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Abstract: Background: Due to its ability to provide quantitative and dynamic information on tumor genesis and 

development by directly profiling protein expression, the proteomics has become intensely popular for character-
izing the functional proteins driving the transformation of malignancy, tracing the large-scale protein alterations 

induced by anticancer drug, and discovering the innovative targets and first-in-class drugs for oncologic disor-
ders. 

Objective: To quantify cancer proteomics data, the label-free quantification (LFQ) is frequently employed. How-

ever, low precision, poor reproducibility and inaccuracy of the LFQ of proteomics data have been recognized as 
the key “technical challenge” in the discovery of anticancer targets and drugs. In this paper, the recent advances 

and development in the computational perspective of LFQ in cancer proteomics were therefore systematically 
reviewed and analyzed. 

Methods: PubMed and Web of Science database were searched for label-free quantification approaches, cancer 

proteomics and computational advances. 

Results: First, a variety of popular acquisition techniques and state-of-the-art quantification tools are systemati-
cally discussed and critically assessed. Then, many processing approaches including transformation, normaliza-

tion, filtering and imputation are subsequently discussed, and their impacts on improving LFQ performance of 
cancer proteomics are evaluated. Finally, the future direction for enhancing the computation-based quantification 

technique for cancer proteomics are also proposed. 

Conclusion: There is a dramatic increase in LFQ approaches in recent year, which significantly enhance the 
diversity of the possible quantification strategies for studying cancer proteomics. 

Keywords: Cancer proteomics, label-free quantification, target discovery, anticancer drug, computation, mass spectrometry. 

1. INTRODUCTION 

 The primary therapeutic targets for most anticancer drugs (both 
approved and in clinical trial) are proteins [1-4]. There are millions 
of distinct proteins in human cells, which requires the qualitative 
and quantitative analyses of proteome to discover target for anti-
cancer drugs [5]. Quantitative proteomics is thus developed to de-
tect protein concentrations in a variety of experimental samples by 
integrating cutting-edge analytical technique with computational 
algorithms [6]. This technique has contributed to the understanding 
of tumor genesis and development [7-9]. In preclinical anticancer 
drug discovery, proteomics has unique advantages in understanding 
the interaction mechanism between drug and target and illustrating 
the molecular process underlying studied phenotypes [10-12]. Tu-
morigenesis and metastasis have been found to be closely associ-
ated with the dynamics of large protein network [13-15], which 
make quantitative proteomics greatly attractive to anticancer drug 
discovery [16]. So far, the proteomics has evolved into a powerful 
tool and been increasingly adopted by cancer-related research [17-
19]. In particular, it has been adopted to characterize the functional 
proteins driving malignancy transformation [20], trace large-scale 
protein alteration induced by anticancer drug [21], and discover the 
innovative targets and first-in-class drugs for oncologic disorder 
[22, 23]. 
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 The large-scale protein concentrations and expressions required 
in the cancer proteomics studies drive the fast development of 
quantitative proteomics, and the qualitative technique is often found 
to be limited in illustrating the full landscape of complex biological 
processes [6]. Protein expression intensities can then facilitate the 
identification of potential biomarkers by analyzing differential ex-
pression proteins between patients and control subjects [24, 25]. 
These biomarkers are very useful for choosing the appropriate anti-
cancer therapeutic targets [25-27]. Till now, various established, 
clinical trial or investigative targets of anticancer drugs have been 
discovered (directly or indirectly) by quantifying the proteome at 
the level of both cancer cells and tumor tissues [13, 27]. These re-
markable advances have significantly and effectively accelerated 
the discovery process of anticancer drugs [5, 28]. 

 Diverse quantitative techniques have been employed to quantify 
the proteins which thereby facilitated the discovery of proteomics 
biomarker of drug targets for therapeutic developments [23, 29], 
which included label-free approaches [30-32] and labeling ap-
proaches (e.g. isobaric [33-35] or isotopic labeling [36-38]). Com-
pared with the proteome quantitation based on labeling approaches, 
the label-free proteome quantitation (LFQ) approach demonstrates 
the advantages of allowing a simultaneous detection of proteome 
without the time and money-consuming procedure for preparing 
experimental samples by introducing stable isotopes [39]. Moreo-
ver, LFQ is capable of processing the large cohort of samples [7] 
and treating the wide range of sample sources [40, 41]. These dis-
tinguishing features make it the most frequently employed pro-
teome quantification in cancer proteomics [30, 42-44]. For exam-
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ple, mass spectrometry-based on liquid chromatography (LC-MS) 
was adopted for conducting LFQ to study the stem cells of colon 
cancer and discover a key regulator of drug resistance [45-48]. 
Moreover, LFQ has been applied to identify the activator of human 
mutant ERα as potential therapeutic targets for the treatment of 
breast cancer [49]. 

 Although the extensively expanded application of LFQ to the 
various aspects of current anticancer researches, many great chal-
lenges still existed in this research sphere [13, 50-52]. In particular, 
low precision [53] (substantial change of the detected concentra-
tions among replicates), poor reproducibility [39, 54] (low robust-
ness among identified markers) and inaccuracy [55-58] (extensive 
deviation from presumed protein abundance) of the LFQ have been 
recognized as key “technical challenge” in the discovery of targets 
and drugs for treating cancer. All the issues may be attributed to 
several factors, which included (a) extremely large dynamic range 
of protein abundances [59], (b) large-scale drift of protein peaks of 
mass spectrometry (MS) platforms [6], (c) variations among in-
strumental runs [6, 58] and (d) divergences of different experimen-
tal preparations [60]. To address these above issues, mass spec-
trometry (MS) and several computational approaches (such as 
quantification tool, transformation, normalization and missing value 
imputation strategies) were developed and extensively employed 
for LFQ analyses [7], and were especially applied to identify diag-
nostic, prognostic, and therapeutic biomarkers for anticancer drug 
discovery [3, 7, 61]. 

 In this article, the most recent computational progressions in the 
application of LFQ to cancer proteomics studies were systemati-
cally described and critically assessed from multiple perspectives. 
First, a variety of popular acquisition techniques and state-of-the-art 
quantification tools are comprehensively discussed and evaluated. 
Then, a variety of processing approaches including transformation, 
normalization, missing values filtering and imputation are subse-
quently discussed, and their impacts on improving performances of 
LFQ on current cancer proteomics are evaluated. Finally, future 
directions for enhancing computation-based LFQ technique for 
cancer proteomics are also proposed. 

2. MASS SPECTROMETRY APPLIED TO CANCER PRO-

TEOMICS 

 Anticancer drug discovery is substantially accelerated by MS-
based techniques, and two complementary approaches for such 

analyses of proteins (bottom-up and top-down) are of great impor-
tance [62]. Bottom-up approach has been adopted to discover pro-
tein biomarkers for cancer diagnosis and treatment, which is found 
to yield a larger number of protein markers than the top-down one 
[63]. It has been successfully used to identify protein candidates 
differentiating breast cancer stem cells from normal ones [64], and 
discover the protein fingerprint indicating cancer subtypes [65] and 
homeostasis [66]. However, there is a significant loss of protein 
intensities information by bottom-up approach [67]. To cope with 
this problem, the top-down approach is proposed [68]. The top-
down approach aims at identifying proteins together with post-
translational modifications (PTMs) [69]. PTMs are found to be very 
important in tumorigenesis and cancer development, and the top-
down approach has been widely utilized to identify markers and 
analyze the efficacies of anticancer drugs [70-72]. 

 To acquire the raw protein quantification data for cancer re-
search, two modes of the acquisition have been developed, which 
include the data-dependent (DDA) and the data-independent (DIA) 
acquisitions [7]. The DDA detects each ion-precursor by intensity, 
and the DIA implements a complete record of samples [7]. For the 
proteins quantification based on DDA, the peak intensity and spec-
tral counting were two mainly relative quantification methods [73]. 
The approach of peak intensity quantification relies on to extract 
the intensity from MS1 full scan [74]. The label-free approach 
based on the MS2 quantification depends heavily on the total 
amount of protein identified [75]. MS1 is the first stage of MS and 
MS2 is the second stage of MS. It is shown that spectral counting 
quantifications are extensively efficient for relatively quantify the 
cancer proteomics data since they can be used to process the dataset 
specifically collected for discovery [75]. Moreover, as one of the 
new DIA-based methods, the all theoretical MS acquired by se-
quential window acquisition (SWATH-MS) is constructed for over-
coming DDA problems. To give a comprehensive review, their 
advantage and disadvantage in cancer proteomics study are dis-
cussed as the following, and three modes of acquisition applied in 
cancer proteomics together with their representative quantification 
tools were illustrated in Fig. 1. 

 The amount of sampled proteins is restricted by the processes of 
MS/MS sampling [76], but the MS is not capable of acquiring MS 
spectra of high quality for the large-scale proteins in specific sam-
ples [77]. DDA is reported to induce great compromise in MS sen-
sitivity [78]. Recently, several DIA mass spectrometric methods, 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Three modes of acquisition used in cancer proteomics together with their representative quantification tools. 
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like SWATH-MS, HDMSE (high definition MSE), AIF (all-ion 
fragmentation), were established and circumvent the problems of 
DDA methods [7]. However, the application of DDA for LFQ is 
reported to be highly dependent on several key factors such as low 
robustness induced by insufficient sampling and false identification 
[79]. 

 As one of the most popular DDA-based approaches, peak inten-
sity provides extended dynamic range and better accuracy than 
spectrum counting [80], and, for higher resolution machines, the 
protein concentration assessment using peak intensity is reported to 
be more accurate [81]. However, the precision of approaches based 
on peak intensity is undermined for low-resolution MS due to sig-
nificant amounts of thermal noise [82, 83]. Moreover, the intensity-
based approach may be limited by its time-consuming analytical 
process, since the corresponding quantification tools are not devel-
oped [84]. Another popular DDA-based method is spectral count, 
which is the favorable label-free approach for the MS of moderate 
resolution [85, 86]. It demonstrates the best robustness of biomarker 
discovery [87] and optimizes the total protein identification [83]. 
However, the spectral count may result in insufficient sampling 
when protein concentrations are changed greatly [88, 89]. 

 As new emerging technique [40, 90], SWATH-MS has become 
increasingly popular by offering enhanced quantification and im-
proved detection of protein intensities compared with conventional 
methods adopted for analyzing cancer proteomics data [32, 90, 91]. 
It has emerged as a powerful and effective approach for discovering 
therapeutic targets [14, 90] and drugs [32, 92, 93] for treating can-
cer. Moreover, this technique has been used to construct an assay 
library for profiling cancer proteomics data [94], and recognize 
alterations induced by anticancer drugs [95, 96]. However, the 
quantification of cancer proteomics data by SWATH-MS has been 
found to suffer from inaccuracy [55, 97, 98] and limitation in the 
dynamic range [90], which should be carefully considered during 
the LFQ of proteomics data [99]. 

3. QUANTIFICATION TOOL APPLIED TO CANCER PRO-

TEOMICS 

 Over the past decade, a number of quantification tools have 
been developed to analyze cancer proteomics data, which contain 
both freely accessible software tools and the commercial ones. 
These tools are the software packages equipped with different sets 
of statistic algorithm for processing cancer proteomics data ac-
quired by a variety of modes. So far, 18 quantification tools popular 
in pre-processing proteomics raw data acquired by 3 modes of 
acquisition have been developed, which are described as follow. 
List of these tools (SWATH-MS, Peak Intensity and Spectral 
Counting) are illustrated in Table 1. 

3.1. Tools Pre-processing the Cancer Proteomics Data Acquired 

by Multiple Modes of Acquisition 

 Three quantification software tools capable of pre-processing 
the data acquired by multiple modes of acquisition are available, 
which include MaxQuant, MFPaQ and Scaffold. All three tools are 
able to process the data acquired by both peak intensity and spectral 
counting. 

 MaxQuant shows advantages of integrating popular algorithms 
for quantify proteins from high resolution MS-based instrument and 
enabling match of protein across different samples [100]. Nowa-
days, MaxQuant is one of the most frequently adopted software for 
analyzing cancer proteomics data [101, 102]. It is widely used to 
analyze tandem spectra generated by the collision-induced (CID), 
high-energy collisional (HECD) and electron-transfer (ETD) disso-
ciation [103] in the cancer proteomics. MaxQuant is used for ana-
lyzing the cancer proteomics derived from relative quantification 
techniques, including label-free quantification [102], labeling read-
outs from the level of MS1 and MS2 [104]. It was used to identify 

differentially expressed proteins across NSCLC cells and study 
dysregulated cellular processes in prostate cancer [105]. 

 MFPaQ is popular for quantifying the cancer proteomics data 
and is implemented under the condition of Mascot server and Perl 
program environment [106]. It can extract peak intensity from MS 
proteomics data based on Extract Daemon Module (EDM),  which 
is a key feature distinguished from other label-free quantification 
tools [107]. MFPaQ is a tool capable of assisting the identification 
outputs of Mascot and providing various functions on assessing 
protein intensities [108]. It quantifies protein concentrations from 
the raw data files acquired using LC-MS/MS [108] and has been 
applied to large-scale study on inflammatory endothelial cell [107]. 
So far, it has been widely used to quantify membrane proteins from 
primary human endothelial cells [108], and identify novel drug 
targets for metastatic breast cancer [109]. 

 Scaffold is a commercial bioinformatic tool providing high 
accuracy on protein identification via applying various statistical 
methods [110]. It supports various search engines and provides 
multiple approaches for validating the accuracy of peptides/proteins 
identification from primary databases [111]. Scaffold has been ap-
plied to reveal NS4B-cyclophilin A interaction as a new drug target 
for the treatment of yellow fever virus infection by inhibiting their 
replications [112]. Moreover, it has also been used to analyze the 
follicle fluid proteome to identify the related pathways that are 
beneficial to the embryo quality [113]. Furthermore, it has been 
adopted to identify the effects of cadmium exposure on the gill 
proteome of Cottusgobio [114]. 

3.2. Tools Pre-processing the Cancer Proteomics Data Acquired 
Based on SWATH-MS 

 As a freely accessible quantification tool for processing MS-
based raw cancer proteomics data acquired by data-independent 
acquisition (DIA) [77], the DIA-UMPIRE is extensively functional 
for the untargeted protein quantification using the SWATH-MS 
based proteomics dataset obtained via Orbitrap family of MS, and is 
capable of extracting quantitative data according to proteins discov-
ered in just one sample set [115]. Thus, this tool is capable of get-
ting robust protein quantification across various sets of samples 
[77]. Compared with the traditional tools of data-dependent acquisi-
tion (DDA) [116], this software has been widely applied to discover 
the similar amount of proteins with greatly improved discovery 
robustness among various samples. Moreover, it has been fre-
quently applied to process untargeted data for identifying host cell 
proteins [117] and to export the peptide identification results of 
pseudo-MS2 spectra [118]. 

 OpenSWATH is high-throughput, open-accessible and auto-
mated software tool ensuring a comprehensive analysis of cancer 
proteomics based on the acquisition mode of SWATH-MS [119]. 
Particularly, its language of programming is C++, and it is designed 
as able to work across different platforms, which supports the 
analysis of dataset from a variety of software developers and is 
integrated and distributed together with OpenMS [7]. It has been 
frequently adopted to process bacterial proteomics dataset [119] 
and estimate q-values of protein level [120]. Its generic utility for 
all types of modification and its scalability enable confident quanti-
fication of post-translational modifications in DIA-based large-
scale studies [120]. 

 Among these commercial quantification tools aiming at proc-
essing raw MS data based on DIA technique, the PeakView demon-
strates unique advantages of integrating most of the in-silico proc-
essing algorithms and offers certain functions of statistical analyses 
[73, 121]. In particular, this quantification tool is capable of select-
ing these appreciate transitions or protein ions for quantifying the 
complex proteome by filtering the basic ion library based on corre-
sponding parameter settings [90], Currently, PeakView has 
emerged as a powerful quantification tool for processing cancer 
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Table 1. Eighteen quantification tools popular in pre-processing proteomic raw data acquired by 3 modes of acquisition. 

Quantification 

Tool 

Tool Type (Lan-
guage) 

Operating 

System 

Type of Input 

(File Format) 
Developer References 

(1) SWATH-MS 

DIA-Umpire 
Open Source (edit-

able Java) 

Windows; 

Linux; OSX 

MS2 

(mzXML; wiff) 
University of Michi-

gan 

Nat Methods. 

12:258-64, 2015 

OpenSWATH 
Open Source (edit-

able C++) 
Windows; Linux 

MS/MS 

(mzML; traML) 
ETH Zurich 

Nat Biotechnol. 

32:219-23, 2014 

PeakView 
Commercial (un-

editable) 
Windows 

LC-MS/MS 

(wiff) 
SCIEX 

Sci Data. 

1:140031, 2014 

Skyline 
Open Source (edit-

able C#) 
Windows 

LC/MS 

(mzXML; pepXML) 

University of Wash-

ington 

Bioinformatics. 

30:2521-3, 2014 

Spectronaut 
Commercial (un-

editable) 
Windows 

HTRMS 

(raw) 
Biognosys 

Mol Cell Proteomics. 

14:1400-10, 2015 

(2) Peak Intensity 

MaxQuant 
Open Source (edit-

able C#) 
Windows; Linux 

MS1/MS2 

(raw) 
Max-Planck Institute 

Nat Protoc. 

11:2301-19, 2016 

MFPaQ 
Open Source (edit-

able Perl) 
Windows; Linux 

LC-MS/MS 

(dat) 
IPBS Toulouse 

Mol Cell Proteomics. 

6:1621-37, 2007 

OpenMS 
Open Source (edit-

able C++) 

Windows; 

Linux; OSX 

MS1/MS2 

(dat; mzXML) 

University of Tübin-

gen 

Nat Methods. 

13:741-8, 2016 

PEAKS 
Commercial (un-

editable) 
Windows 

LC-MS/MS 

(raw; wiff) 
Bioinformatics Solu-

tions 

Mol Cell Proteomics. 

11:111.10587, 2012 

Progenesis 
Commercial (un-

editable) 
Windows 

LC-MS 

(mzXML; mzML) 

University of Liver-

pool 

OMICS. 

16:489-95, 2012 

Proteios SE 
Open Source (edit-

able Java) 

Windows; 

Linux; OSX 

MS1/MS2 

(mzML) 

Wellcome Trust Ge-

nome Campus 

Nucleic Acids Res. 

45:1100-6, 2017 

Proteome Discov-

erer 

Commercial (un-
editable) 

Windows; Linux 
MS1/MS2 

(raw) 
Thermo Fisher 

J Proteome Res. 

10:3840-3, 2011 

Scaffold 
Commercial (un-

editable) 
Windows 

Thermo SCIEX 

(raw; wiff) 
Proteome Software 

Proteomics. 

10:1265-9, 2010 

(3) Spectral Count 

Abacus 
Open Source (edit-

able Java) 

Windows; 

Linux; OSX 

MS 

(fasta) 

University of Michi-

gan 

Proteomics. 

11:1340-5, 2011 

Census 
Open Source (edit-

able Java) 

Windows; 

Linux; OSX 

MS1/MS2 

(pepXML; mzXML) 
Scripps 

Bioinformatics. 

30:2208-9, 2014 

DTASelect 
Open Source (edit-

able Perl) 
Windows 

LC/MS/MS 

(fasta) 
Scripps 

J Proteome Res. 

1:21-6, 2002 

IRMa-hEIDI 
Open Source (edit-

able Java) 
Windows 

LC-MS/MS 

(dat) 
Fondation Rhône-

Alpes Futur 

Bioinformatics. 

25:1980-1, 2009 

 

(Table 1) Contd.... 
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Quantification 

Tool 

Tool Type (Lan-
guage) 

Operating 

System 

Type of Input 

(File Format) 
Developer References 

MaxQuant 
Open Source (edit-

able C#) 
Windows; Linux 

MS1/MS2 

(raw) 
Max-Planck Institute 

Nat Protoc. 

11:2301-19, 2016 

MFPaQ 
Open Source (edit-

able Perl) 
Windows; Linux 

LC-MS/MS 

(dat) 
IPBS Toulouse 

Mol Cell Proteomics. 

6:1621-37, 2007 

Scaffold 
Commercial (un-

editable) 
Windows 

Thermo SCIEX 

(raw; wiff) 
Proteome Software 

Proteomics. 

10:1265-9, 2010 

 

proteomics data, especially in the fields of diagnostic, prognostic, 
and therapeutic biomarkers identification [90]. For example, it was 
applied to fulfill enrichment analysis of N-linked glycoproteins 
[122], evaluate the sample volume needed for SWATH-MS analy-
sis [123] and identify methods used for extracting green algae 
[124]. 

 The freely accessible quantification tool Skyline can not only 
be useful for processing the datasets acquired by three reaction 
monitoring techniques (selected (SRM), multiple (MRM) and paral-
lel (PRM)), but also is capable of analyzing SWATH-MS data and 
targeted DDA data based on MS1 quantification information [124]. 
This tool can facilitate targeted cancer proteomics study [125-128]. 
So far, it has been applied to the protein quantifications of targeted 
cancer proteomics [129], including the proteomics profiling of dif-
ferent cancer cell lines [18], discovery of certain proteins associated 
with pancreatic cancer [130] and prediction of drug responses to 
anticancer therapeutic targets [131]. 

 Another widely applied quantification tool for targeted analysis 
of DIA measurement is the Spectronaut, which is designed for tar-
geted analysis of DIA measurement based on SWATH-MS inde-
pendent of mass spectrometer [116, 132]. It is very powerful in 
peak picking and automatic interference correction utilizing specific 
spectral library, which was mainly produced in the data acquisition 
across different MS analysis platforms, and specifically applied to 
support the workflow without a spectral library and targeted analy-
sis of OMICs data by hyper reaction monitoring [7, 73]. It is widely 
applied to DIA-based quantitative protein profiling [116], pro-
teomics quantifications enhanced by sequential window acquisi-
tions [73] and retention time prediction in targeted DIA analysis 
indexed by high-precision [132]. 

3.3. Tools Pre-processing the Cancer Proteomics Data Acquired 

Based on Peak Intensity 

 As freely accessible quantification software for processing MS-
based raw cancer proteomics dataset, OpenMS has robust and high-
throughput characteristics and is thus suitable for analyzing cancer 
proteomics dataset with improved reproducibility [104]. It supports 
processing procedures by submitting various standardized MS raw 
dataset formats and provide a well access interface [133]. It is 
widely applied to the quantitative and variant enabled mapping of 
protein to genome [134], analyses of cerebrospinal fluids proteome 
in Alzheimer's disease [135], identification of key proteins involved 
in the microbial-host interaction based on label-free LC-MS data 
[136] and screening of altered plasma proteins expression in colo-
rectal cancer [137]. 

 PEAKS is a software platform with a complete solution for the 
discovery proteomics, which conducts the identification of proteins 
using protein de novo sequencing searching engine approaches 
[138]. It can efficiently estimate the optimal protein sequence due 
to their fragment ions can well reflect the peaks in tandem MS 
spectrum based on a dynamic programming [139]. It has emerged 
as a powerful software for identification and quantification of pro-
tein from cancer proteomics dataset [138]. It matured into a 

comprehensive proteomics platform supporting the analysis of 
label-free and labeling based proteomics dataset. Compared with 
other quantification software, PEAKS stands out by generating the 
high accuracy and sensitivity in protein quantification [140]. 

 As a commercial tool for processing MS-based raw cancer pro-
teomics data, the Progenesis has emerged as the new generation of 
bioinformatics vehicle targeting small molecule analysis for both 
metabolomics and proteomics, which quantifies protein concentra-
tions by MS1 ion intensity [141]. It supports parameter settings to 
align peak ion signals across different runs [142]. It provided the 
function of protein label-free quantification and ion detection based 
on a high sensitivity algorithm, which can be suitable for data with 
noise [143]. Nowadays, Progenesis has been widely applied for 
cancer proteomics study, including the identification of potential 
serum biomarkers for improving the diagnostic accuracy of ovarian 
cancer [144] and discovery of potential biomarkers associated with 
NSCLC which are possibly regarded as drug targets for drug-
induced cell apoptosis [145]. 

 Proteios SE is free and open source quantification tool, which 
can process two types of cancer proteomics data [146]. During the 
whole process of cancer proteomics quantification using this tool, it 
allows not only the identification of proteins using search engine 
approaches but also provides the continuous annotations as well as 
quantitation data [147]. This tool has become the standard analysis 
platform for analyzing cancer proteomics data due to the character-
istics of shared data and tracking samples. More importantly, it 
provides links which automatically access various proteomics proc-
essing procedures [148], and enlarges coverage of proteins via sup-
porting identification based on a variety of common search engines, 
and automatically generates the proteins identification reports con-
taining the information required for publication of proteomics re-
sults [149]. These advantages make it widely adopted by various 
aspects of cancer proteomics, including identification of potential 
portraits or differential expression proteins for breast cancer [150]. 

 By providing the workflow-driven analysis of the cancer pro-
teomics dataset, Thermo Proteome Discoverer automatically com-
pletes multiple processing procedure [151], such as the tandem MS 
spectrum extraction, protein identification and quantification [152]. 
It has a convenient graphical user interface [153]. The users can 
directly submit the MS raw (Thermo) data from instrument, and this 
tool allows the identification and quantification of proteins via mul-
tiple search engines [154]. It is suitably applied to diverse quantifi-
cation techniques (iTRAQ, TMT and SILAC) [155, 156]. Proteome 
Discoverer has been applied for studying the effect of ERBB2 gene 
expression of on gastric cancer [157]. 

3.4. Tools Pre-processing the Cancer Proteomics Data Acquired 
Based on Spectral Count 

 Abacus is an open source tool for processing proteomics data 
[96]. Compared the protein quantification based on the MS1 peak 
intensity, it extracts and processes spectral count from MS/MS 
spectrum for label-free proteome quantification [158]. The abacus 
mainly focused on providing a streamlining, automatic analysis and 
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user-friendly workflow for protein quantification by spectral count 
[159]. The convenient and efficient quantification workflow gener-
ated quantification report or result that is well suitable for the 
downstream bioinformatic analysis [158]. However, this method 
also has the shortcoming such as missing information because of 
analysis abounding spectra numbers based on relatively small sets 
of differential spectrums, and it is widely applied in cancer pro-
teomics studies [158] to identify biomarkers or therapeutic targets 
for improving survival hormone-refractory prostate cancer [160]. 

 As commercial quantification tool for protein quantification 
based on the spectral count, Census not only can process the shot-
gun cancer proteomics data with label-free but also is available for 
various stable isotope labeling experiments [161]. Wide coverage of 
quantification strategies and multiple statistical algorithms for im-
proving quantification quality makes it differentiated most from 
other spectral count quantification tools [162]. Census can be used 
for identifying altered expression proteins associated with drug 
treatment in Plasmodium falciparum [162] and investigating protein 
turnover using metabolic labeling strategy [163]. DTASelect is 
developed using Java language and can be applied to analyze and 
validate identification of the proteins which generated by tandem 
MS database search engine (SEQUEST) [164]. SEQUEST is one of 
the most widely applied proteins search engines [165]. The proce-
dures of DTASelect included filtering, establishing, visualization of 
a huge number of tandem mass spectra from a simple bio-sample 
[166]. This method focuses on the proteins of interest by eliminat-
ing the unlike identification and thus improving protein quantifica-
tion based the accuracy peptide data [166]. It makes more complex 
experiments feasible by streamlining data analysis [167], and it can 
be applied to a variety of cancer proteomics studies with a lower 
false positive [168] and identifying the large-scale palmitoylated 
proteins [169]. 

 IRMa toolbox is similar toDTASelect and can also analyze and 
validate the accuracy of protein identification, but protein identifi-
cation is generated from different Mascot search engines [170]. The 

IRMa can automatically filter inaccuracy identifications from the 
primary Mascot identification searching and ensure the accuracy of 
peptide identification with significantly low false discovery rate 
[32]. At the same time, it also provides the supporting of manual 
confirmation or elimination of peptide-spectrum matches (PSMs) 
[171]. Its main originality is to filter the matches rather than identi-
fied proteins and its features are easy navigation within identifica-
tion result and batch mode to automatically validate multiple results 
[171]. Filtered results based on IRMa needed to be processed using 
the in-house tool (hEIDI), which can make compilation, grouping 
and comparison of protein intensities across different samples 
[172]. IRMa-hEIDI has been widely used for investigating the rela-
tionship between triads and microtubules [173]. Moreover, the Pro-
teinProphet sets up a statistic package to compute the percentage of 
chances which proteins are available in the studied target [174]. 
ProteinProphet can be applied to filter the large-scale cancer pro-
teomics data with significantly reduced false-discovery rate [174]. 
It has been applied to differentiate the correct identification from 
the false one [175] and also used to calculate the possibility of a 
protein successfully identified [174]. 

3.5. Application of Quantification Tools in Cancer Immuno-

therapy 

 The immunotherapy is a very hot topic recently, especially for 
cancer treatment. There are many applications of proteomics on this 
topic. Especially, many quantification tools have been applied to 
this particular research direction. In particular, a variety of quantifi-
cation tools were frequently used to enhance effective cancer im-
munotherapy [176]. MaxQuant has been widely applied to investi-
gate the results of the protein or metabolite level of the studied 
inhibition of protein PC1/3 in macrophage, and identified the sup-
pression of this studied protein demonstrates significant potentials 
in applying to the discovery of novel immunotherapy for cancer 
patients [177]. Progenesis has been applied for investigating the 
allergen composition in certain crops for oral immunotherapy [178]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Data processing methods sequentially applied in cancer proteomics. 
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Thermo Proteome Discoverer has been used for identifying circu-
lating protein and antibody biomarker for personalized cancer im-
munotherapy [179]. 

4. PROCESSING METHODS IN CANCER PROTEOMICS 

 There are three types of processing methods currently devel-
oped for cancer proteomics (transformation, normalization, and 
missing value imputation). These methods are sequentially applied, 
which were illustrated in Fig. 2. Detailed description of those ap-
plied methods and their application in current cancer proteomic 
studies were further provided in the following sections. 

4.1. Data Transformation Applied for Processing Cancer Pro-

teomics Data 

 Before normalization, cancer proteomics data often need to be 
transformed [180]. Protein abundances in data matrix are found to 
be distributed in the right-skewed manner [180]. Thus, a proper 
usage of the transformation method is essential for resulting in a 
distribution of improved symmetry. In other words, transformation 
methods can make the distribution of protein intensities more nor-
mal and symmetric [181]. Currently, 4 transformation methods 
(Box-cox, Cube Root, Log and Power) frequently applied to proc-
ess the label-free proteomics data. Explanations on each method are 
provided in Table 2. 

 As a method capable of stabilizing variances of protein intensi-
ties, arcsine transformation is proposed by Snedecoret al, which is 
well suitable for processing proportion or percentages dataset which 
is not in normal but a skewed distribution [182]. The application of 
arcsine transform requires the total amount of trials to be the same 
for different data-point, but the effectiveness of this method for 
processing proportional data is highly susceptible to the size of 
samples [183, 184]. Moreover, the arcsine transformation will lead 
to extrapolation of the calculated values which cannot be sensitively 
detected in the anticancer research [185]. The method has been 
widely applied to process the datasets of both binomial and non-
binomial data and been used to enhance the understanding of 
LAR’s way regulating cell adhesion in proteomics data [186] and 
discover biomarkers closely associated with the process of the 

cryopreservation of fish sperm [187]. Moreover, a method with the 
ability of parametric power transformation aiming at getting rid of 
multiple anomalies [188], the box-cox transformation has received 
extensive researches and utilities to various cancer proteomics stud-
ies [188]. Moreover, the novel biomarkers and emerging therapeu-
tic targets towards several important hepatic diseases can be identi-
fied by box-cox through the examples of relevant omics datasets 
[188, 189]. 

 Mean and variance of the distribution using Nth power trans-
formation by substituting N=1/3 have been applied to treat the can-
cer proteomics data using the cube root transformation (CUB), 
which is primarily developed based on probability density function 
[190]. CUB has been used to improve the peak detection of pro-
teomics and quantifications of mass spectrometry-based cancer 
proteomics datasets that are mainly obtained from surface-enhanced 
laser desorption [191]. Additionally, a symmetric distribution prior 
to statistical analysis is generally acquired from the log transforma-
tion (LOG), which is suitable for the data that the residuals become 
bigger for values of the dependent variables [192]. Such tendency 
happens usually in the residuals due to errors or changes in the 
value of the result variable is usually a percentage of value instead 
of an absolute value [192]. The log transformation has been used to 
the cancer proteomics analyses of colorectal cancer patients and to 
quantify thousands of proteins among patients mainly with normal 
mucosa, primary carcinoma, and nodal metastases [192, 193]. 

 The normal linear model can be transformed through power 
transformation (POW) [194]. It usually possesses a series of func-
tions that can be applied to carry out a monotonic transformation 
[194] and is a powerful data transformation technique with the ca-
pacity of stabilizing variance [195]. This transformation converts 
the original data distribution into a normal one and further enhances 
and increases the association between alternating quantities and 
some alternative procedures of datasets stabilization [194]. This 
approach has been applied to quantitatively demonstrate how the 
observational data alters the findings derived from synthesized 
evidence from RCT [196]. It has also been used to relatively esti-
mate the protein intensities acquired by bottom-up MS information 
incorporating data [197]. 

Table 2. Five transformation methods currently available for LFQ-based cancer proteomics. 

Methods Abbr. 
Packages 

(Function) 
Brief Descriptions References 

Arcsine ARC 
metafor 

(transf.arcsine) 

The ARC can make variances more constant. For proportions or percentages data, 

ARC is often used. The numbers to be arcsine transformed must be in the range 0 to 1. 

J Cell Sci. 

29:2962-71, 2016 

Box-cox BOX 
AID 

(boxcoxfr) 

Box-Cox is used as a metric to quantify how normal or log-normal certain data. The 

Box-Cox fulfils the basic assumptions of linearity, normality and homoscedasticity 

simultaneously The LOG can be applied for heavilyleft-skewed data distributions 

The Statistician. 

41:169-178, 1992 

Cube 

Root 
CUB 

pamr 

(pamr.cube.roo) 

The CUB transformation is strong, which applied for right-skewed data and improves 

distribution of the data somewhat. For simple count data, CUB transform is often 

used. 

Chemistry. 

22:2501-6, 2016 

Log LOG 
metabolomic 

(LogTransform) 

The LOG is a special case of Box-Cox. The LOG is a relatively strong transformation. 

Difficulties with values with large relative standard deviation and zeros. The LOG 

was applied for right-skewed distribution. 

Anal Chem. 

84:10768-76, 

2012 

Power POW 
car 

(bcPower) 

Powertransformation technique can be widely applied for obtaining stable variances, 

which aimed at generating more normal distribution.Choice for square root is arbi-

trary.No problems with small values 

Atmos Environ.  

71:54-63, 1994 
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4.2. Data Normalization Applied for Processing Cancer Pro-

teomics Data 

 Systematic biases are reported to be prevalent in cancer pro-
teomics data due to the semi-stochastic property of DDA-MS 
method [198]. The normalization techniques can remove any excess 
technical variability and has gradually become popular in cancer 
proteomics[198]. Normalization has been widely considered as an 
integral part of LFQ for improving accuracies for relative protein 
quantification [198]. So far, 16 normalization methods have been 
developed and popular in analyzing cancer proteomics data. De-
tail explanations on each normalization method are provided in 
Table 3. 
 As the simplest approach regulating the proteomics variance, 
the auto scaling (ATO, unit variance scaling) can scale protein in-
tensities according to standard deviation of cancer proteomics 
dataset [199]. Such approach scales the protein intensities into unit 
variances, and all intensities are equally important and comparably 
scaled [200]. The data is analyzed on the basis of correlations and 
standard deviations of all intensities, but it is necessary to pay atten-
tion to the amplification of the analytical variations because of dilu-
tion effects [199]. This method has also been adopted to identify 
proteomics biomarkers for psoriasis and psoriasis arthritis [201] and 
normalize LC-MS proteomics data based on scan-level information 
[202]. 

 Based on the combination of MA-plots and logged Bland-
Altman plots obtained through the assumption of non-linear bias 
existences [199], the cyclic loess (CYC, cyclic locally weighted 
regression, ) is obtained to estimate regression surface using multi-
variate smoothing procedures [203]. But the time-consuming proc-
ess of cyclic loess should be carefully considered, and the consump-
tion of time rises exponentially with the increase in the total number 
of samples [204]. CYC has been applied to proteomics profiling in 
the context of common experimental designs for anticancer re-
search [205]. 

 The bias of unknown complexity from cancer proteomics data 
based on LC/MS can be removed by EigenMS (EIG), and the sensi-
tivity of differential analysis is improved [206]. EigenMS normali-
zation aims at preserving original difference while removing the 
bias from the data [207], and works via three steps [208]: (a) it 
retains true difference of proteomics data through evaluating an 
ANOVA model effectiveness; (b) the bias trends can be determined 
by singular value decomposition of residuals matrix; (c) a permuta-
tion test is used to estimate the number of bias trends as well as 
eliminating the bias trends. EIG has been applied in the profiling of 
MS-based quantitative label-free proteomics and LC-based pro-
teomics [209, 210]. 

 Each spectrum can be mapped to the baseline by linear baseline 
(LIN, linear baseline Scaling, ) based on the hypothesis of a 
constant linear relation between a given spectrum’s features and 
baseline [199]. Baseline refers to the median value of protein inten-
sities across the whole spectrum, and the factor of scaling is then 
calculated by assessing the percentage of mean protein concentra-
tion in the spectrum mean intensities [199]. Nevertheless, it may be 
oversimplified to assume a linear-type of correlation among sam-
ples [199]. 

 Two-color expression data are normalized by locally weighted 
scatterplot smoothing with compensation for non-linear dye-bias. In 
such method, the lowess fitted value can adjust the log-ratio for 
each sample [211], and the normalization hypothesizes that the 
appearance of dye bias relies on spot intensity [211]. This normali-
zation can be applied to complete or incomplete datasets and may 
be applied to a two-color array expression dataset [211]. This 
method has been used in MS-based cancer proteomics [209]. 

 Data can also be normalized by the mean normalization (MEA) 
using mean value of all signals to eliminate background effects 
[212]. The intensity of each protein in a given sample is adopted by 

the mean intensity of all variables in the sample [192]. To make the 
samples comparable, the means of intensities for each experimental 
run are forced to be equal to one another using this method [213]. 
Each sample is scaled such that the mean of all abundances in one 
sample equals one [192]. This method has been used in the profil-
ing of urine peptidome [214]. 

 Based on the assumptions that the samples of a dataset are sepa-
rated by a constant, median normalization (MED) is proposed to 
scale samples so that they have the same median [215]. For in-
stance, the median of protein intensities in the sample equals one 
[216]. The median normalization, the commonly used method 
without the need for internal standards, is more practical than sum 
normalization especially in these conditions where several saturated 
abundances may be related to the factors of interest [216]. It has 
previously been used in MS-based label-free proteomics analysis 
for removing those biases closely related to MS-based instruments 
[217]. 

 As a robust measure of the data spread, Median Absolute De-
viation (MAD) can be applied to evaluate the standard deviation of 
sample when scaled by the factor of 1.483, and it is a simple way to 
quantify variation [218]. Moreover, the quality control processes of 
proteomics data based on the peptide-centric LC-MS can be im-
proved by such approach, and this method has been used to im-
prove QC procedure of protein-centric LC/MS proteomics [218]. 
Moreover, the standard deviation of the sample can be utilized by 
Pareto scaling (PAR) as a scaling factor [199]. PAR is capable of 
reducing the weight of large fold changes in the protein intensities, 
which is more significant than auto-scaling [199]. However, as 
dominant weight, the extremely large fold changes may not change 
[199]. Therefore, the disadvantage of Pareto scaling is the sensitiv-
ity to the large fold changes [219]. The data based on the informa-
tion of scan-level can be applied to normalize LC-MS proteomics 
data in the Gaussian process regression model [202]. 

 Based on the systematic estimation of the most likely dilutions, 
the proteomics spectra can be transformed by probabilistic quotient 
normalization (PQN) [220]. In contrast to the normalization based 
on the integral and the vector length, PQN algorithm has been 
pointed out to have remarkable robustness and accuracy [220]. 
There are three steps in the procedure of PQN: (a) each spectrum 
should be integrally normalized, then a reference spectrum (median 
spectrum) will be selected; (b) calculate the quotients between ex-
perimental spectra and the control ones, then estimate median val-
ues of the quotients for each variable; (c) the median quotient can 
be used to divide the whole variables of the test spectrum. PQN has 
been applied in MALDI-TOF mass spectrometry knowledge dis-
covery [221]. 

 Equal distribution of the protein intensities crossing whole 
samples can be obtained by the quantile (QUA, quantile normaliza-
tion), and the quantile-quantile plots embedded in this method can 
be used to visualize the similarity of such distributions [199]. QUA 
is motivated by the idea that the distribution of two data vectors is 
equal if the quantile-quantile plot forms a straight diagonal line 
[216]. While a common and non-data driven distribution is gener-
ated by quantile normalization, an agreed standard could not be 
reached [216]. Systematic biases related to mass spectrometry and 
label-free proteomics can be removed by this method [217]. In ad-
dition, as a transference approach, robust linear regression (RLR) is 
used for rescaling one reference interval to another scale. RLR is 
more robust against the outliers in the data than linear regression 
using least squares estimation [207]. This method has been used to 
reduce plate effects from data of suspension bead array [222]. 

 Compared with other normalization methods widely applied to 
cancer proteomics data, Total Ionic Current can normalize pro-
teomics data based on estimating the sum of the whole peak intensi-
ties of proteins identical to a particular sample [223]. TIC assumed 
that all peptides/proteins are of the same importance in a specific 
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Table 3. Sixteennormalization methods currently availablefor LFQ-based cancer proteomics. 

Methods Abbr. Packages Brief Descriptions References 

Auto Scaling ATO Metabolomics 

This method scales all peptides/proteins to unit variance, and all proteins are the same 

important and comparably scaled. The disadvantage is that the method may be unsuitable 

when the assumption does not hold. 

Metabolomics. 

11:684–695, 2015 

Cyclic Loess CYC 
Limma 

Affy 

Cyclic Loess has thedisadvantage of time-consuming�especially for the large number of 

bio-samples or high-dimensional peptides/proteins features. 

Metabolomics. 

10:897-908, 2014 

EigenMS EIG DanteR 

EigenMS aims at preserving original differences and removing bias from data. It can 

preserve true differences by constructing statistic model compared with other normaliza-

tion methods. 

Brief Bioinform. 

19:1-11, 2018 

Linear 

Baseline 
LIN Affy 

LIN assumed that the peptides/proteins features are linear correlated in the specific bio-

samples. Thus, the EIG has may be unsuitable when the peptides/proteins features are 

not linear correlated. 

Metabolomics. 

8:146-160, 2012 

Locally 

Weighted 

Scatterplot 

Smoothing 

LOW LPE 

Lowess assumed that the variation was relied on peptides/proteins intensity. It is a non-

linear normalization method, and the log-ratios (intensity) was corrected via the fitted 

values. 

Nucleic Acids Res. 

30:e15, 2002 

Mean MEA 
mixOmics; 

Normalyzer 

Mean normalizes data by mean value of all signals to eliminate background effect. To 

make the samples comparable, the means of the intensities for each experimental run are 

forced to be equal to one another using this method. 

Plant Cell Rep. 

25:71-9, 2006 

Median MED 
Normalyzer 

mixOmics 

Median assumes that the samples of a dataset are separated by a constant. It scales the 

samples so that they have the same median, which is practical especially when several 

saturated abundances may be associated with some factors of interest. 

Bioinformatics. 

19:185-93, 2003 

Median 

Absolute 

Deviation 

MAD stats 
MAD is a robust normalization method based on the estimation on sample standard 

deviation. This method has advantage of processing asymmetric proteomics data. 

Bioinformatics. 

27:2866-72, 2011 

Pareto Scal-

ing 
PAR BioMark 

PAR can decrease the important of large fold change in the large peptides/proteins. Thus, 

it may be too sensitive to large fold change proteins. 

BMC Genomics. 

7:142, 2006 

PQN PQN 

KODAMA 

MALDIquant 

mQTL 

PQN had advance advantages of high robust and accuracy, which can normalize proteo-

mic data via choosing a specific reference sample as the median one. 

Anal Chem. 

78:4281-90, 2006 

Quantile QUA Normalyzer 

Quantile can make the distributions of peptides/proteins intensities be similarity across 

different MS runs. Its disadvantages generated large protein intensity values after nor-

malization. 

J Proteome Res. 

5:277-86, 2006 

Robust 

Linear 

Regression 

RLR Normalyzer 

RLR is used for transference when you want to rescale one reference interval to another 

scale. The robust linear regression is more robust against outliers in the data than linear 

regression using least squares estimation. 

J Proteome Res. 

15:3473-3480, 2016 

Total Ion 

Current 
TIC Normalyzer 

TIC assumed that all peptides/proteins are the same important in a specific bio-sample 

and generated lower peak intensities. Its disadvantages not suitable this situation when 

the assumption does not hold. 

Anal Chem. 

88:11568-74, 2016 

Trimmed 

Mean of M 

Values 

TMM edgeR 

TMM normalized proteomic data based on estimating relative protein peak intensity and 

often was incorporated bioinformatic analysis for identifying differential expression 

protein. 

BMC Genomics. 

17:28, 2016 

VSN VSN vsn 

VSN, a non-linear method, aims at maintaining variance constant across whole ranges. It 

performs linear transformation behavior to make variance unchanged and can reduce 

sample-to-sample variation and adjust variance of different proteins. 

Bioinformatics. 

18:S96-104, 2002 

Z-score ZSC mosaic 
ZSC normalizes data based on the mean and standard deviation and has the advantage of 

allowing comparison of proteomic data independent of raw protein abundances. 

Mol Cell Proteomics. 

8:2285-95, 2009 
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bio-sample and generated lower peak intensities after normalization 
[223]. It has been applied to MALDI- and SELDI-TOF mass spec-
tra proteomics profiling [224]. Moreover, as a popular normaliza-
tion method, trimmed mean of M values (TMM) is easy and effi-
cient to process the RNA-sequence data [225]. It can be used to 
estimate scaling factors among data and can be embedded in statis-
tic method [225], which is susceptible to the removal of genes of 
low-expression from the dataset in RNA-sequence data [225]. 

 Variance can be a constant over the whole data range by vari-
ance stabilization normalization (VSN), and it is well suitable for 
processing large feature values to remove the heteroscedasticity 
using the inverse hyperbolic sine [199, 226]. For small intensities, 
VSN performs linear transformations behavior to make the vari-
ances unchanged [199], which was originally developed as nor-
malization for the relative LFQ of endogenous peptide [199, 227]. 
Moreover, data can be normalized by Z-score normalization (ZSC) 
based on the mean and standard deviation [228]. ZSC offers an 
approach of data standardization as well as comparing the microar-
ray data which is independence of the intensities of original hy-
bridization [228]. Normalized data by such a method can be applied 
to directly calculate the remarkable changes between two distinct 
groups [229]. In addition, this method has been used in proteomics 
experiments based on LC-MS to assess the outcomes of data nor-
malization, which can decrease the possibility of the bias introduc-
tion and determine the suitable approach of normalization [230]. 

4.3. Missing Value Filtering & Imputation Applied for Process-
ing Cancer Proteomics Data 

 Cancer proteomics data are sparsely distributed [231], namely a 
typical proteomics data matrix contain many missing values in 
many cases [73]. Missing values can occur due to serval causes. For 
example, the concentration of proteins is lower compared to the 
detection limit of the instrument [232], the identification of the 
incorrect peptide [209], various biological factors or techni-
cal/analytical mistakes, or the missing peptide or proteins abun-
dances may not appear in the samples [209]. Thus, data filtering 
and missing value imputation strategies often are available for ad-

dressing these issues [232]. Currently, there are 6 imputation ap-
proaches that are often used to treat the missing values, including 
Bayesian Principal Component Imputation, Censored Imputation, 
K-nearest Neighbor Imputation, Local Least Squares Imputation, 
Singular Value Decomposition and Zero Imputation. A detail ex-
planation of each imputation method is provided in Table 4. 

 The condition of missing protein values due to the smaller con-
centrations in the samples can be stimulated by Background Impu-
tation (BAK) [233]. Missing values can be displaced with the low-
est values of the dataset, and the lowest values can be used to im-
pute the missing values [233]. Moreover, this method has been used 
in some cancer proteomics analysis software for label-free cancer 
proteomics quantification and imputation [73]. Moreover, as one of 
the most popular filtering method, Basic Filtering (filtered) has 
been integrated into proteomics analysis [73]. “Not missing at ran-
dom” mainly refers the proteins with not merely a missing value per 
particular sample group which contains 3 technical replicates in 
every dataset, which are filtered out to analyze the differential ex-
pression between the datasets [73]. While, as for the “missing com-
pletely at random”, there are no values imputed [73]. 

 As an imputation method, Bayesian Principal Component Im-
putation (BPCA) out-performs the KNN and SVD approaches. 
Compared to KNN and SVD, BPCA has the advantages of auto 
setting parameters of estimation, which makes BPCA easy to oper-
ate and perform well [233]. This method also produces improved 
estimation performance when the number of samples is huge [233]. 
In addition, this method has been used to process missing values of 
multivariable statistical analysis of proteomics data [233, 234]. 
Moreover, as “complete missing at random”, there is no values 
imputed for Censored Imputation (CEN) only when a single miss-
ing value for the given protein in sample group appears [73]. As for 
this situation, namely the given protein consisting of not merely one 
missing value in a sample group, this CEN strategy can address and 
impute the missing value due to lower concentration peptides or 
proteins based on lowest values in a specific proteomics data [73]. 
This method has been used to improve detection of differentially 
abundant proteins [235]. 

Table 4. Six missing imputation methods currently available for LFQ-based cancer proteomics. 

Methods Abbr. 
Packages 

(Function) 
Brief Descriptions References 

Bayesian Princi-

pal Component 
BPCA 

pcaMethods 

(bpca) 

The missing values are estimated based on a variant Bayes algorithm. 

The imputation strategy was well suitable for the large number of stud-

ied samples 

Malays J Med Sci. 

21:20-7, 2014 

Censored Imputa-

tion 
CEN 

imputeLCMD 

(impute.MAR.) 

The lowest intensity value in the data set was imputed for the missing 

values when were considered non- missing completely at random 

Brief Bioinform. 

doi: 10.1093, 2017 

K-nearest Neigh-

bor 
KNN 

imputation 

(knnImputation) 

VIM Packages 

(kNN) 

The missing values are estimated with a weighted average over k pro-

teins. The k most similar proteins were found by k-nearest neighbors 

algorithm. 

BMC Bioinformatics. 

17:247, 2016 

Local Least 

Squares 
LLS 

pcaMethods 

(llsImpute) 

The missing values are estimated with least squares regression as a 

linear combination of the values of these k proteins. 

Bioinformatics. 

21:187-98, 2005 

Singular Value 

Decomposition 
SVD 

pcaMethods 

(svdImpute) 

The missing values are estimated based on a linear consideration. This 

most significantly expressed eigenproteins were applied for linear 

regression 

Proc Natl Acad Sci. 

97:10101-6, 2000 

Zero  ZER 
imputeLCMD 

(impute.ZERO) 

The missing values are estimated as zero not consideration using above 

algorithms 

Nucleic Acids Res. 

34:1608-19, 2006 
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 K proteins analogous to proteins with missing values can be 
identified by K-nearest Neighbor Imputation (KNN). Euclidean 
distance measure can be used to estimate the similarity between the 
proteins, and the values from weighted average of the neighboring 
proteins can be used to impute the missing values [233]. The meth-
ods based on KNN have the capacity to select the most similar pro-
teins with expression profiles to the desired proteins to impute 
missing values, and as for the relatively small size samples, KNN 
presents some advantages compared to BPCA and LLS [233]. This 
method has been used in integrative analysis of omics data [236]. 
Moreover, Local similar structures together with the optimization 
treatment by least squares in the given data can be exploited by 
Local Least Squares Imputation (LLS) [233]. LLS can impute the 
missing values based on three mainly procedures: (1) choosing N 
most similar proteins by k-nearest neighbors, (2) making a linear 
regression based on these N proteins and (3) estimating the missing 
values via the least squares algorithm [237]. This method has been 
utilized in the treatment of missing values for data with the form of 
matrix, such as NGS data [237, 238]. 

 Singular Value Decomposition (SVD) is an imputation method 
based on a linear relationship across different peptides or proteins 
of a specific sample [239]. Compared with KNN using the local 
pairwise information from proteins expression, SVD forecasts the 
missing values mainly through the global information acquired 
from the whole matrix [239]. SVD contributes accuracies in quanti-
tative comparisons of protein intensity levels [232, 240]. Moreover, 
displacing missing values with zeros (zero imputation) was re-
garded as the simplest among above-described methods. The ZER 
is not dependent on any information about the data [240]. In reality, 
the incorrect or inappropriate relation among the proteins can be 
generated because of human factors when imputing, which nega-
tively impact integrity and usefulness of the data [240]. This 
method has been used in the analysis of experiments using isobaric 
tagging based on quantitative proteomics [241]. 

CONCLUSION 

 High-throughput mass spectrometry technology has been de-
veloped to mature the analytical platform for qualitative and quanti-
tative analyses of proteins. The large-scale protein differential ex-
pressions analysis not only can facilitate to identify the potential 
biomarkers for the cancer diagnosis and treatment, but also provide 
the new insights into molecular mechanisms underlying disease 
process and development. Moreover, these potential markers may 
be possible to be chosen the most suitable anticancer therapeutic 
targets for improving the prognosis and survival time of cancer 
patients.  Recent advances in computation methods of LFQ signifi-
cantly enhance the diversity of possible quantification strategies for 
studying cancer proteomics, and many processing approaches in-
cluding transformation, normalization, filtering and imputation and 
their impacts on improving LFQ performance of cancer proteomics 
are discussed and evaluated 

PROSPECTS 

 It is expected that incremental improvements of data acquisition 
techniques (DDA and DIA) and emerging of advanced computation 
methods (quantification tool and data processing) can significantly 
improve the proteomics analysis. Those tremendous advances dis-
cussed above could make MS-based proteomics more widely ap-
plied to identify diagnostic, prognostic, and therapeutic biomarkers 
for anticancer drug discovery. 

LIST OF ABBREVIATIONS 

AIF = All-ion Fragmentation  

CYC = Cyclic Locally Weighted Regression  

DIA / DDA = Data-independent / dependent Acquisition  

KNN = K-nearest Neighbor  

LFQ = Label-free Proteome Quantification  

Log = Logarithmic  

MS = mass spectrometry  

MS1 = the first stage of mass spectrometry  

MS2 = the second stage of mass spectrometry  

RLE = Relative log expression  

SVD = Singular Value Decomposition  

TMM = Trimmed Mean of M Values  

VSN = Variance Stabilization Normalization 
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