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Computational identification of the binding
mechanism of a triple reuptake inhibitor
amitifadine for the treatment of major
depressive disorder†

Weiwei Xue,ab Panpan Wang,ab Gao Tu,ab Fengyuan Yang,ab Guoxun Zheng,ab

Xiaofeng Li,ab Xiaoxu Li,ab Yuzong Chen,c Xiaojun Yaod and Feng Zhu *ab

Amitifadine, the only drug ever clinically tested in Phase 3 for treating depression, is a triple reuptake

inhibitor (TRI) that simultaneously interacts with human monoamine transporters (MATs) including

hSERT, hNET and hDAT. This novel multi-target strategy improves drug efficacy and reduces the toxic

side effects of drugs. However, the binding modes accounting for amitifadine’s polypharmacological

mode of action are still elusive, and extensive exploration of the amitifadine–target interactions between

amitifadine and MATs is urgently needed. In this study, a total of 0.63 ms molecular dynamics (MD) simu-

lations with an explicit solvent as well as endpoint binding free energy (BFE) calculation were carried out.

MD simulation results identified a shared binding mode involving eleven key residues at the S1 site of

MATs for the binding of amitifadine, and the results of the BFE calculations were in good agreement with

experimental reports. Moreover, by analyzing the per-residue energy contribution variation at the S1 site

of three MATs and additional cross-mutagenesis simulations, the variation in the inhibition ratio of

amitifadine between hSERT and two other MATs was discovered to mainly come from non-conserved

residues (Y95, I172 and T439 in hNET and Y95, I172, A169 and T439 in hDAT). As the rational inhibition

ratio of multi-target drugs among various therapeutic targets was found to be the key to their safety and

tolerance, the findings of this study may further facilitate the rational design of more potent but less

toxic multi-target antidepressant drugs.

Introduction

Major depressive disorder (MDD) has been estimated to be the
second largest global health burden among all diseases by
2030,1–3 which makes the discovery of new and efficacious
antidepressants an urgent task.4–6 The first-line medications
currently prescribed for MDD patients include selective reup-
take inhibitors of serotonin (SSRIs), norepinephrine (sNRIs)
and reuptake inhibitors of both serotonin and norepinephrine

(SNRIs).7–9 However, these medications are less than ideal
considering their low remission rate,10,11 delayed onset of
action,12,13 partial or non-response14,15 and associated side
effects.16,17 Clinical investigation has revealed that that detun-
ing of the triangular relationship among serotonin (5-HT),
norepinephrine (NE) and dopamine (DA) drives the develop-
ment of depression.18 The increase of dopaminergic neuro-
transmission can alleviate the persistence of anhedonia (a core
treatment-resistant symptom of MDD), and in turn gives rise to
a rapid onset of action.19,20 Therefore, an attractive strategy
simultaneously inhibiting the reuptakes of 5-HT, NE and DA
has been developed recently for MDD treatment,16 and the
resulting triple reuptake inhibitors (TRIs) are found to produce
higher efficacy than first-line antidepressants.21,22

So far, a number of TRIs (listed in the ESI,† Table S116,23,24)
have advanced to clinical trial. Among these, amitifadine (also
known as DOV-21,947 or EB-1010) is the only one which has
ever been clinically tested in Phase 3 for treating depression.16,24,25

Besides, this TRI and its analogues have also been investigated in
clinical trials for treating other diseases including pain, alcohol
use disorder, attention-deficit/hyperactivity disorder and smoking
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cessation.24–29 Amitifadine simultaneously inhibits the reuptake of
5-HT, NE and DA by multi-targeting human serotonin transporter
(hSERT), norepinephrine transporter (hNET) and dopamine trans-
porter (hDAT) with the binding affinities (measured by Ki values) of
99, 262 and 213 nM (Fig. 1A), respectively,30 and its Phase 3 trial
(ClinicalTrials.gov ID: NCT01318434) further suggests that the
binding mode and the inhibition ratio on triple reuptakes are
responsible for its improved drug safety and tolerance.16,31

For a long period of time, the understanding of drug-transporter
interactions underlying the multi-target mechanism of amitifadine
had been limited by a lack of knowledge of the 3D structure of
monoamine transporters.32–34 With the determination of crystal
structures of bacterial LeuT32 and Drosophila melanogaster
dopamine transporter (dDAT),33 molecular modelling based
on these templates was applied to uncover the inhibitory
mechanism of reuptake inhibitors,35–42 and demonstrated
great potential in predicting polypharmacology and facilitating
multi-target drug design.43–47 One particular example was that
the binding mode of the SSRI antidepressant was successfully
discovered in comparison to the newly determined X-ray struc-
ture of hSERT.39,48,49 However, despite these great advances,
the binding modes accounting for the polypharmacological
mode of action of amitifadine are still elusive, and the extensive
exploration of the TRI–target interactions between amitifadine
and three monoamine transporters (MATs) is urgently needed.

Herein, an integrated computational strategy was used to
discover the inhibitory mechanism of amitifadine on its three
primary therapeutic targets (hSERT, hNET and hDAT) by reveal-
ing its binding mode at the atomic-level and quantitatively
calculating its binding affinity. Firstly, the homology models of
hSERT, hNET and hDAT were constructed using the crystal
structure of dDAT as the template. Secondly, complexes of

amitifadine bound to hSERT, hNET and hDAT were predicted
by docking, and further assessed by molecular dynamics (MD)
simulations with an explicit solvent and end-point binding
free energy (BFE) calculations. The simulation model was
validated by the co-crystal structure of dDAT in complex with
3,4-dichlorophenethylamine50 and by a recently resolved crystal
structure of hSERT.48 Thirdly, the binding modes of amitifadine in
those three targets were revealed and the results of BFE calcula-
tions were in good agreement with experiments.30 Because the
rational inhibition ratio of multi-target drugs among various
therapeutic targets was found to be the key to their safety and
tolerance, the inhibition ratio of amitifadine among three MATs
was systematically explored by analyzing the energy variation of
each residue at the S1 site of hSERT, hNET and hDAT and
conducting in silico cross-mutagenesis studies. In summary, this
study revealed the binding modes underlying amitifadine’s poly-
pharmacology, which drew a blueprint for assessing and discover-
ing novel, safer and more effective TRIs for MDD treatment.

Materials and methods
System setup

Modelling of ligand–protein complexes and structural
preparation. The 3D structure of amitifadine was taken from
PubChem (CID: 11658655). The homology models of hSERT,
hNET and hDAT were built using SWISS-MODEL51 and a
recently solved dDAT crystal structure (PDB: 4M4833) as the
template. Sequence alignment for homology modelling was
generated using ClustalW2.52 The stereo-chemical quality of
the models was further evaluated using PROCHECK53 and no
severe violation was identified in the Ramachandran plot.

Fig. 1 (A) Structure of the triple reuptake inhibitor amitifadine. (B) Superimposition of the homology models of hSERT (gray), hNET (light pink) and hDAT
(light blue) using the X-ray crystal structure of dDAT as the template. (C) Close view of the S1 binding site. The proteins are shown as cartoon. The S1
binding site residues are shown as sticks. The residues and TM regions are labeled as discussed in the text. The proteins were visualized using PyMOL.
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Based on the align module of PyMOL,54 two functional Na+ ions
in 4M4833 were manually fitted into the S1 binding sites of
hSERT, hNET and hDAT.

The Glide55 docking method was used to get the initial
structures of hSERT:amitifadine, hNET:amitifadine and hDA-
T:amitifadine. First, the structure of amitifadine was prepro-
cessed using LigPrep56 and the OPLS-2005 force field. The
ionized state was assigned using Epik57 at a pH value of
7.0 � 2.0. The prepared amitifadine carried a net positive
charge as shown in Fig. 1A. Then, hSERT, hNET and hDAT
homology models were prepared by adding hydrogen atoms,
assigning partial charges and protonation states, and minimiz-
ing the structures using the Protein Preparation Wizard module
in Maestro.58 Third, the residues (Tyr95, Asp98, Ile172, Asn177,
Phe341 and Ser438 of hSERT, Phe72, Asp75, Val148, Gly149,
Phe323 and Ser419 of hNET and Phe76, Asp79, Val152, Gly153,
Phe326 and Ser422 of hDAT) identified as key determinants of
the binding59 of amitifadine were used to define the docking
grid box. Docking was performed using standard precision (SP),
and ligand sampling was set to flexible.

Protein–ligand/membrane–water complex. The complexes of
amitifadine binding to hSERT, hNET and hDAT obtained by
docking were pre-oriented in OPM60 and then inserted into an
explicit palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer
by means of the Membrane Builder module in CHARMM-GUI.61

The TIP3P water62 of 20 Å thickness was placed above and below
the constructed bilayer. The systems were neutralized with Na+

and Cl� counterions at an environmental salt concentration of
0.15 M. The overall system contained B96000 atoms per periodic
cell, and the box size was set as 83 Å � 83 Å � 127 Å.

MD simulation

All MD simulations were carried out using the GPU (NVIDIA
Tesla K20C) accelerated PMEMD program in AMBER14.63 The
parameters of lipid (POPC) and transporter force fields were
obtained from the AMBER ff14SB62 and Lipid14.64 The ion
parameters of TIP3P water were collected from Joung &
Cheatham.65 The ligand (amitifadine) parameters were from
the general AMBER force field (GAFF) with the charges derived
from a RESP66 fit using an HF/6-31G* electrostatic potential
calculated using Gaussian09.67

In each simulation, the complex was minimized, heated and
equilibrated as follows. The first step of energy minimization
was to apply a harmonic restraint of 10 kcal mol�1 Å�2 to the
solute and lipid chains, and the second step was to allow
all atoms to move freely. In each step, minimization was
performed using the steepest descent method for the first
5000 steps and the conjugated gradient method for the sub-
sequent 5000 steps. Following the minimization, the system
was further heated through two sequential runs (100 ps)
to 310 K in the NVT ensemble using a Langevin thermostat
and with harmonic restraints of 10 kcal mol�1 Å�2 on the
lipid and solute atoms. Finally, unconstrained NPT dynamics
(5 ns) at 310 K and 1 atm was carried out 10 times to
equilibrate the system. The production simulation was
conducted for 150 ns duration in the NPT ensemble at 310 K

and 1 atm using periodic boundary conditions. Long-range elec-
trostatic interactions (cutoff = 10 Å) were calculated using the
Particle Mesh Ewald algorithm.68 The integration time step was set
to 2 fs and all hydrogen atoms were constrained using the SHAKE
algorithm.69

Binding free energy calculation and per-residue energy
decomposition analysis

The binding free energy (DGcalc) of amitifadine binding to hSERT,
hNET and hDAT was obtained using the end-point molecular
mechanics generalized Born surface area (MM/GBSA) and mole-
cular mechanics Poisson–Boltzmann surface area (MM/PBSA)
approach,70–72 which is based on the following equation:

DGcalc = DEvdW + DEele + DGpol + DGnonpol (1)

where DEvdW and DEele indicate the van der Waals and electro-
static components in the gas phase, and DGpol and DGnonpol are
the polar and non-polar solvent interaction energies. DEvdW
and DEele are calculated using the AMBER force field ff14SB,62

and the electrostatic free energy of solvation (DGpol) is calcu-
lated by solving the PB73 or GB74 equations. Solute and solvent
dielectric constants were set to 2 and 80 similar to previous
work.39,40 DGnonpol was calculated by DGnonpol = 0.0072 �
DSASA,75,76 where SASA is referred to the solvent accessible
area. To evaluate the contribution of per-residue energy
(DGper-residue

calc ) to the binding of amitifadine, the total binding
free energy could be decomposed by

DGper-residue
calc = DEper-residuevdW + DEper-residueele + DGper-residue

pol + DGper-residue
nonpol

(2)

Each term in eqn (2) is defined in a similar way to that in
eqn (1), except for the non-polar solvent interaction energy
(DGper-residue

nonpol ) calculated by recursive approximation of a sphere
around an atom, starting from an ICOSA.

Hierarchical clustering analysis

The energy contributions of certain residues to the binding of
amitifadine calculated in the previous section were used to
generate a three-dimensional vector. Then, the per-residue
energy contribution vector-based hierarchical tree of 237
residues with a contribution to amitifadine’s binding to at
least one transporter (contribution a 0 kcal mol�1) was
generated using R analysis software77 with the similarity levels
among vectors measured by the Manhattan distance:

Distance ða;bÞ ¼
X

i

ai � bij j (3)

where i denotes each dimension of per-residue energies
a and b. The cluster algorithm used here is the Ward’s
minimum variance method,78 which was designed to mini-
mize the total within-cluster variance. The Ward’s minimum
variance module in R analysis software77 was used, and the
hierarchical clustering tree graph was generated using the
online tree generator iTOL.79

PCCP Paper

Pu
bl

ish
ed

 o
n 

31
 Ja

nu
ar

y 
20

18
. D

ow
nl

oa
de

d 
by

 Z
he

jia
ng

 U
ni

ve
rs

ity
 o

n 
4/

24
/2

02
0 

2:
58

:0
8 

PM
. 

View Article Online



This journal is© the Owner Societies 2018 Phys. Chem. Chem. Phys., 2018, 20, 6606--6616 | 6609

Results and discussion
Constructing the homology models of hSERT, hNET and hDAT

To understand the inhibitory mechanism of amitifadine, the
structural information of three MATs is indispensable. Herein,
the 3D structures of three MATs (Fig. 1B, hSERT from Glu78 to
Pro617, hNET from Gln54 to Glu597, hDAT from Gln58 to
Asp600) were constructed by homology modelling based on
the X-ray crystal structure (PDB code: 4M4833) of dDAT (from
Glu26 to Asp599). All structures covered 12 transmembrane
(TM) regions and the corresponding intervening loops (Fig. 1B).
The stereo chemical quality and accuracy of the predicted model
were evaluated using PROCHECK.53 Ramachandran plots showed
99.6%, 99.8% and 99.8% of the residues in the modeled hSERT,
hNET and hDAT located in the ‘‘allowed region’’ (ESI,† Fig. S2),
indicating a high quality of the overall main chain and side chain
conformations. In addition, the crystal structure of hSERT (PDB
code 5I6Z48) was released very recently, and a comparison of the
hSERT homology model with the solved X-ray crystal structure was
conducted. As expected, the homology model of hSERT was highly
consistent with the crystal structure (ESI,† Fig. S3), which was
provided as one line of evidence validating the model constructed
(see the ‘‘Validation of the molecular models’’ section).

Predicting and assessing the initial structures of amitifadine–
MAT complexes

To obtain the initial structures of protein–ligand complexes,
amitifadine was docked into the S1 binding site of the modelled
hSERT, hNET and hDAT (primarily surrounded by TM1, TM3,
TM6, and TM8 regions) using Glide SP docking.43 In previous
studies,39,40,48,80 the docking procedure was successfully used to
predict the binding mode of antidepressants in hSERT and hNET.
Herein, the docking poses of amitifadine similar to the orientation
of sertraline co-crystallized with dDAT81 were selected for subse-
quent MD simulations. All binding poses of amitifadine selected
in this work included the salt bridge and hydrophobic interaction
with the S1 binding sites of MATs (ESI,† Fig. S4).

Based on the initial amitifadine–MAT complexes constructed
by docking, MD simulations were conducted to incorporate con-
formational flexibility into bothMATs and the ligand and to assess
the persistence of the key interactions. As a result, the monitored
root mean square deviation (RMSD) of 3 MATs as well as the
ligand binding site (residues within 5 Å of the bound amitifadine)
backbone atoms and ligand heavy atoms showed that the RMSDs
reached equilibration within 150 ns simulation for each complex
(ESI,† Fig. S5). Structural superimposition of the docking pose and
an MD representative snapshot of amitifadine at the binding sites

of MATs indicated sight conformation shifts (the RMSDs of
amitifadine in hSERT, hNET and hDAT before and after MD
simulations were 0.82 Å, 1.17 Å and 1.37 Å, respectively), but the
key interactions such as the salt bridge between the protonated
nitrogen of ligands and the conserved aspartate of proteins
(Asp98 in hSERT, Asp75 in hNET and Asp79 in hDAT) were
preserved (ESI,† Fig. S6). Thus, the last 50 ns equilibrated
simulation trajectories were adopted to further estimate the
molecular basis of amitifadine’s binding specificity to hSERT,
hNET and hDAT.

Estimating the binding affinity of amitifadine to MATs

The binding free energy (DGcalc) of amitifadine to each MAT
was estimated using the last 50 ns equilibrated simulation
trajectories using MM/GB(PB)SA methods.70,71,73 Compared
with the absolute binding free energy assessed using the
alchemical method,82,83 this kind of end-point calculation
was more computationally efficient to obtain the relative order
of ligands binding to proteins of one single family.81,84–86

Meanwhile, this has been used to explain the multitarget drug
binding.87–90 In this study, the DGcalc values of amitifadine
using MM/GB(PB)SA methods are equal to �40.65 (�46.97),
�38.50 (�46.10) and �38.59 (�44.15) kcal mol�1 for hSERT,
hNET and hDAT (Table 1), respectively. In addition, the
experimental binding affinities (DGexp) were estimated based
on the Ki values

30 using DGexp = RT ln(Ki). As shown in Table 1,
despite the overestimation of binding affinity using MM/
GB(PB)SA methods,91–94 DDGcalc,GB was able to capture the
relative order of DDGexp. The calculated values of the relative
binding free energy (DDGcalc,GB) were in good accordance with
those of experimental results (DDGexp) with a high correlation
coefficient (R2) of 0.93, while the correlation coefficient
between DDGcalc,PB and DDGexp was only 0.33. Moreover,
additional three short simulations (50 ns) for each system
starting from the equilibrated trajectories (ESI,† Fig. S7) were
conducted to confirm the obtained binding free energies
(ESI,† Table S2). The mean values of correlation coefficients
between DGcalc and DGexp were 0.99 and 0.96 for GB and PB
calculations, respectively. The results indicated that GB calcu-
lations were more suitable to obtain the relative order of
amitifadine binding to three MATs. The detailed information
of the calculated contribution of each energy term in eqn (1)
revealed that the binding of amitifadine to hSERT, hNET and
hDAT was primarily driven by van der Waals (DEvdW) and
electrostatic interaction energies (DEele), but is hampered by
polar solvent energies (DGpol), as summarized in the ESI,†
Table S2.

Table 1 The calculated and experimental binding free energies of the studied TRI binding to hSERT, hNET and hDAT (DG is in kcal mol�1 and Ki value is in nM)

TRI Targets DGcalc,PB
a DDGcalc,PB

b DGcalc,GB
a DDGcalc,GB

b DGexp
c DDGexp

b Ki
d

Amitifadine hSERT �46.97 0 �40.65 0.00 �9.55 0.00 99.00
hNET �46.10 0.87 �38.50 2.15 �8.97 0.58 262.00
hDAT �44.15 2.82 �38.59 2.06 �9.10 0.45 213.00

a Calculated binding energy using MM/GB(PB)SA method in this work. b Binding free energy variation was calculated using the amitifadine–hSERT
complex as a reference. c Estimated binding free energy based on Ki values using DGexp= RT ln(Ki).

d Experimental Ki value from the previous study.30
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Validation of the constructed molecular models

Besides the good accordance between the calculated and experi-
mental relative binding free energies in the previous section, two
lines of additional evidence were provided to validate the simula-
tion models.

First: structural comparison with 3,4-dichlorophenethylamine
in complex with dDAT. As illustrated in Fig. S8A (ESI†), amitifadine
and 3,4-dichlorophenethylamine shared great structural similarity
with a high tanimoto coefficient value (0.85).95 Due to the absence
of the co-crystal structure of amitifadine, the structure of dDAT in
complex with 3,4-dichlorophenethylamine (PDB code 4XPA50)
provided valuable information for validating the models con-
structed in this study. The crystallographic study showed that
3,4-dichlorophenethylamine fitted into the S1 binding pocket of
dDAT50 with the amine group forming hydrogen bonds with the
carboxyl group of Asp46 and the carbonyl group of Phe319 and the
dichlorophenyl ring bordered using Val120 and Phe325. Herein,
the molecular model in Fig. 2(A2, B2 and C2) shows that the
protonated nitrogen of amitifadine interacts with the carboxylate
of the conserved aspartate in three MATs (Asp98 in hSERT, Asp75
in hNET, and Asp79 in hDAT), and the dichlorophenyl ring of
amitifadine is also contacted with the corresponding two hydro-
phobic residues (Ile172 and Phe341 in hSERT, Val148 and Phe323
in hNET, and Val152 and Phe326 in hDAT). Superimposition of the

representative snapshots of amitifadine bound in three MATs onto
the co-crystal structure 4XPA of dDAT further revealed strikingly
similar features between amitifadine and 3,4-dichlorophenethyl-
amine (Fig. S8(B–D), ESI†).

Second: successful reproduction of the crystal structure of
hSERT. The very recently determined X-ray crystal structure of
hSERT48 also provided valuable data for validating the simula-
tion models. As shown in the ESI,† Fig. S3A and Table S3, the
homology models of hSERT generated in this study were in
considerable accordance with the determined hSERT crystal
structure (RMSDs of the whole structure and transmembrane
domain are equal to 2.45 Å and 1.33 Å, respectively). In
particular, the overlay between the constructed hSERT model
and its crystal structure showed strong similarity at the S1
binding site (RMSD is equal to 0.80 Å) primarily surrounded by
the TM1, TM3, TM6, TM8 and TM10 regions (ESI,† Fig. S3B).
These data demonstrated that the hSERT models generated
based on the crystal structure of dDAT could serve as an
effective platform for exploring antidepressant binding at theS1
binding site of hSERT. Moreover, MD simulation and binding
free energy estimation of the co-crystal structure of hSERT in
complex with escitalopram (an approved SSRI for treating MDD)
were carried out.80 Simulation results revealed a consistent struc-
tural feature (RMSDs of the whole structure, the S1 binding site

Fig. 2 (A1–C1) Per-residue contributions (MM/GBSA) of binding energies of the three studied protein–ligand complexes. (A2–C2) Proposed binding
modes of amitifadine (cyan) at the S1 binding site of hSERT (gray), hNET (light pink) and hDAT (light blue). Cartoon representation was used for the protein.
The residues and ligands are shown in stick representation, and only polar hydrogen atoms are displayed for clarity. To get a better view, the residues only
in proximity of the binding sites (TM1, 3, 6 and 8) having an important role in ligand binding are shown. The protein–ligand complexes were visualized
using PyMOL.
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and the ligand were 3.13 Å, 1.01 Å and 1.23 Å, respectively) and
stable binding free energies (RMSE is equal to 0.20 kcal mol�1) for
drug binding as reported in the previous study.39 Therefore, the
computational method applied in this study was effective in
identifying the pharmacology of human MATs based on the
template of dDAT.80

Analyzing the binding mode of amitifadine–MAT complexes
based on per-residue energy decomposition

To determine the key molecular determinants in three MATs
responsible for the binding of amitifadine. The MM/GBSA
and MM/GBSA per-residue based energy decomposition of the
interaction energy in each complex was applied in this study
and is shown in Fig. 2 and ESI,† Fig. S9, respectively. As
illustrated in Fig. 2, the residues in four transmembrane
regions (TM1, TM3, TM6 and TM8) mainly contributed to the
binding of amitifadine (ESI,† Table S4 provided detailed infor-
mation of the per-residue energy contribution). To the best of
our knowledge, Fig. 2 provided the first panorama describing
the binding energy of a TRI at the per-residue basis. In total, 12,
11 and 10 residues were identified as a high contribution one
(|contribution| Z 0.5 kcal mol�1 to the binding of amitifadine)
in hSERT, hNET and hDAT, respectively. As shown in Fig. 2, the

energy contribution of the corresponding residue among three
MATs vary greatly (for example, the corresponding residues
Tyr95 in hSERT, Phe72 in hNET and Asp79 in hDAT contributed
�4.30 kcal mol�1, �3.79 kcal mol�1 and �3.69 kcal mol�1,
respectively), to the binding of amitifadine. Fig. 2 also inferred
a certain level of similarity among the studied three complexes,
which inspired us to conduct further identification of the
common features shared by hSERT, hNET and hDAT facilitat-
ing the binding of amitifadine. However, compared with
MM/GBSA results, the MM/PBSA per-residue contribution
cannot well reflect and distinguish the real interaction energy
between amitifadine and S1 pocket residues in MATs (ESI,†
Table S4). And ESI,† Fig. S9 demonstrated that the PB values
overestimated the energy contributions from residues with
negative charge such as Asp (D) and Asn (E). Therefore, the
per-residue energy contributions from MM/GBSA calculations
were used for further analysis.

Common features shared by three MATs facilitating the
binding of amitifadine

The common features shared by multiple therapeutic targets
of a specific drug can facilitate the design and discovery of
novel one-probe multi-target lead scaffolds.96 In this study, the

Fig. 3 Hierarchical clustering tree of residues contribute to amitifadine binding by their per-residue energy. Binding energy contributions favoring
amitifadine binding are displayed in red, with the highest contribution (�4.30 kcal mol�1) set as exact red and lower contributions gradually fading
towards white (contribution is equal to 0 kcal mol�1). Meanwhile, binding energy contributions hampering amitifadine binding are shown in blue, with the
highest one (0.17 kcal mol�1) set as exact blue and lower ones gradually fading towards white. It is necessary to clarify that the absolute value of the
highest contribution favoring the binding of amitifadine (exact red) is 25 times higher than that hampering the binding (exact blue).
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hierarchical clustering analysis of per-residue binding free
energies was performed to identify the common features shared
by threeMATs facilitating the binding of amitifadine. As illustrated
in Fig. 3, four distinct residue groups (A, B, C and D) were
identified. It was clear that the energy contributions of residues
in group A (Tyr95, Asp98, Ile172, Tyr176, Phe341 and Ser438 in
hSERT, Phe72, Asp75, Val148, Tyr152, Phe323 and Ser419 in hNET,
and Phe76, Asp79, Val152, Tyr156, Phe326 and Ser422 in hDAT)
were consistently higher than those of groups B, C and D. Thus,
the energy contribution of residues in group A composed the
primary portion of the total energy contribution (59.74%, 62.77%
and 61.87% for hSERT, hNET and hDAT, respectively). In addition,
the energy contribution of residues in subgroup B1 (Ala169,
Phe335, Ser336, Thr439 and Gly442 in hSERT, Ala145, Phe317,
Ser318, Ser420, Gly423 in hNET, and Ser149, Phe320, Ser321,
Ala423, Gly426 in hDAT) was 18.03%, 17.97% and 16.26% of the
total free energy for hSERT, hNET and hDAT, respectively. In this
study, the residues in group A and subgroup B1 were thus
identified as the hot spots with ‘‘strong’’ or ‘‘relatively strong’’
contributions to the binding of amitifadine. As a result, 11
corresponding residues were identified as common features
shared by three MATs facilitating the binding of amitifadine.

These common features could be further generalized and
schematically represented in Fig. 4. As shown, a shared binding
mode was defined by the collective electrostatic and hydro-
phobic interactions between 11 hot spots and amitifadine.
Residues with ‘‘strong’’ and ‘‘relatively strong’’ contribution
are colored in black and gray, respectively. The protonated
nitrogen atom formed electrostatic interactions with Asp98
in hSERT, Asp75 in hNET and Asp79 in hDAT, and the
dichlorophenyl ring mainly formed hydrophobic interactions

with Tyr95, Ala169, Ile172, Tyr176, Ser438, Thr439 and Gly442
in hSERT, Phe72, Ala145, Val148, Tyr152, Ser419, Ser420 and
Gly423 in hNET, and Phe72, Ser149, Val152, Tyr156, Ser422,
Ala423 and Gly426 in hDAT. Furthermore, the azabicyclo con-
tacted with Phe335, Series36 and Phe341 in hSERT, Phe317
Ser318 and Phe323 in hNET and Phe320, Ser321 and Phe326
in hDAT.

Exploring the origins of the inhibition ratio of MATs by
amitifadine

For multi-target drugs, especially TRIs, their rational inhibition
ratio among various therapeutic targets was found to be the
key to their safety and tolerance.16 As reported, the ratio of a
drug inhibiting different targets depended on its efficiency
measured by variations in binding free energy.31 Herein, the
inhibition ratio of amitifadine among three MATs was system-
atically explored by analyzing energy variation of each residue
at the S1 site of hSERT, hNET and hDAT and conducting in
silico cross-mutagenesis studies.

Energy variation of individual residues at the S1 site of
MATs. Fig. 5 illustrated the calculated variation of the energy
contribution of residues to the binding of amitifadine at the S1
site of three MATs (detailed information is provided in the ESI,†
Table S5). Moreover, the superimposition of the conformations
of protein–ligand interaction was also provided. As illustrated,
most residues at the S1 site offered a similar degree of con-
tribution to the binding of amitifadine among three different
MATs, which is in accordance with the common features
identified in Fig. 4. However, the BFE contributions of several
residues varied significantly between different MATs. In parti-
cular, Tyr95 and Ser336 in hSERT made more contributions to

Fig. 4 Schematic diagram of common interaction patterns of amitifadine with hSERT, hNET and hDAT. The identified electrostatic and hydrophobic
interactions are depicted by red and light blue dashed lines, respectively.
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the binding of amitifadine than the corresponding residues
(Phe72 and Ser318) in hNET, while Phe317 and Ser419 in hNET
contributed more BFE than the corresponding residues (Phe335
and Ser438) in hSERT (Fig. 5A1). Similar to the comparison
between hSERT and hNET, the residues with a significant differ-
ence in BFE contribution between hSERT and hDAT (Fig. 5B1)
included Tyr95, Phe335 and Ser438 in hSERT (Phe76, Phe320 and
Ser422 in hDAT). In the meantime, Ile172 and Thr439 in hSERT
made more contributions to the binding of amitifadine than the
corresponding residues (Val152 and Ala423) in hDAT, while Asp79
in hDAT contributed more BFE than the corresponding residues
(Asp98) in hSERT (Fig. 5B1). In addition, Fig. 5C1 revealed that
Asp75, Ser318 and Ser419 in hNET made more contributions than
the corresponding residues Asp79, Ser321 and Ser422 in hDAT,
while residues Phe72, Val418 and Ser420 in hNET make less
contributions than the corresponding residues (Phe76, Val152
and Ser423) in hDAT. The superposed conformations of protein–
ligand interactions showed that energy contribution variation
originated from the structural rearrangements of the corres-
ponding residues when amitifadine accommodated into different
pockets (Fig. A2, B2 and C2). As a result, the identified residues
play a significant role in distinguishing binding free energy of
amitifadine binding to hSERT, hNET and hDAT.

In silico cross-mutagenesis studies. As reported, the non-
conserved mutations at S1 sites among three MATs may

contribute to the higher affinity of amitifadine binding to
hSERT compared with that to hNET and hDAT.16 It is of great
interest to further evaluate the contribution of those non-
conserved residues identified in the previous section. In this
work, mutations at the S1 site of hSERT were thus conducted to
transfer hNET-like or hDAT-like pharmacology to hSERT
(Table 2). The initial structure of these mutated complexes
were derived from the assessed wild type amitifadine–hSERT
model and additional 20 ns MD simulations were carried out.
The calculated BFEs ranged from �37.46 to �38.87 kcal mol�1

(Table 2, detailed energy terms could be found in the ESI,†
Table S4). Compared to the wild type amitifadine-hSERT
(�40.65 kcal mol�1), the transfer of hNET-like or hDAT-like
pharmacology to hSERT resulted in significant shifts in the
BFEs (2.93 kcal mol�1 for hNET-like Y95F-I172V-T439S mutant
and 3.14 kcal mol�1 for hDAT-like Y95F-I172V-A169S-T439S
mutant), which substantially recovered the pharmacology of
hNET and hDAT. As shown in Table 2, mutagenesis studies on
single mutation could also result in shifts of the BFEs, but the
corresponding effects were less significant than those of
the multiple mutations (hNET-like Y95F-I172V-T439S and
hDAT-like Y95F-I172V-A169S-T439S). Overall, the pharma-
cology of hNET or hDAT was largely recovered by mutations
on those non-conserved residues identified in the previous
section at the S1 site of hSERT, which reflected the key role of

Fig. 5 (A1–C1) Plots of the fold change of the residue energy contribution levels of the residue at the S1 binding site between hSERT and hNET, hSERT
and hDAT, and hNET and hDAT. (A2–C2) Comparison of the triple reuptake inhibitor amitifadine conformations by MD simulations at the S1 binding site
of hSERT (gray), hNET (light pink) and hDAT (light blue). The ligand and binding site residues are shown as sticks. The proteins are shown as cartoon. The
residues and TM regions are labeled as discussed in the text. 2D structure of the ligand are depicted in Fig. 1A. The protein–ligand complexes are
visualized using PyMOL.
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those mutations in affecting the various inhibition ratios of
amitifadine among three MATs.

Conclusion

In this study, MD simulations, BFE calculations and per-residue
energy decomposition analyses were carried out for a triple
reuptake inhibitor, amitifadine (the only drug ever clinically tested
in Phase 3 for treating depression), in complex with hSERT, hNET
and hDAT. Our primary goal was to predict the binding mode at
the atomic-level and obtain quantitative information of binding
affinities. The calculated BFE follows consistently the order of the
experimental results. By quantitatively analyzing the amitifadine–
MAT interaction mode, the common features for amitifadine
binding to MATs were identified. In addition, the energy variation
analysis of the residues at the S1 site of hSERT, hNET and hDAT
contributes to the binding of amitifadine and in silico cross-
mutagenesis studies discovered that its variation in the inhibition
ratio between hSERT and two other MATs (hNET and hDAT)
mainly comes from the non-conserved residues (Y95F-I172V-
T439S in hNET and Y95F-I172V-A169S-T439S in hDAT). In sum-
mary, for the first time, an accurate model of amitifadine–MAT
interaction was generated, and provided significant insights into
the origins of the hSERT, hNET and hDAT inhibition ratio by
amitifadine. The results will facilitate rational optimization of
multi-target antidepressants with improved pharmacological
properties.
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