of AD drug, gene, SNP, disease, and haplotype 
was built based on their relationship in PharmGKB, and the reason‐
ing was performed using Portégé in a specific scope limited by the 
previous step. The process of reasoning and the result is displayed TA
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in Figures 1 and S1. After eliminating duplicate data, 623 candidate 
AD target genes directly or indirectly connected with one of the AD 
drugs were discovered, and 109 of them had been reported to be 
closely related to AD.

3.3 | Identifying the potential AD target genes by 
AD disease genes and RRA method

First, 41 AD disease genes confirmed by meta‐analysis (including at 
least three case‐control experiments) were collected from AlzGene 
database (Table S2). Second, 623 human PPI networks of candidate 
AD target genes were built by BioGRID data. Third, the 41 AD dis‐
ease genes were mapped to the first‐, second‐, and third‐degree 
neighbors of the 623 PPI networks, and the percentages of AD dis‐
ease genes in each degree neighbor were calculated to rank these 
candidate target genes at 3 different levels. Finally, these three lev‐
els of rank were integrated using RRA method. As shown in Table 2, 
18 potential AD target genes with significant P‐values (<0.05) were 
identified, and of which 13 genes were reported to be closely associ‐
ated with AD by previous studies.

Taking RELN gene (coding reelin, an extracellular matrix glyco‐
protein) as an example, it participated in the regulation of neuronal 
migration, position, growth, and synaptic plasticity linking memory/
learning formation,74 and it could prevent synaptic dysfunction 
induced by accumulation of Aβ deposits in AD.75 Some studies re‐
ported a significant association between RELN and AD among dif‐
ferent populations.76‒78 Another example could be DNMBP, which 
was a scaffold protein to bring dynamin and actin regulatory pro‐
teins together79 and participated in synaptic vesicle trafficking.80‒82 
This process could be disturbed by accumulation of Aβ deposits in 
AD.83 Previous studies have reported significant association be‐
tween DNMBP and AD in Japanese population.84 The following 
studies also found a significant association between DNMBP and 
AD in Belgian and Chinese populations.85,86

The distribution of 13 reported genes in the 18 identified poten‐
tial AD target genes were calculated. The 18 potential target genes 
identified in this study were first arranged in the descending order of 
P‐values of robust rank aggregation (RRA) analysis. Second, the cu‐
mulative number N was defined as the first N potential target genes, 
and the percentage of reported genes in each cumulative number 

F I G U R E  1  Process of discovering the candidate AD target genes from each final selected AD drug. Each part of this figure shows the 
process of discovery from one of the drugs, respectively. The process of discovery from memantine is shown in Figure S1 because it is 
relatively complex. Different colors of the nodes mean different data types. In particular, green represents gene, yellow represents drug, red 
represents disease, purple represents haplotype, and gray represents SNP. The nodes with red and blue circles represent known targets and 
linkage nodes, respectively. The annulus areas constituted of these nodes represent different discovery degrees. Only the linkage nodes and 
the discovered candidate target genes are retained in this figure. The duplicate data have been eliminated. This figure can be viewed more 
clearly by enlarging in the electronic version
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was calculated. As shown in Figure 2, the slope of the fitted curve 
is continually decreasing. This phenomenon reflected a good reli‐
ability of the applied prediction method because it was consistent 
between the significance of potential AD target genes and the pos‐
sibility of it being an AD associated gene. Specifically, nearly half of 
the genes reported to be closely associated with AD were gathered 
in the first 30% identified potential target genes. Then, another phe‐
nomenon was observed by comparing candidate and potential AD 
target genes. Percentage of reported genes were significantly higher 
in potential AD target genes (about 72.2%) than it in candidate AD 
target genes (about 17.5%), which further reflect the reliability of 
the prediction.

3.4 | Enrichment analysis of the potential target 
genes based on pathway‐related databases

To explore the function of those 18 identified potential AD target 
genes, the KEGG enrichment analysis was conducted. As shown in 
Table 3, two KEGG pathways were enriched in this analysis by set‐
ting the P‐value cutoff as 0.01, and both belonged to the human im‐
mune disease. If the P‐value cutoff was further set as 0.05, six KEGG 

pathways could be enriched, and they all belonged to immune dis‐
ease or immune system. The remaining KEGG pathway (Type I diabe‐
tes mellitus) was also an autoimmune disease.87,88 Altogether, these 
pathways contained four immune genes: C1QB, HLA‐B, IL‐10, and 
CD86. Among these genes, C1QB coded the B chain of complement 
C1q which was an activator in the classical complement pathway, 
and the remaining were involved in the process of antigen present‐
ing. Major histocompatibility complex (MHC) is a cell surface pro‐
tein to bind and present antigen peptide fragments to T cell. Studies 
demonstrated that the expression of both MHC class I and class II 
was markedly increased in AD.89,90 HLA‐B is a member of the human 
leukocyte antigen gene family, and coded a part of heavy chain of 
the MHC class I.91 CD86 expresses on most antigen‐presenting cells 
and is a critical co‐stimulatory factors for antigen presenting from 
MHC to T cell.92 IL‐10 is an inhibitory factor of excessive immune 
response, and strongly downregulates the expression of both MHC 
class II and CD86.93‒95 A recent study showed that inhibiting the 
IL‐10 pathway could relieve the symptom of AD.9

Extensive enrichment analyses on these potential drug target 
genes based on eight databased providing the pathway informa‐
tion (MetaCyc, NetPath, PathWhiz, PID, and WikiPathways) and 

Gene symbol Protein name Gene ID P‐value Reported or NOT

RELN Reelin 5649 0.000546 Reported

DNMBP Dynamin binding protein 23268 0.003415 Reported

APOD Apolipoprotein D 347 0.003759 Reported

LEP Leptin 3952 0.008264 Reported

HLA‐B Major histocompatibility 
complex, class I, B

3106 0.011278 Reported

C1QB Complement C1q B chain 713 0.015038 Reported

HSPG2 Heparan sulfate 
proteoglycan 2

3339 0.018797 Reported

MTTP Microsomal triglyceride 
transfer protein

4547 0.022556 NOT

IL−10 Interleukin 10 3586 0.024793 Reported

TF Transferrin 7018 0.026316 Reported

NOS1AP Nitric oxide synthase 1 
adaptor protein

9722 0.027164 NOT

A2M Alpha−2‐macroglobulin 2 0.030075 Reported

NEK4 NIMA related kinase 4 6787 0.033058 NOT

CD86 CD86 molecule 942 0.033835 Reported

PIK3C2A Phosphatidylinositol−4‐
phosphate 3‐kinase 
catalytic subunit type 2 
alpha

5286 0.041353 NOT

ADAM12 ADAM metallopeptidase 
domain 12

8038 0.044259 Reported

TARBP1 TAR (HIV−1) RNA binding 
protein 1

6894 0.045113 NOT

GABRG2 Gamma‐aminobutyric acid 
type A receptor gamma2 
subunit

2566 0.048872 Reported

TA B L E  2  Summary of the 18 potential 
AD drug target genes identified in this 
study
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the ontology‐based data (Gene Ontology, PANTHER and Reactome) 
were further conducted to reveal their functions. Apart from PID, 
the data of the remaining seven databases were fully downloadable, 
and the enrichment analyses of the potential AD target genes based 
on the data from the seven databases were thus conducted using 
R package clusterProfiler to validate the presumption of this study. 
As a result, no term was enriched based on the data of PANTHER, 

PathWhiz, MetaCyc, and NetPath, and the enriched terms based on 
GO, Reactome, and WikiPathways databases are provided in Tables 
4, S3 and S4, respectively. As shown, the enriched terms based on 
GO and Reactome are focused on the biological process of lipopro‐
teins (eg phosphatidylinositol) with P‐value <0.05, that is signifi‐
cantly associated with the immunity.96 Particularly, the activity of 
phosphatidylinositol 3‐kinase affects the expression of MHC class 

F I G U R E  2  The distribution of reported genes among the ranked potential AD target genes. The bar graph shows percentage of reported 
genes in the first N identified potential AD genes which are ranked by RRA method. For example, there are 53.8% reported genes in first 
seven identified potential AD target genes. The red line is a fitted curve of the percentage values. The left and right ordinates show the 
percentage values of bar graph and fitted curve, respectively

TA B L E  3  KEGG enrichment results of potential AD drug target genes

KEGG ID KEGG pathway Class Nominal P‐value Adjusted P‐value
Enriched 
genes

Cutoff P‐value = 0.01

hsa05330 Allograft rejection Immune diseaseD 3.87 × 10−5 2.13 × 10−3 HLA‐B, IL−10, 
CD86

hsa05320 Autoimmune thyroid 
disease

Immune diseaseD 1.06 × 10−4 2.91 × 10−3 HLA‐B, IL−10, 
CD86

Cutoff P‐value = 0.05

hsa05322 Systemic lupus 
erythematosus

Immune diseaseD 1.66 × 10−3 2.93 × 10−2 C1QB, IL−10, 
CD86

hsa05332 Graft‐versus‐host disease Immune diseaseD 2.42 × 10−3 2.93 × 10−2 HLA‐B, CD86

hsa04940 Type I diabetes mellitus Endocrine and metabolic 
diseaseD

2.66 × 10−3 2.93 × 10−2 HLA‐B, CD86

hsa04672 Intestinal immune network 
for IgA production

Immune systemO 3.45 × 10−3 3.16 × 10−2 HLA‐B, CD86

The capital letters beside the class name represent KEGG categories. Among them, D means human disease; O means organismal systems. The adjusted 
P‐values are obtained through multiple hypothesis testing to correct the nominal P‐values.
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II gene.97 Moreover, one enriched terms based on WikiPathways is 
related to lipid metabolism, and the remaining enriched terms are 
immunity related pathways (Allograft Rejection & SIDS Susceptibility 
Pathways). SIDS neuroimmune disorder is reported as a neuroim‐
mune disorder in brain, which is involved in the T‐cell deficiency in 
immune inflammatory response.98 In sum, these in‐depth analyses 
further supported the discovery of KEGG enrichment and further 
associated AD pathogenesis with the immunity.

4  | CONCLUSIONS

A total of 18 potential AD target genes were identified by the com‐
binatorial method of ontology‐based inference and biological net‐
work analysis. Further, the results of enrichment analysis showed 
that these 18 potential AD target genes were significantly enriched 
in the immune‐related pathways, and of which C1QB, HLA‐B, IL‐10, 
and CD86 were involved in the process of antigen presenting from 
MHC to T cell. These results implied that the pathogenic mechanism 
of AD may be relevant to the abnormal process of antigen present‐
ing and may be an effective point of further drug development. In 
summary, our findings showed the importance of immune‐related 
drug target genes to the therapy of AD and would benefit to the AD 
research in the future.
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