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ABSTRACT: Dual inhibition of serotonin and norepinephr-
ine transporters (hSERT and hNET) gives greatly improved
efficacy and tolerability for treating major depressive disorder
(MDD) compared with selective reuptake inhibitors. Pioneer
studies provided valuable information on structure, function,
and pharmacology of drugs targeting both hSERT and hNET
(serotonin−norepinephrine reuptake inhibitors, SNRIs), and
the differential binding mechanism between SNRIs and
selective inhibitors of 5-HT (SSRIs) or NE (sNRIs) to their
corresponding targets was expected to be able to facilitate the
discovery of a privileged drug-like scaffold with improved efficacy. However, the dual-target mechanism of SNRIs was still elusive,
and the binding mode distinguishing SNRIs from SSRIs and sNRIs was also unclear. Herein, an integrated computational
strategy was adopted to discover the binding mode shared by all FDA approved SNRIs. The comparative analysis of binding free
energy at the per-residue level discovered that residues Phe335, Leu337, Gly338, and Val343 located at the transmembrane
domain 6 (TM6) of hSERT (the corresponding residues Phe317, Leu319, Gly320, and Val325 in hNET) were the determinants
accounting for SNRIs’ dual-acting inhibition, while residues lining TM3 and 8 (Ile172, Ser438, Thr439, and Leu443 in hSERT;
Val148, Ser419, Ser420, and Met424 in hNET) contributed less to the binding of SNRIs than that of SSRIs and sNRIs. Based on
these results, the distances between an SNRI’s centroid and the centroids of its two aromatic rings (measuring the depth of rings
stretching into hydrophobic pockets) were discovered as the key to the SNRIs’ dual-targeting mechanism. This finding revealed
SNRIs’ binding mechanism at an atomistic level, which could be further utilized as structural blueprints for the rational design of
privileged drug-like scaffolds treating MDD.

KEYWORDS: Serotonin−norepinephrine reuptake inhibitor, major depressive disorder, dual-target drug, binding mode,
molecular dynamics

■ INTRODUCTION
Major depressive disorder (MDD) has been estimated as the
second largest global burden among all diseases by 2030,1,2

which makes the discovery of novel and efficacious
antidepressants in urgent need.3,4 The development of MDD
is discovered to be closely related to the deficiency of two
neurotransmitters in brain: serotonin (5-HT) and norepinephr-
ine (NE),5 the corresponding transporters (hSERT and hNET)
of which play critical roles in regulating the duration and
intensity of the neurotransmitter signal in the synaptic cleft.6−10

In light of these, selective 5-HT reuptake inhibitors (SSRIs)
and selective NE reuptake inhibitors (sNRIs) are approved by

the U.S. Food and Drug Administration (FDA) and recognized
as a milestone in MDD treatment.11,12 However, their side
effects, delayed onset of action, and partial or no response for
some patients limit their efficacy and patient tolerance and thus
severely hamper their prescription usage.13,14 Recently, a novel
class of antidepressants simultaneously inhibiting hSERT and
hNET (serotonin−norepinephrine reuptake inhibitors, SNRIs)
was discovered.11 Because of their capability of sustaining the
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level of both 5-HT and NE, SNRIs are reported to give greatly
improved efficacy and tolerability compared with selective 5-
HT or NE reuptake inhibitors.15

Although considerable effort has been made,16−18 only a few
SNRIs with clinical importance for treating MDD were
discovered, which included 4 drugs (desvenlafaxine, duloxetine,
levomilnacipran, and venlafaxine) approved by the U.S. FDA
(Figure 1A).19−21 The discovery of novel privileged drug-like
SNRI scaffolds was reported to be severely limited due to the
lack of binding mode information between clinically important
SNRIs and their targets.22,23 To cope with this limitation, X-ray
crystal structures of hSERT and hNET homologues, such as
bacterial leucine transporter (LeuT),24 LeuBAT (a LeuT
variant engineered to harbor hSERT-like pharmacology by
mutating key residues around the primary binding pocket S1)25

and the Drosophila melanogaster dopamine transporter
(dDAT),25 were solved and in turn facilitated drug discov-
ery.26−28 Meanwhile, site-directed mutagenesis studies on
hSERT and hNET identified a variety of residues within the
S1 drug-binding site at which mutations influenced the drugs’
affinity.29−31 Besides these experimental endeavors, various
computational methods were frequently used to elucidate
ligand binding modes in hSERT or hNET,32−34 and SSRIs
binding modes in hSERT were explored and compared with the
recently resolved X-ray structure of hSERT at the atomistic
scale.33,35−37 These pioneer studies gave valuable information
on the structure, function, and pharmacology of hSERT and
hNET.22 In spite of this progress, cocrystallized structures of
clinically important antidepressants (SNRIs, SSRIs, and sNRIs)
in complex with their corresponding monoamine transporters,
especially the human structures, are still limited, and important

mechanistic principles of these antidepressants against targets
need to be further explored at the molecular level. An example
is the SNRI binding mode and the structural determinants of
transporters responsible for drug selectivity, which is the central
concern in drug discovery since it substantially influences the
efficacy and tolerability of drug candidates. Thus, the
understanding of the differential binding mechanism between
SNRIs and selective reuptake inhibitors to their corresponding
targets was expected to give insight into the discovery of
privileged drug-like scaffolds with improved efficacy and patient
tolerance.29,38−41

However, the mechanism underlying the SNRI dual-target
binding mode in both hSERT and hNET was still elusive, and
the binding mode distinguishing SNRIs (especially the FDA
approved ones) from SSRIs and sNRIs was also unclear.29,39

Thus, an integrated computational strategy was adopted in this
study to discover the binding mode of four FDA approved
SNRIs in their targets and reveal key binding mechanisms
differentiating SNRIs from SSRIs and sNRIs. In particular, a
recently reported template of dDAT25 with high sequence
identity to both hSERT and hNET was first adopted to
generate the homology models of these two targets. Then, all
FDA approved SNRIs were docked into the modeled targets
and used as initial conformations for molecular dynamics (MD)
simulation followed by endpoint binding free energy
calculation. As a result, a binding mode shared by all those
studied SNRIs of various scaffolds was identified through
protein−ligand interactions and the clustering analysis of per-
residue binding energies, and key physicochemical properties
and binding mechanisms differentiating the approved SNRIs
from SSRIs and sNRIs were characterized based on their

Figure 1. Drugs and protein targets studied in this work. (A) Chemical structures of four currently marketed SNRI antidepressants approved by U.S.
FDA. (B) Homology models of hSERT and hNET. The S1 binding sites primarily surrounded by TM1, TM3, TM6, and TM8 for both hSERT and
hNET are highlighted.
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structural and energetic information. In sum, this study drew a
blueprint for assessing and discovering novel, safer, and more
effective dual-targeting drug scaffolds for not only MDD but
also other psychiatric disorders.

■ RESULTS AND DISCUSSION

Modeled Structures of hSERT and hNET. Homology
models of hSERT and hNET were constructed using the high-
resolution (2.8 Å) X-ray crystal structure of dDAT (PDB code
4M48,25 from Glu26 to Asp599) as a template. As the best
template so far for monoamine transporter modeling,22 the
dDAT gave a higher degree of sequence identity with hSERT
(56%) and hNET (61%) compared with other templates (SI,
Figure S1). The constructed homology models of hSERT
(from Glu78 to Pro617) and hNET (from Gln54 to Glu597)
covered all 7 transmembrane (TM) regions and the
corresponding intervening loop (Figure 1B). The stereo-
chemical quality and accuracy of the predicted models was
evaluated (SI, Figure S2). As illustrated, 99.6% and 99.8% of
the modeled residues of hSERT and hNET were in the
“allowed region”, which indicated that the overall conforma-
tions of the main chain and the side chains were reasonable.
It is important to point out that the X-ray structure of

hSERT was solved35 at the end of this work. Thus, the
comparison of hSERT’s homology model with its crystal
structure was conducted and summarized in Table 1. Although
a relatively large root-mean-square deviation (RMSD = 2.45 Å)
between the homology model and the crystal structure of
hSERT was observed, Figure S3A in SI, their S1 binding sites
(surrounded by TM1, 3, 6, 8, and 10) were very similar with
RMSD of 0.80 Å (SI, Figure S3B). In addition, the calculated
RMSD of the transmembrane domain was 1.33 Å, indicating
that large RMSD values were the case for the intervening loops
of the membrane protein. Further structural alignment between
hSERT’s homology model and its crystal structure revealed that
the relatively large RMSD mainly originated from their EL2
domains (SI, Figure S3A). In the meantime, hNET’s homology
model was constructed using hSERT’s X-ray crystal structure
(PDB code 5I6Z)35 as a template. Sequence identities between
hNET and hSERT for whole protein and for S1 site only were
54% and 62%, respectively, which were lower than those
between hNET and dDAT (61% and 76%, shown in Table 1).
Superposition between the two hNET homology models is
shown in SI, Figure S4. The RMSDs for whole protein,
transmembrane domain, and S1 site are 4.44, 1.34 and 0.81 Å,
respectively. Taken together, the crystal structure of dDAT25

did provide an ideal template to construct the homology
models of hSERT and hNET, especially of the S1 drug binding
site.

Initial Poses of SNRIs Binding to hSERT and hNET.
Docking was carried out to determine the initial poses of four
SNRIs binding in the homology models of hSERT and hNET.
The docking poses oriented in a similar way as SSRIs and
SNRIs in LeuBAT42 were selected for MD simulation and
thermodynamic analysis, which revealed an ionic interaction
between the SNRIs amino group and residue Asp98 (hSERT)
or Asp75 (hNET). As illustrated in SI, Figure S5, the four
studied SNRIs (desvenlafaxine, duloxetine, levomilnacipran,
and venlafaxine) fitted into the S1 drug binding site surrounded
by the regions of TM1, 3, 6, 8, and 10. Prior to docking, the
validation of an appropriate docking protocol was required.
Since desvenlafaxine and duloxetine had been cocrystallized
together with LeuBAT (PDB code 4MM7 and 4MM6),25 the
cross-docking strategy was adopted herein to guarantee correct
generation of a drug’s initial pose by docking the cocrystallized
desvenlafaxine into the structure of LeuBAT obtained with
duloxetine bound (more details were provided in SI, Method
S5), and the cocrystallized poses of desvenlafaxine and
duloxetine were then superimposed to their corresponding
cross-docking poses. Both poses were consistent with each
other (SI, Figure S6), and RMSDs between the docked and
cocrystallized poses of desvenlafaxine and duloxetine were 1.18
and 1.65 Å, respectively. Moreover, the docking conformations
of the hSERT and hNET models in complex with
desvenlafaxine and duloxetine were also aligned to the crystal
structures 4MM7 and 4MM6 (SI, Figure S7). The aligned
results showed that, except for the docking pose of
desvenlafaxine in hNET (RMSD = 2.07 Å), the RMSDs of
the other three poses were all below 2 Å. Therefore, the cross-
docking results between 2MM7 and 4MM6 and the
comparison of desvenlafaxine and duloxetine docking poses
in hSERT and hNET with their cocrystallized pose in LeuBAT
guaranteed the correct initial poses of the four studied SNRIs
generated in this work.

Assessment of SNRIs Binding to hSERT and hNET. MD
Simulations. Accuracy and reliability of SNRIs docking poses
in S1 sites of hSERT and hNET were accessed by all atom
explicit solvent MD simulation, and a total of 1.2 μs simulation
trajectories was collected. Compared to initial conformation,
RMSDs of protein backbone and ligand heavy atoms over the
course of simulations were calculated and plotted in SI, Figure
S8. As shown, all simulation complexes underwent relatively
small conformation changes (RMSD < 3 Å). The small
fluctuation of average RMSD of protein backbone atoms
(2.09−2.83 Å, Table S1) indicated that each complex reached
an equilibrium state. Moreover, the average RMSD of the
binding site backbone atoms (1.07−1.48 Å, Table S1) and
ligand heavy atoms (0.50−1.48 Å, Table S1) demonstrated that
the predicted SNRIs poses were compatible with the S1 site of
hSERT and hNET.

Table 1. Comparison of Homology Models (hSERT and hNET) and Crystal Structures (hSERT and dDAT)

hSERT (dDAT)a hNET (dDAT)a

whole structureb S1 site (TM1, 3, 6, 8, and 10)c whole structure S1 site (TM1, 3, 6, 8, and 10)

identity (%) RMSDd identity (%) RMSDd identity (%) RMSDd identity (%) RMSDd

hSERT (crystal structure)b 2.45 0.80 54 62
hNET (hSERT)c 54 62 4.44 0.81
dDAT (crystal structure)d,e 56 67 61 76

aHomology model of hSERT and hNET based on the dDAT crystal structure25 as a template. bCrystal structure of hSERT.35 cHomology model of
hSERT and hNET based on the hSERT crystal structure35 as a template. dThe whole and S1 site RMSD between homology models and crystal
structures were calculated based on protein backbone atoms. eCrystal structure of dDAT.25
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Profiles of SNRIs Binding Free Energies in Complex with
hSERT and hNET. To get the relative order of the binding free
energy (ΔGcalc) of the studied SNRIs, the MM/GBSA method
was used to calculate ΔGcalc of hSERT and hNET in complex
with desvenlafaxine, duloxetine, venlafaxine, and levomilnaci-
pran. Meanwhile, the experimental binding affinity (ΔGexp) was
calculated based on the reported Ki values

19,43,44 via ΔGexp =
RT ln(Ki). The results of calculations are summarized in Table
2 (more details of each free energy term in SI, eq S1 are shown
in SI, Table S2). As shown in Table 2, ΔGcalc values in this
work were overestimated compared to those of experiment
(ΔGexp), and the main reason for this overestimation came
from the exclusion of entropic contribution. Nevertheless, for
ligands with similar structures and target binding modes, the
entropy contribution could be omitted if one was only
interested in the relative order of binding affinities.45 Moreover,
the feasibility of excluding entropic contribution from this study
was validated by the similar binding mode of the studied SNRIs
in both hSERT and hNET revealed by MD simulation. As a
result, linear fit of relative binding free energies between
ΔΔGcalc and ΔΔGexp of four studied SNRIs gave a strong
correlation (R2 = 0.81, as illustrated in Figure 2), which
indicated that the ascending trend of binding affinities from
experiment was reproduced very well by ΔGcalc in this work.

Validation of the Simulation Models. Besides the good
correlation between the results of simulation and experiment
discovered in the previous section, three lines of evidence were
collected to further validate the constructed simulation models.

Evidence 1: Sensitivity Profile Identified by in Silico Site-
Directed Mutagenesis Analysis. The sensitivity profiles were
expected to give great insight into the binding mechanism of
SNRIs.30 The sensitivity of certain residue to SNRIs binding
could be estimated by difference in the calculated binding
energy before and after in silico mutation. In this study, the
sensitivity profiles of eight mutations (Y95A, I172M, F341Y,
and S438T in hSERT; F72Y, V148I, F323Y, and S419T in
hNET) for two SNRIs (duloxetine and venlafaxine) charac-
terized by previous experiments30 were selected, and their
sensitivities were explored by in silico mutation and MD
simulation on the resulting wild-type models (SI, Figure S10).
The calculated binding free energies of those two SNRIs and
the fold-changes in their binding affinities from Sorensen’s
experiments30 induced by those aimed mutations are shown in
Table 3, and information on each energy term is listed in SI,
Table S3. As shown, sensitivity profiles of eight mutations
reported in Sorensen’s work30 were successfully predicted by
the calculated ΔΔGcalc. Particularly, simulation revealed S438T
in hSERT and F72Y, V148I, F323Y, and S419T in hNET as

Table 2. Calculated and Experimental Binding Energies of Four Studied SNRIs Binding to the Wild-type hSERT and hNETa

SNRIs targets Ki
b ΔGexp

c ΔΔGexp
d ΔGcalc

e ΔΔGcalc
d

desvenlafaxine hSERT 40.219 −10.09 −2.44 −42.04 ± 0.12 −2.49
hNET 558.419 −8.53 −0.88 −42.02 ± 0.11 −2.47

duloxetine hSERT 0.844 −12.42 −4.77 −49.04 ± 0.12 −9.49
hNET 7.544 −11.09 −3.44 −47.61 ± 0.13 −8.06

levomilnacipran hSERT 11.243 −10.85 −3.20 −43.81 ± 0.11 −4.26
hNET 92.243 −9.60 −1.95 −41.38 ± 0.11 −1.83

venlafaxine hSERT 8244 −9.68 −2.03 −41.96 ± 0.15 −2.41
hNET 248044 −7.65 0 −39.55 ± 0.11 0

aΔG is in kcal/mol, and Ki value is in nM. bExperimental Ki value from reported work in refs 19, 43, and 44. cEstimated binding energy based on Ki
values using ΔGexp = RT ln(Ki).

dBinding energy difference was computed using ΔΔG = ΔG − ΔGvenlafaxine.
eCalculated binding energy in this work.

Figure 2. Correlation between the calculated binding energy differences (ΔΔGcalc) and the experimental data (ΔΔGexp) estimated by Ki values for all
studied complexes. The R2 value equals 0.81.
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nonsensitive mutations (<5-fold change in binding affinity) to
both studied SNRIs. In Table 3, the ΔΔGcalc values were
between −1.03 and 0.56 kcal/mol. The corresponding range of
fold-change in potency (FCcalc) could thus be estimated as 0.01
to 2.57 by ΔΔGcal = RT ln(FCcalc), which were comparable to
the experimentally estimated nonsensitive FCexp (from 0.05 to

3.12).30 Meanwhile, Y95A and I172M in hSERT were found to
be sensitive (>5-fold change in binding affinity) to both SNRIs
by this study, and their ΔΔGcalc values were between 1.34 and
2.08 kcal/mol. The corresponding range of FCcalc was estimated
as from 9.59 to 33.42, which was also comparable to those
experimentally estimated sensitive FCexp (from 24.00 to

Table 3. Calculated and Experimental Changes in Binding Energies of 16 SNRIs Bonded hSERT and hNET Complexesa before
and after Those Mutations in hSERT and hNET30b

SNRIs targets mutations ΔΔGcalc
c FCcalc

d FCexp
e ΔΔGexp

f

venlafaxine hSERT Y95A 2.08 33.42 73.89 (47.15−126.57) 2.55
I172M 2.31 49.27 100.27 (59.27−181.03) 2.73
F341Y 0.62 2.85 5.87 (3.62−10.31) 1.05
S438T −0.52 0.42 0.59 (0.35−1.08) −0.31

hNET F72Y −0.32 0.58 0.97 (0.86−1.08) −0.02
V148I −1.03 0.18 0.05 (0.04−0.07) −1.78
F323Y 0.69 3.2 1.50 (1.24−1.79) 0.24
S419T 0.49 2.29 2.59 (2.11−3.11) 0.56

duloxetine hSERT Y95A 1.59 14.62 24.00 (21.18−27.21) 1.88
I172M 1.34 9.59 24.85 (21.00−29.24) 1.9
F341Y 0.26 1.55 2.37 (1.91−2.89) 0.51
S438T −0.55 0.4 0.45 (0.35−0.57) −0.47

hNET F72Y 0.02 1.03 1.23 (0.74−2.03) 0.12
V148I −0.81 0.25 0.19 (0.13−0.27) −0.98
F323Y 0.56 2.57 3.12 (1.92−5.06) 0.67
S419T −0.39 0.52 0.80 (0.58−1.16) −0.13

aTwo SNRIs against eight single-point mutations. bΔG is in kcal/mol. See SI Table S3 for details of each energy term. cΔΔGcalc = ΔGmutation −
ΔGwild‑type.

dFold-changes of potency (FCcalc) were derived from ΔΔGcalc by the equation ΔΔGcalc = RT ln(FCcalc).
eFold-changes of potency (FCexp)

measured by Ki values (FCexp = Ki(mutation)/Ki(wild-type)).
30 Numbers outside the parentheses indicate the fold-changes derived from the mean

experimental values of both Ki(mutation) and Ki(wild-type). The first number in the parentheses indicates the minimum fold-change, while the
second one indicates the maximum fold-change. fΔΔGexp were derived from the FCexp from the equation ΔΔGexp = RT ln(FCexp).

Figure 3. Per-residue contributions of binding energies of the eight studied complexes. To get a clear view, only residues in proximity of the drug
binding sites (TM1, TM3, TM6, TM8, and TM10) are shown.
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100.27).30 Finally, F341Y in hSERT was found to be sensitive
to venlafaxine but nonsensitive to duloxetine, and the estimated
FCcalc value was also comparable to the experimental result.
Distinct difference in FCcalc between sensitive and nonsensitive
mutations indicated that those constructed models were
capable of distinguishing the sensitive mutations from the
nonsensitive ones. As all in silico site-directed mutagenesis
analyses were based on the models constructed in this work,
their ability to identify the sensitivity profiles of hSERT and
hNET residues could be considered as the first line of evidence
for model validation. The conformational change in hSERT and
hNET binding pocket as well as shift of two SNRIs
accommodating into the pocket are shown in SI, Figure S10.
Evidence 2: hSERT’s Crystal Structure Reproduced by MD

Simulation. The recently determined X-ray structure of
hSERT35 could be used as a valuable reference for validating
the simulation models in this work. As shown in Table 1 and SI,
Figure S3A, hSERT’s homology model generated in this study
demonstrated substantial resemblance to the reported hSERT
X-ray structure as indicated by a relatively low RMSD (2.45 Å).
More importantly, the superimposition of the constructed
hSERT model with the reported hSERT crystal structure
showed significant structural similarity (RMSD = 0.80 Å) in the
S1 binding site (SI, Figure S3B). These data demonstrated that
the hSERT models generated on the basis of the dDAT crystal
structure could serve as accurate platforms for exploring SNRIs
binding at the hSERT binding site. To further support this
conclusion, MD simulation and binding energy calculation of
hSERT’s cocrystallized structure in complex with a typical SSRI
drug, escitalopram, were conducted,36 and very consistent
structure features (RMSDs of whole structure, S1 binding site,
and ligand were 3.13, 1.01, and 1.23 Å, respectively) and a very
similar value in binding free energy (RMSD was 0.20 kcal/mol)
between the simulation and the X-ray structure46 were
observed. Taken together, the success in reproducing hSERT’s
crystal structure could be another line of evidence for model
validation.
Evidence 3: Comparison of Results from Simulations with

Experimental Structures of SNRIs in LeuBAT. The cocrystal-
lized structures of LeuBAT (the engineered LeuT to harbor the
human-like pharmacology) in complex with two approved
SNRI drugs (desvenlafaxine and duloxetine) were determined
by Wang et al.25 Crystallographic analysis showed that these
two chemically diverse inhibitors shared a remarkably similar

binding mode. In particular, the amino groups of both
desvenlafaxine and duloxetine interacted with Asp24 in
LeuBAT (the corresponding residues Asp98 in hSERT and
Asp75 in hNET).25 Moreover, the cavity formed by Tyr21,
Val104, Tyr108, and Phe259 (the corresponding residues
Tyr95, Ile172, Tyr176, and Phe341 in hSERT; Phe72, Val148,
Tyr151, and Phe317 in hNET) was occupied by duloxetine’s
naphthalene ring and desvenlafaxine’s cyclohexanol ring.25

Duloxetine’s thiophene ring and desvenlafaxine’s phenol ring
were involved in the subsite comprised of Phe253, Asp404, and
Thr408 (the corresponding residues Phe335, Glu493, and
Thr497 in hSERT; Phe323, Asp473, and Ala477 in hNET),
which probably showed a role in enhancing inhibitor affinity
and specificity.25 In this study, all those mentioned residues
were identified as high contribution ones for the binding of the
studied SNRIs (see Figure 3), which could be the third line of
evidence validating the resulting simulation models.

Analyzing the Binding Mode of SNRIs in hSERT and
hNET. Conserved Salt Bridge and Hydrogen Bond Anchor-
ing SNRIs at the S1 Sites of hSERT and hNET. Representative
snapshots of hSERT and hNET complex bound with SNRIs
from equilibrated MD trajectories are shown in SI, Figure S11.
As shown, the salt bridge and hydrogen bond between the side
chain of Asp in hSERT and hNET and the amino group of
SNRIs were crucial for ligand binding and conserved across all
studied SNRIs. First, the distances between salt bridge forming
atoms (−N+···OD−) for the binding of desvenlafaxine,
duloxetine, levomilnacipran, and venlafaxine were relatively
stable (SI, Figure S12). Second, hydrogen bonds between
SNRIs and the carboxyl group of Asp in S1 sites of hSERT and
hNET are illustrated in Figure 4, and the high percentage
occupancy demonstrated a stable hydrogen bond along the
simulation with interaction distance of 2.56−2.85 Å and bond
angle ranging from 144.13° to 164.79°. These results suggested
that salt bridges and hydrogen bonds were conserved and
required for anchoring the studied SNRIs at the S1 sites of
hSERT and hNET.

Per-Residue Binding Free Energy Contributing to SNRIs
Binding. To understand the interaction between SNRIs and
hSERT and hNET, per-residue decomposition analysis was
conducted to obtain a quantitative picture of each amino acid’s
free energy contribution to SNRIs binding. Herein, a plot
(Figure 3) showing binding free energy contributions of each
amino acid was generated. To the best of our knowledge,

Figure 4. Analysis of hydrogen bonds between SNRIs and Asp98 (hSERT) or Asp75 (hNET). The hydrogen bonds are determined by the
acceptor···donor atom distance of less than 3.5 Å and acceptor···H-donor angle of greater than 120°. Occupancy (%) represents the stability and
strength of the hydrogen bonds.
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Figure 3 is the first report of SNRIs binding energy
contribution on a per-residue basis. As shown, there were 14,
15, 14, and 12 residues in hSERT and 13, 12, 10, and 12
residues in hNET identified with high energy contribution
(with the absolute energy contribution greater than or equal to
0.5 kcal/mol) for the binding of desvenlafaxine, duloxetine,
levomilnacipran, and venlafaxine, respectively. On one hand,
the energy contributions of hSERT and hNET residues to the
same SNRI vary greatly (−0.57 kcal/mol for hNET Gly149 and
−3.06 kcal/mol for hSERT Asp98 when binding desvenlafax-
ine), and energy contributions of the same residue to different
SNRIs also differ significantly (the contributions of polar
residue Asp98 in hSERT (Asp75 in hNET) were from −2.46
(−4.34) kcal/mol for levomilnacipran to −3.43 (−1.26) kcal/
mol for venlafaxine). On the other hand, Figure 3 also infers a
certain level of similarity among the four SNRIs, which inspired
us to conduct a deeper exploration of the binding mode shared
by all studied SNRIs approved by the U.S. FDA.
Binding Mode Shared by All Studied SNRIs Approved

by FDA. The binding mode shared by approved SNRIs in
hSERT and hNET provided a useful framework from which
novel lead scaffolds could be assessed and discovered.38,47 To
identify the most favorable binding mode shared by all four
approved SNRIs, hierarchical clustering with ward algorithm48

was applied to identify key residues (hot spots) from those per-
residue binding energies generated in the previous section. In
particular, there were 1080 residues with energy contribution
information for four studied SNRIs, 575 of which had no
contribution (=0 kcal/mol) to the binding of any studied SNRI.
Then, the energy contribution of the remaining 505 residues
was used for clustering analysis. As shown by the hierarchical
tree in Figure 5, five distinct residue groups (A, B, C, D, and E)
were identified. Binding energy contributions favoring SNRIs
binding are displayed in red, with the highest contribution
(−4.34 kcal/mol) set as exact red and lower contributions
gradually fading toward white (0 kcal/mol). Meanwhile, energy
contributions hampering SNRIs binding are all colored in blue,
with the highest one (0.17 kcal/mol) set as exact blue and
lower ones gradually fading toward white. It is necessary to
clarify that the absolute value of the highest contribution
favoring SNRI binding (exact red) was 26 times stronger than
that hampering the binding (exact blue).
The energy contribution of residues in group A (Tyr95,

Asp98, Ile172, Tyr176, and Phe341 in hSERT; Phe72, Asp75,
Val148, Tyr152, Phe317, and Phe323 in hNET) was
consistently higher across all studied SNRIs and more favorable
to binding than residues in other groups. For each SNRI, the
sum of energy contributions of residues in group A constituted

Figure 5. Clustering tree of 505 residues with contributions to at least one studied SNRI binding to hSERT and hNET. Residue binding energy
contributions favoring SNRIs’ binding are displayed in red, with the highest contribution set as exact red and the lower contributions gradually fading
toward white color (no contribution). Residue energy contributions hampering SNRIs’ binding are shown in blue, with the highest one set as exact
blue and the lower ones gradually fading toward white color.
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the primary portion of total energy (hSERT, 47.14% for
desvenlafaxine, 40.36% for duloxetine, 48.48% for levomilnaci-
pran, and 48.47% for venlafaxine; hNET, 49.53% for
desvenlafaxine, 53.93% for duloxetine, 59.31% for levomilnaci-

pran, and 48.90% for venlafaxine). In the meantime, the sum of
energy contributions of residues in subgroup B1 (Ala96, Ala173,
Phe335, Ser336, Glu338, Ser438, Thr439, and Gly442 in
hSERT; Ala145, Val325, Ser419, Ser420, and Gly423 in hNET)

Figure 6. Binding modes of SNRIs in S1 binding site of hSERT and hNET that resulted from MD simulations. (A−D) 3D representation of binding
interactions between SNRIs and hSERT. (E−F) 3D representation of binding interactions between SNRIs and hNET. Cartoon is used for the
backbone atoms. Residues and ligands are shown in stick, and only polar hydrogen atoms are displayed for clarity. Salt bridges and hydrogen bonds
are depicted as red dotted lines.

Figure 7. 2D schematic representation of the identified binding mode of four studied SNRIs in hSERT and hNET. The electrostatic and
hydrophobic interactions are depicted in red and light blue dashed lines, respectively. The red color (R1) indicates chemical group with electrostatic
interaction to residues in the vicinity, while light blue (R2) and (R3) represents chemical groups with only hydrophobic interactions to their nearby
residues. Each chemical group was generalized by superimposition of four SNRIs in the S1 pocket. The residues in dark text (Tyr95, Asp98, Ile172,
Tyr176, and Phe341 in hSERT; Phe72, Asp75, Val148, Tyr152, Phe317, and Phe323 in hNET) belong to subgroup A (Figure 5), and the residues in
gray (Phe335, Ser438, Thr439, and Gly442 in hSERT; Ser419, Ser420, and Gly423 in hNET) aare clustered into subgroup B1 (Figure 5).
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offered 27.96%, 31.49%, 22.97%, and 27.71% of total free
energies for the binding of desvenlafaxine, duloxetine,
levomilnacipran, and venlafaxine in hSERT and 20.68%,
15.97%, 11.06%, and 13.61% of the total energy for binding
desvenlafaxine, duloxetine, levomilnacipran, and venlafaxine
with hNET, respectively. In this study, residues in subgroups A
and B1 were identified as the hot spots with “strong” and
“relatively strong” contributions. Taken together, 13 hot spots
in hSERT and 11 hot spots in hNET revealed a similar pattern
shared by those studied SNRIs in spite of their distinct
structures. Moreover, among those residues, 9 residues (Tyr95,
Asp98, Ile172, Tyr176, Phe335, Phe341, Ser438, Thr439, and
Gly442 in hSERT; Phe72, Asp75, Val148, Tyr152, Phe317,
Phe323, Ser419, Ser420, and Gly423 in hNET) were hot spots
shared by the studied SNRIs binding to both hSERT and
hNET.
The conformational features of how SNRIs were accom-

modated into 9 hot spot residues are shown in Figure 6. A
pocket was defined by hot spots with a slight conformational
shift, and all SNRIs fitted the pocket with a similar orientation.
Thus, the binding mode of SNRIs−hSERT and −hNET
recognition is generalized and schematically represented in
Figure 7. As shown, the shared binding mode was defined by
collective electrostatic and hydrophobic interactions between
three chemical groups (R1, R2 and R3) and 9 hot spots (Tyr95,
Asp98, Ile172, Tyr176, Phe335, Phe341, Ser438, Thr439, and
Gly442 in hSERT; Phe72, Asp75, Val148, Tyr152, Phe317,
Phe323, Ser419, Ser420, and Gly423 in hNET). In Figure 6 and
Figure 7, hot spots with strong and relatively strong
contributions are shown in black and gray color, respectively.
The chemical groups in Figure 7 are highlighted in red and light
blue. R1 formed electrostatic interactions with Asp98 (hSERT)
and Asp75 (hNET), R2 offered hydrophobic interactions with
Tyr95, Ile172, Tyr176, Ser438, Thr439, and Gly442 (hSERT)
and Phe72, Val148, Tyr152, Ser419, Ser420, and Gly423
(hNET), while R3 contacted Ile172, Tyr176, Phe335, and

Phe341 (hSERT) and Val148, Tyr152, Phe317, and Phe323
(hNET).

Identifying the Key Properties Discriminating SNRIs
from SSRIs and sNRIs. Per-Residue Energies Differentially
Contributing to the Binding of SNRIs, SSRIs, and sNRIs.
Homology model of hSERT and hNET showed similar
molecular architecture (Figure 1B). Their amino acid sequence
shared an overall identity of 54% (Figure S1) and an S1 binding
site identity of 62% (SI, Figure S13). The identification of the
key properties determining drug selectivity in target binding
was critical for the development of antidepressants with
improved efficacy.49−53 Although crystallography,25,54 muta-
genesis29,30 studies, and molecular modeling32,33,55,56 on
antidepressants were extensively explored, the key properties
determining drug selectivity remained elusive. To discover key
physicochemical properties of SNRIs underlying their dual-
targeting mechanism, the per-residue energies contributing to
SNRIs binding were calculated and compared with those of
SSRIs and sNRIs reported in previous studies.33,46 In particular,
the changes of per-residue energy between SSRIs and SNRIs
binding to hSERT are plotted in Figure 8A, and the changes of
per-residue energy between sNRIs and SNRIs binding to hNET
are depicted in Figure 8B. Moreover, a schematic representa-
tion of key residues differentially contributing to the binding of
SNRIs and SSRIs/sNRIs is provided in Figure 8C. As shown,
the increased energy contribution of the residues in the TM6
region (Phe335, Leu337, Gly338, and Val343 in hSERT and
Phe317, Leu319, Gly320, and Val325 in hNET) is required for
the SNRIs dual-targeting mechanism (Figure 8A,B) by
interacting with the R2 group of SNRIs (Figure 8C). In
contrast, residues in the TM3 and TM8 regions (Ile172,
Tyr176, Ser438, Thr439, and Leu443 in hSERT and Val148,
Tyr152, Ser419, Ser420, and Met424 in hNET) offered more
to SSRIs and sNRIs binding (Figure 8A,B) and mainly located
around the R3 group of both SSRIs and sNRIs (Figure 8C).
Among those residues, except for Ser438 (hSERT) and Ser149

Figure 8. Changes of the mean energy contribution of residues (A) between SSRIs and SNRIs in hSERT and (B) between sNRIs and SNRIs in
hNET. Only residues in the proximity of the drugs’ S1 binding sites (TM1, TM3, TM6, TM8, and TM10) are shown. (C) Residues in the TM3 and
TM8 regions contributed more energy to the binding of SSRIs and sNRIs than that of SNRIs (labeled in orange), and residues in the TM6 region
contributed more energy to the binding of SNRIs than that of SSRIs and sNRIs (labeled in green) and were mapped to the shared binding mode
identified for all approved SNRIs.
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(hNET), several nonconserved ones (Ile172, Thr439, and
Leu443 in hSERT and Val148, Ser420, and Met424 in hNET)
have been reported as molecular determinants controlling
antidepressant binding selectivity and further validated by the
site-mutagenesis studies.54,55 Meanwhile, simulation revealed
that Asp98 in hSERT (Asp75 in hNET) was essential for the
recognition of SSRIs, sNRIs, and SNRIs in hSERT and
hNET.25 As shown, no obvious change in energy contribution
of Asp98 in hSERT (Asp75 in hNET) for the binding of
SSRIs,46 sNRIs,46 and SNRIs was observed (Figure 8).
Therefore, these interactions should be preserved in the
binding of antidepressants as a prerequisite.
Identifying the Key Moiety of SNRIs Determining Their

Dual-Targeting Mechanism. Based on simulation results, the
binding mode of approved SSRIs,46 sNRIs,33 and SNRIs in
hSERT and hNET was defined by the collective electrostatic
and hydrophobic interactions between 3 chemical groups (R1,
R2, and R3) and the corresponding residues in the S1 binding
site (Figure 7). As reported, the moieties should be the
determinants of the SNRIs mode of action,49 but it is unclear
how a specific moiety contributes to the SNRIs dual-targeting
mechanism. Herein, the distances between drug centroid and
the centroids of the 3 drug moieties (R1, R2, and R3) were
measured and summarized based on the 3D conformation of
approved SNRIs, SSRIs, and sNRIs in the S1 binding pocket
(Table 3 and SI, Table S5). As demonstrated in Figure 7 and
Table 4, D1, D2, and D3 indicated the mean distances between

drug centroid and the centroids of drug moiety R1, R2, and R3,
respectively. As shown, D2 of SNRIs (3.18 Å) was longer than
that of SSRIs (3.11 Å) and sNRIs (3.01 Å), while D3 of SNRIs
(2.93 Å) was much shorter than that of SSRIs (3.70 Å) and
sNRIs (3.31 Å). Meanwhile, Figure 7 showed that R2 mainly
interacted with residues located in TM6 of the protein and R3
mainly contacted residues located in TM3 and TM8. Based on
these results, it was reasonable to speculate that the distances
between SNRIs centroid and centroids of their aromatic rings
(R2 and R3), which reflected the depth of aromatic rings
stretching into the hydrophobic pocket, were closely related to
the SNRIs dual-targeting mechanism.

■ CONCLUSIONS
This study aimed at revealing the SNRIs dual-targeting
mechanism by comparing their binding mode in hSERT and
hNET with those of SSRIs and sNRIs. By adopting an
integrated computational method, the binding mode shared by
4 FDA approved SNRIs in their corresponding targets was
discovered, and several key residues were identified as different
in their per-residue energy contributions to the binding of the
SNRIs, SSRIs, and sNRIs. Based on these analyses, the
distances between SNRIs centroids and the centroids of their
aromatic rings (R2 and R3) were discovered and speculated as
closely related to the SNRIs dual-targeting mechanism. Such

findings provide a blueprint for assessing and discovering novel,
safer, and more effective dual-targeting scaffolds for not only
MDD but also other psychiatric disorders.

■ MATERIALS AND METHODS
System Setup. Homology modeling of hSERT and hNET. The

sequences of hSERT, hNET and dDAT were first aligned using
ClustalW2.57 Then, using the X-ray crystal structure of dDAT (PDB
code 4M48,25 from Glu26 to Asp599) as template, the homology
models of hSERT and hNET were constructed by the automated
mode SWISS-MODEL.58 The PROCHECK59 was applied to evaluate
the stereo chemical quality of the constructed hSERT and hNET
models. Finally, two functional Na+ in 4M48 were manually fitted into
their corresponding binding sites in hSERT and hNET using the
structure superimposition module of the PyMOL program.60

Docking SNRIs into hSERT and hNET. To get drug binding
complexes, four FDA approved SNRIs (desvenlafaxine, duloxetine,
levomilnacipran, venlafaxine) were docked into the modeled hSERT
and hNET proteins using Glide.61 First, Structures of 4 SNRIs were
preprocessed by the LigPrep62 using OPLS-2005 force field.63 The
ionized state was assigned by Epik64 at a pH value of 7.0 ± 2.0. Then,
hSERT and hNET homology models were prepared by adding
hydrogen atoms, assigning partial charges and protonation states, and
minimizing the structure using Protein Preparation Wizard module in
Maestro.65 Third, the docking grid boxes were defined by the residues
(Tyr95, Asp98, Ile172, Asn177, Phe341 and Ser438 of hSERT and
Phe72, Asp75, Val48, Gly149, Phe323 and Ser419 of hNET) identified
as determinants for SNRIs binding30 (more details were provided in
SI, Method S1). Finally, the prepared SNRIs were docked into the
defined binding pockets in both hSERT and hNET and the docking
poses oriented in similar way as SSRIs/SNRIs cocrystallized with
LeuBAT25 were selected for MD simulation and thermodynamic
analysis, and formed ionic interaction between amino group and
Asp98 (hSERT) or Asp75 (hNET). Similar protocol was adopted in
previously studies.33,46

Constructing the protein−ligand/membrane-water complex.
The initial conformations of eight complexes obtained by docking
were preoriented in OPM66 with respect to the Membrane Normal
which is defined by the Z-axis. Then the drug-target structures were
further embedded into an explicit POPC lipid bilayer by Membrane
Builder in CHARMM-GUI.67 The TIP3P water68 of 20 Å thickness
was placed above and below the constructed bilayer. Environmental
salt concentration was kept at 0.15 M by adding Na+ and Cl−. The
overall system contained a total of ∼96,000 atoms per one periodic
cell, and the box size was set as 83 Å × 83 Å × 127 Å.

MD Simulation and Thermodynamic Analysis. Starting from
initial conformation of each complex produced by docking, MD
simulation was performed to improve the fit of drugs into targets’
binding pocket.69 Simulations were conducted by GPU-accelerated
PMEMD integrated in AMBER14 package.70 For each MD simulation,
a sophisticated protocol including the minimization, heating and
equilibration was employed (more details were provided in SI, Method
S2). Then, 150 ns production NPT MD simulation was conducted
with periodic boundary conditions at 310 K and 1Bar. The direct space
interaction was calculated by considering long-range electrostatic
interactions (cutoff = 10 Å) using the particle-mesh Ewald (PME)
method.71 All bonds involving hydrogen atoms were constrained by
SHAKE algorithm72 allowing an integration time step of 2 fs.

Based on the last 50 ns equilibrated production simulations, the
binding free energies (ΔGcalc) of SNRIs to their targets (hSERT and
hNET) were calculated by MM/GBSA method68 (more details were
provided in SI, Method S3). Comparing with absolute binding free
energies with alchemical method,73 endpoint calculation was more
computationally effective to reproduce the relative order of ligands
binding to one protein family.74−79 To quantitatively evaluate the
contribution of each residue to SNRIs’ binding, the total binding
energy was decomposed on a per-residue basis (more details were
provided in SI, Method S4).

Table 4. Mean Distances between the Centroid of All
Approved SNRIs, SSRIs and sNRIs and the Centroids of
their R1, R2, and R3 Groups as Described in Figure 7

distance (Å) SNRIs SSRIsa sNRIsa

D1 3.51 3.69 4.09
D2 3.18 3.11 3.01
D3 2.93 3.70 3.31

aThe data was obtained from our previous studies.33,46
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Hierarchical Clustering Analysis. The hierarchical clustering tree
of 505 residues with contributions to at least one studied SNRI
binding on hSERT and hNET was generated based on per-residue
energy contribution vectors using R statistical analysis software80 with
the similarity levels among vectors measured by the Manhattan
distance:

∑= | − |a bDistance(a,b)
i i i (1)

where i denotes each dimension of per-residue energies a and b.
Cluster algorithm used here is the Ward’s minimum variance
method,48 which is designed to minimize the total within-cluster
variance. The Ward’s minimum variance module in the R package80

was used, and the hierarchical tree graph was generated using the
online tree generator iTOL.81
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