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Assessing the performance of MM/PBSA and
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Entropy effects play an important role in drug–target interactions, but the entropic contribution to

ligand-binding affinity is often neglected by end-point binding free energy calculation methods, such as

MM/GBSA and MM/PBSA, due to the expensive computational cost of normal mode analysis (NMA).

Here, we systematically investigated entropy effects on the prediction power of MM/GBSA and MM/

PBSA using 41500 protein–ligand systems and six representative AMBER force fields. Two computation-

ally efficient methods, including NMA based on truncated structures and the interaction entropy

approach, were used to estimate the entropic contributions to ligand–target binding free energies. In

terms of the overall accuracy, we found that, for the minimized structures, in most cases the inclusion

of the conformational entropies predicted by truncated NMA (enthalpynmode_min_9Å) compromises the

overall accuracy of MM/GBSA and MM/PBSA compared with the enthalpies calculated based on the

minimized structures (enthalpymin). However, for the MD trajectories, the binding free energies can be

improved by the inclusion of the conformation entropies predicted by either truncated-NMA for a

relatively high dielectric constant (ein = 4) or the interaction entropy method for ein = 1–4. In terms of

reproducing the absolute binding free energies, the binding free energies estimated by including the

truncated-NMA entropies based on the MD trajectories (DGnmode_md_9Å) give the lowest average abso-

lute deviations against the experimental data among all the tested strategies for both MM/GBSA and

MM/PBSA. Although the inclusion of the truncated NMA based on the MD trajectories (DGnmode_md_9Å)

for a relatively high dielectric constant gave the overall best result and the lowest average absolute

deviations against the experimental data (for the ff03 force field), it needs too much computational time.

Alternatively, considering that the interaction entropy method does not incur any additional computa-

tional cost and can give comparable (at high dielectric constant, ein = 4) or even better (at low dielectric

constant, ein = 1–2) results than the truncated-NMA entropy (DGnmode_md_9Å), the interaction entropy

approach is recommended to estimate the entropic component for MM/GBSA and MM/PBSA based on

MD trajectories, especially for a diverse dataset. Furthermore, we compared the predictions of MM/GBSA

with six different AMBER force fields. The results show that the ff03 force field (ff03 for proteins and gaff

with AM1-BCC charges for ligands) performs the best, but the predictions given by the tested force fields

are comparable, implying that the MM/GBSA predictions are not very sensitive to force fields.
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Introduction

Both chemical thermodynamics and kinetics play essential
roles in drug–target interactions, in which the thermodynamics
determines how tight a drug binds to its target, while the
kinetic process, usually characterized by drug–target residence
time,1,2 determines how long a drug binds with its target.
Increasing attention has been focused on the determination of
drug residence times in recent years,3–5 and numerous studies
have shown that the drug residence time of a drug is highly
correlated with its binding affinity,6–8 suggesting that, besides
the high kinetic barrier of the ligand–receptor interaction which
keeps the ligand bound (enhancing the koff value), tight binding
(deep energetic basin or high binding affinity of the ligand–
receptor interaction) is also needed to enhance the drug–target
residence time (or drug efficacy).2 Therefore, it is essential to
accurately predict the binding affinity of a drug to its target. In
past decades, numerous binding affinity estimation methods,
from the theoretically simplified but computationally cheaper
scoring functions for molecular docking to the theoretically
rigorous but time-consuming alchemical approaches, have been
proposed and used in solving various problems.9–12 Roughly, the
binding free energy calculation methods can be divided into
two categories, that is, pathway-based methods and end-point
methods.13 The pathway-based methods are usually conducted
directly with molecular dynamics (MD) simulations (that is, all
the parameters are derived from the original simulations), where
the system can be driven from one thermodynamic state to
another by physical (such as umbrella sampling14 and meta-
dynamics15 that usually use the drug–target distance or protein
conformational change as the sampling pathways16–21) or non-
physical pathways (such as alchemical methods of free energy
perturbation (FEP)22–25 and thermodynamic integration (TI)26

that use a series of non-physical intermediate states to connect
one state and another27–29). Different from the pathway-based
methods, the end-point methods, including most scoring func-
tions of molecular docking, the semi-empirical method of
linear interaction energy (LIE),30,31 and implicit solvent based
methods such as Molecular Mechanics/Generalized Born
Surface Area (MM/GBSA) and Molecular Mechanics/Poisson
Boltzmann Surface Area (MM/PBSA),32,33 only sample the con-
formations for the initial and final states (free and bound
states) and then calculate the free energy difference between
the two states with different post-processing strategies. The
pathway-based methods are generally more theoretically rigorous
than the end-point methods, whereas, they are more time-
consuming as well, which hinders the large-scale practical applica-
tions of the pathway-based methods. Therefore, the end-point
methods represented by the MM/GBSA andMM/PBSA approaches,
which employ a more physically meaningful framework than
docking scoring functions,32 are more promising to be used in
the era of ‘big data’, such as for virtual screening.

In the theoretical framework of MM/GBSA and MM/PBSA, the
free energy can be split into several components, including the
gas-phase potential energy, the polar and non-polar solvation
free energies, and the entropy upon ligand–receptor interactions,

which can be calculated independently based on the conforma-
tions extracted from the produced MD trajectories. The potential
energy can be computed by molecular mechanics (MM) based on
different force fields. The polar solvation free energy can be
calculated by using either a Generalized-Born (GB) model or the
Poisson–Boltzmann (PB) equation. The entropy is usually esti-
mated by normal mode analysis (NMA). In the past decade,
MM/GBSA and MM/PBSA may be the most popular methods for
large-scale binding free energy calculations due to their accept-
able accuracy, relatively low computational cost, and widely applic-
able scopes,34 such as for small-ligand-protein systems,35–42

protein–protein systems,43–45 and protein–RNA/DNA systems,46–48

which represent almost the whole interaction-omics of life science.
In practice, many applications using MM/GBSA and MM/PBSA
simply neglect the entropy change of protein–ligand binding due
to the extremely expensive computational cost and relatively low
prediction accuracy of NMA.49

Nevertheless, numerous attempts for accurately predicting
entropy have been carried out by methods ranging from using
post-processing approaches50–54 to the simulation-synchronized
methodologies.55–57 For instance, Genheden et al. have shown
that it may be a feasible method to use the truncated structures
for the NMA entropy calculation to save computational cost.50

And the same group also showed that most entropy estimation
methods besides NMA can hardly converge even with a very
long simulation time (such as 1 ms),53,58 which hinders their
applications in practice. To speed up the estimation of entropy
with ligand–receptor interactions, Duan and co-workers recently
proposed a new entropy estimatingmethod called the interaction
entropy calculation, where the entropy can be derived directly
from the partition function of the ligand–receptor interactions
and represents the fluctuations of the energetic components
upon ligand–receptor interactions during MD simulations.52,59

Moreover, by using the Clausius–van’t Hoff method, Sharp
calculated the molecular entropy with temperature integration
and found that this method can give results consistent with the
Boltzmann-quasiharmonic60 method.55 Choi et al. estimated the
hydration entropy of a set of organic molecules with the free
energy perturbation (FEP) method,56 where the electrostatic and
hydrophobic parts of the hydration entropy were estimated by
the temperature-based finite difference method and the scaled-
particle theory, respectively, and a high correlation (r2 4 0.8)
between the predicted hydration entropies and the experimental
data was observed. Gyimesi and colleagues provided a method to
calculate the conformational entropy based on the structure
ensemble regarded as a continuous space and treated with the
Gaussian mixture function,57 and they found that this method is
effective in discriminating structures with little conformational
entropy difference. However, most reported entropy calculation
methods need hundreds of nanoseconds simulation time to
precisely estimate the entropies and are only tested on a set of
small molecules with at most several hundreds of atoms, and
thus may be not feasible for the entropy calculations for more
complicated systems such as drug–target systems.

As far as we know, until now, no comprehensive analyses
have been reported to recommend persuasive guidelines for
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entropy calculations with MM/GBSA and MM/PBSA. Therefore, in
this study, by using various calculating protocols, we systematically
investigated the entropy effects onMM/GBSA andMM/PBSA based
on a dataset with more than 1500 protein–ligand systems. Two
entropy calculating methods, including NMA based on truncated
structures (referred to as truncated NMA) and the interaction
entropy method (referred to as IE), were used in our analyses
because these two methods are computationally efficient and do
not need too many parameters to be set up. The whole study is
organized as follows: (1) to test whether the conformational
entropies calculated by truncated NMA are stable and accurate, we
compared the NMA entropies (NMEs) based on the 9 Å-truncated
structures and the whole structures of 99 kinase systems; (2) we
evaluated the impact of the entropy changes for protein–ligand
binding predicted by truncated NMA and IE on the predictions
of MM/GBSA andMM/PBSA using41500 crystal structures under
three calculating conditions (different force fields, dielectric
constants, and simulation protocols); (3) to examine the system
dependence of the calculation methods, we analyzed the entropy
effects on the three largest protein families in our dataset
(kinases, HIV proteases, and thrombin-like proteins).

Materials and methods
Dataset preparation

1508 systems derived from the refined PDBbind database61–63 were
used for the evaluation, and they are all metal-free protein–ligand
complexes with the sequence length of the proteins less than 1000
(the PDB codes and the corresponding experimental data are listed
in Table S1 in the ESI†). The antechamber and tleapmodules in the
amber14 simulation package64 were used to prepare the initial
systems.65 Due to the relatively high computational speed and
good performance of binding free energy calculations,66 the AM1-
BCC charges (AM1 with bond charge corrections)67 for each small
molecule were calculated and used in the following calculations.
The general Amber force field (gaff, version 1.7)68 was used to
parameterize the small molecule ligands. Six different Amber force
fields were used for the proteins, including ff0269 (with ipol = 0,
namely, the non-polarized version, which performs the best for the
protein–protein systems for MM/GBSA calculations),43 ff0370

(which performs the best for the protein–ligand systems for MM/
GBSA calculations),66 ff99,71 ff99SB,72 ff99SBildn,73 and ff14SB (the
latest force field in amber14).74 All the residues were protonated
according to the default parameters in antechamber (for example
the HIS residue was parameterized to HIE and CYS involved in a
disulfide bond was replaced by CYX). Counterions of Na+ and Cl�

were added to neutralize the redundant charges of the protein–
ligand complexes. Each protein–ligand complex was immersed in
a cuboid TIP3P water box75 extended by 10 Å out of the boundary
of the solute.

Molecular mechanics (MM) minimizations and molecular
dynamics (MD) simulations

As shown in our previous study, compared with long-time
MD trajectories, the minimized structures and short-time MD

trajectories may give a better prediction accuracy for both
MM/PBSA and MM/GBSA.49,66 Thus, here, molecular mechanics
(MM) minimization and 1 ns MD simulation were performed
for each system (6 force fields � 1508 systems). For both MM
minimization and MD simulation, the cutoff of the nonbonded
interactions (van der Waals interaction and short-range
electrostatic interaction) was set to 10 Å and the long-range
electrostatic interactions were handled by the PME (particle
mesh Ewald) algorithm.76 All the MM minimizations and MD
simulations were performed with the pmemd and pmemd.cuda
modules in amber14, respectively.

In the stage of MM minimization, the following four-step proce-
dure was employed: (1) all the hydrogen atoms were relaxed for
1000 steps with all the heavy atoms restrained at 5 kcal mol�1 Å2

(500 cycles of steepest descent and 500 cycles of conjugate gradient
minimization); (2) the heavy atoms in the protein and ligand were
restrained at 5 kcal mol�1 Å2 and the other atoms were free to move
(500 cycles of steepest descent and 500 cycles of conjugate gradient
minimization); (3) only the heavy atoms in the backbone of the
protein were restrained (5 kcal mol�1 Å2) with the other atoms set
free (500 cycles of steepest descent and 500 cycles of conjugate
gradient minimization); and (4) the whole system was released
and minimized for 5000 steps (1000 cycles of steepest descent and
4000 cycles of conjugate gradient minimization).

In the stage of MD simulation, all the covalent bonds between
the heavy atoms and the hydrogen atoms were constrained with
the SHAKE algorithm.77 Another three-step MD simulation was
performed for each system: (1) each system was at first heated
from the minimized structure in an NVT ensemble, where the
temperature was increased from 0 to 300 K within 250 ps with the
backbone atoms of the protein restrained at 2 kcal mol�1 Å2; next,
the system was equilibrated for another 250 ps in an NPT
ensemble (P = 1 atm and T = 300 K) with the heavy atoms in
the protein backbone restrained as well (2 kcal mol�1 Å2); finally,
1 ns MD simulation was carried out for each system in the NPT
ensemble without any restraints. The time step was set to 2 fs, and
the time interval for data collection was set to 5 ps (200 snapshots
were collected for each system in each force field).

End-point binding free energy calculations

The end-point binding free energy including MM/GBSA and
MM/PBSA in conjunction with two entropy estimating methods
(truncated NME and IE) was calculated for each system. The
formulas for calculating the end-state binding free energies and
their decomposed energetic components are shown in eqn (1)–(4),
where the total binding free energy (DGbind) represents the free
energy difference between the bound-state complex (Gcom) and the
free-state individuals of the receptor and the ligand (Grec + Glig)
(eqn (1)). According to the second law of thermodynamics, DGbind

can be decomposed into the enthalpy part (DH) and the entropy
part (�TDS) (eqn (1)). Here, the enthalpies were calculated by
MM/GBSA and MM/PBSA, and the entropies were estimated with
NMA and IE. The calculation details can be found below.

DGbind = Gcom � (Grec + Glig) = DH � TDSE DEMM + DGsol � TDS
(1)

PCCP Paper

Pu
bl

ish
ed

 o
n 

02
 M

ay
 2

01
8.

 D
ow

nl
oa

de
d 

by
 Z

he
jia

ng
 U

ni
ve

rs
ity

 o
n 

4/
24

/2
02

0 
3:

05
:1

6 
PM

. 

View Article Online



This journal is© the Owner Societies 2018 Phys. Chem. Chem. Phys., 2018, 20, 14450--14460 | 14453

DEMM = DEinternal + DEele + DEvdW (2)

DGsol = DGpol + DGnp (3)

DGnp = gDA + b (4)

Enthalpy calculations with MM/GBSA and MM/PBSA

As shown in eqn (1), the enthalpy part can be further expressed
as the summation of the molecular mechanical energy (DEMM)
and the solvation free energy (DGsol), where DEMM is composed
of the intra-molecular energy (DEinternal, including the bond,
angle, and dihedral energies of the system), the electrostatic
energy (DEele), and the van der Waals interactions (DEvdW)
(eqn (2)). In this study, DEinternal can be exactly canceled
because the single MD trajectory protocol is used in the
MM/GBSA and MM/PBSA calculations. The solvation free
energy (DGsol) is also composed of two parts, namely the polar
part (DGpol) and non-polar (DGnp) part (eqn (3)), where DGpol is
usually computed by the Generalized Born (GB) model or by
solving the Poisson–Boltzmann (PB) equation, while DGnp is
estimated by the solvent accessible surface area (SASA)-based
approach. Here, the modified GB model developed by Onufriev
(GBOBC1 with the default radii)78 and the radii optimized by Tan
(PBpbsa)79 were used for the MM/GBSA and MM/PBSA calcula-
tions, respectively, as these models performed well in our
previous study.49,66 A series of interior dielectric constants
(ein = 1–4 with the interval 0.5) were used for the MM/GBSA
calculations, while three different interior dielectric constants
(1, 2, and 4) were used for the MM/PBSA calculations. It should
be noted that, in this study, we did not try to use all the
calculation protocols for the MM/PBSA calculations because
MM/PBSA performs worse than MM/GBSA in all cases in our
previous studies.49,66,80–82 The exterior dielectric constant was
set to 80 and the ionic strength was set to 0. As for the non-
polar part of the solvation effect (DGnp), DGnp was calculated by
eqn (4) with the LCPO algorithm based on SASA (DA),83 where g
and b were set to 0.0072 and 0, respectively. All the MM/GBSA
(including 6 force fields) and MM/PBSA (only for the ff03 force
field) calculations were carried out based on the minimized
structures and the 1 ns MD trajectories (200 frames).

Conformational entropy calculations based on NMA

NMA was used for the conformational entropy calculations.
To save computational resource, truncated structures were
employed to calculate the NMA conformational entropies
(truncated NMEs), where a cutoff of 9 Å extended out of the
ligand boundary was set to truncate the proteins, and the whole
residue is incorporated into the corresponding truncated struc-
ture if any heavy atom in this residue is located within the
truncation sphere. All the discontinuous residues were treated
as charged terminals (–NH3+ or –COO�), and the whole trun-
cated system was re-treated by the tleap module in amber14 to
generate the initial coordinates and parameters. The maximum
optimizing steps and convergence condition were set to 10 000
and 1 � 10�4, respectively. The truncated NMEs were calculated
for all the minimized structures (6 force fields) and the MD

trajectories of the ff03 force field (including 1508 systems,
with the snapshot interval of 10, namely, 20 frames for each
system). In addition, this method has also been carried out
for kinase systems of the other 5 force fields (including 99
systems for each force field). Moreover, to give a comparison,
we also calculated the NMEs of the full-length MD structures of
kinases based on the ff03 force field (referred to as full-length
NME, 20 frames for each system). All the parameters of the
full-length NME calculations were similar to those of the
truncated ones.

Interaction entropy calculations

The newly developed entropy calculation method (called inter-
action entropy, IE) developed by Duan et al.52 was also used for
calculation of the binding free energy. In the spirit of IE, it can
be derived from the partition function of the gas-phase ligand–
receptor interactions (the derivation process can be found in
ref. 52) and represents the fluctuations of ligand–receptor inter-
actions during MD simulations. Eqn (5) shows the components
for calculating IE, where hi represents the ensemble average of
the ligand–receptor interactions, and DEele and DEvdW are the
electrostatic and van der Waals interactions between the ligand
and receptor, respectively. b, K, and T are the inverse of the
temperature (1/kT), the Boltzmann constant, and the simula-
tion temperature (300 K), respectively. Note that the calculation
of IE incorporates electrostatic interactions (DEele) which vary
according to the choice of interior dielectric constants. All the
IEs were computed based on the 1 ns MD trajectories.

�TDS = KT lnheb(DEele+DEvdW)i (5)

Results and discussion
Validation of truncated NME calculations

Genheden et al. have shown that the truncation of a whole
protein–ligand complex into a sphere will not markedly affect
the predicted conformational entropies.50 However, they only
compared the relative conformational entropies for the 8–16 Å
truncated structures using 18 ligand–receptor complexes. Thus,
we do not know the absolute difference of the conformational
entropies for a full-length structure and a truncated one. In
order to answer this question, we calculated the NMEs based
on the full-length and the 9 Å-truncated structures (using
Genheden’s procedure50 without a fixed buffer region) for 99
kinases contained in our dataset due to their feasible sequence
length for NMA (230–360 amino acids). As shown in Fig. 1A, a
high Pearson correlation (rp = 0.86) is observed between the NMEs
predicted by these two calculation strategies, where the slope of the
regression line is close to 1 (blue solid line in Fig. 1A) and 81
systems (81.8%) with 95%-confidence error-bars cover the baseline
of the absolute entropy difference (red dotted line in Fig. 1B),
suggesting that the truncation strategy can be used in large-scale
NME calculations. Thus, the following NMEs were calculated based
on the 9 Å-truncated structures for all the minimized structures
with 6 force fields (1508 systems � 1 frame � 6 force fields)
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and MD structures with the ff03 force field (1508 systems �
20 frames � 1 force field).

Entropy effects on the performance of MM/GBSA and MM/PBSA

Fig. 2 summarizes the results of the current issues of wide
concern on the performance of MM/GBSA, including entropy
effects, force field effects, and dielectric constant effects. Panels
A–C in Fig. 2 show the rp-based heat maps (Pearson correla-
tion coefficient) of the entropy effects, force field effects, and
dielectric constant effects (only the dielectric constants of 1, 2,
and 4 are shown) on MM/GBSA. To clearly explore the depen-
dence of the dielectric constants on the performance of
MM/GBSA for each simulation protocol, linear illustrations

are shown in panels D–G in Fig. 2 as well. Detailed discussion
is given below:

The entropy effects on MM/GBSA

Here, we added two entropy terms (IE and truncated NME) for
the MM/GBSA calculations (IE was calculated based on the
1 ns MD trajectories and NME was estimated based on the
9 Å-truncated minimized structures for 6 force fields and
1 ns MD trajectories for the ff03 force field) and the corres-
ponding binding free energies are termed DGinteraction_entropy,
DGnmode_min_9Å, and DGnmode_md_9Å, respectively. To give a
comparison, the enthalpies based on the minimized structure
and the 1 ns MD trajectory were also calculated for each system

Fig. 1 Correlation between the full-length NMEs and the 9 Å-truncated NMEs (panel A) and the entropy difference of the two calculation strategies
(entropy_difference = NME9Å � NMEfull-length, panel B), where all the errors were estimated from 95% confidence of the standard errors of the mean
(s.e.m). The combined s.e.m is shown in panel B.

Fig. 2 Overall accuracies of MM/GBSA results based on various calculation protocols. Comparisons of the force fields and entropies on the
performance of MM/GBSA are shown in the style of heat map in panels A–C (corresponding to dielectric constants of 1, 2, and 4, respectively). To
capture the full impacts of the various simulation protocols on the performance of MM/GBSA, a comparison is also shown in line form in panels D–G
(which correspond to the enthalpies of the minimized structures (enthalpymin), enthalpies of the MD trajectories (enthalpymd), binding free energies based
on 9 Å-truncated NMEs of the minimized structures (DGnmode_min_9Å), and binding free energies based on IEs of the MD trajectories (DGinteraction_entropy),
respectively). Note that the all-dataset truncated NMEs were only performed for the ff03 force field, thus no line form was shown of DGnmode_md_9Å. All
the data reported here are Pearson correlation coefficients between the predicted binding affinities (enthalpy or binding free energy) and the
experimental data. The detailed data and the corresponding standard deviations are illustrated in Table S2 (ESI†).
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(termed as enthalpymin and enthalpymd, respectively). As shown
in each column in Fig. 2A, at the low interior dielectric constant
(ein = 1), DGinteraction_entropy performs the best among the
five calculation strategies for each force field (enthalpymin,
enthalpymd,DGinteraction_entropy,DGnmode_min_9Å, andDGnmode_md_9Å),
where rp reaches up to nearly or higher than 0.4 and is higher
than the corresponding rp resulting from the minimized struc-
tures (enthalpymin). With the increase of the solute dielectric
constant, the overall accuracy of MM/GBSA increases remark-
ably for each calculation strategy (Fig. 2D–G). However, the
increase of the solute dielectric constant attenuates the advan-
tage of the IE effect on the accuracy of MM/GBSA because the
calculation of IE is associated with the electrostatic effects that
can be attenuated by the increase of the solute dielectric
constant (eqn (5)). Nevertheless, for a relatively high interior
dielectric constant (ein = 4), the accuracy of the IE-based binding
free energies (DGinteraction_entropy) is still higher than the corres-
ponding MD-based enthalpies (enthalpymd) for each force field
(Fig. 2C), suggesting that MM/GBSA can benefit from the
addition of IEs in the MD-based binding free energy calcula-
tions. Compared with IEs, the addition of the truncated NMEs
does not have obvious impact on the overall accuracy of
MM/GBSA for the minimized structures (DGnmode_min_9Å)
in most cases, but shows benefit for the MD trajectories
(DGnmode_md_9Å), where the rps improves markedly with the
increase of dielectric constant (Fig. 2C). Thus, when estimating
binding affinities for a diverse dataset, we do not recommend
to include NME for MM/GBSA calculations for the minimized
structures, whereas, we recommend to include IE for any
dielectric constant calculations and NME for high dielectric
constant (such as ein = 4) calculations for the MD trajectories.

The force field effects on MM/GBSA

Our previous work has shown that the ff03 force field may be
the best choice for MM/GB(PB)SA.66 However, this conclusion is
made based on the analyses of a small dataset with only 5 drug
targets in complex with 46 small molecules, and therefore the
result may be biased by the limited dataset. To further validate
this issue, 6 force fields were used for the MM/GBSA calcula-
tions based on the 1508 complexes. As shown in Fig. 2D–G, the
ff03 force field (green lines) always performs the best across all the
tested force fields for each calculation strategy at any dielectric
constant, though little discrimination is shown for each force field
at a relatively high dielectric constant (0.586–0.593 for enthalpymin,
0.558–0.571 for enthalpymd, 0.574–0.586 for DGinteraction_entropy,
and 0.569–0.587 for DGnmode_min_9Å at ein = 4). The results
indicate that the ff03 force field may be the best choice for
the MM/GBSA calculations based on short-time MD simula-
tions (or the minimized structures), but the other force fields
are also reasonable as they can give comparable results com-
pared with the ff03 force field as well (especially at a relatively
high dielectric constant).

The entropy effects on MM/PBSA

In addition to the calculation of the binding free energies with
MM/PBSA without considering the entropic contribution

(the case of enthalpy), MM/PBSA performs worse than
MM/GBSA in many aspects such as ranking the binding free
energies for a set of diverse drug–target complexes80 or deriva-
tives targeting the same target.49,66 To investigate the entropy
effects on the performance of MM/PBSA, we calculated the
binding free energies with the above illustrated five strategies
(enthalpymin, enthalpymd, DGinteraction_entropy, DGnmode_min_9Å,
and DGnmode_md_9Å). To save computational cost, the MM/PBSA
calculations were only carried out for the ff03 force field
because this force field performs the best among the 6 tested
force fields in the MM/GBSA calculations. As shown in Fig. 3,
the rp of the enthalpies calculated based on the minimized
structures (enthalpymin, red bar) is lower than that based on the
1 ns MD trajectories (enthalpymd, blue bar) at each dielectric
constant (ein = 1, 2, and 4) and is consistent with our previous
study.80 As for the impact of the truncated NMEs on MM/PBSA
for the minimized structures, the rps of DGnmode_min_9Å (orange
bars in Fig. 3) are all worse than the enthalpy based on the
minimized structures (enthalpymin, red bars in Fig. 3) at the
tested dielectric constants, implying that, similar to MM/GBSA,
inclusion of the truncated NMEs cannot improve the MM/PBSA
results, either, for a diverse dataset with the minimized struc-
tures. For the MD trajectories, although the inclusion of NME
makes the prediction accuracy worse at a low dielectric con-
stant (such as for ein = 1, the cyan bar is much lower than the
blue bar, Fig. 3), it is encouraging to see that the predictions
could gain benefit from the addition of NME at a relatively high
dielectric constant (ein = 4, the cyan bar is a bit higher than
the blue bar). Besides, consistent with the MM/GBSA results,

Fig. 3 Pearson correlation coefficients of the MM/PBSA results based on
various calculation protocols (enthalpies of the minimized structures
(enthalpymin, red bar), binding free energies based on 9 Å-truncated NMEs
of the minimized structures (DGnmode_min_9Å, orange bar), enthalpies of the
MD trajectories (enthalpymd, blue bar), binding free energies based on
9 Å-truncated NMEs of the MD trajectories (DGnmode_md_9Å, cyan bar), and
binding free energies based on IEs of the MD trajectories (DGinteraction_entropy,
green bar)). The ff03 force field was used for the comparison (rp = 0.561,
0.557, and 0.538 for DGinteraction_entropy, DGnmode_md_9Å, and enthalpymd,
respectively, at ein = 4). The detailed data and the corresponding standard
deviations are illustrated in Table S3 (ESI†).
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the addition of IEs can improve the MM/PBSA results as well at
each dielectric constant (green bar in Fig. 3), indicating that IE is
feasible for use in MM/PBSA binding free energy calculations
based on MD trajectories. Nevertheless, although remarkable
improvement has been achieved by adding IE to the MM/PBSA
calculations, the resulted rps are still lower than the corresponding
results provided by MM/GBSA (such as 0.559 versus 0.586 for MM/
PBSA and MM/GBSA, respectively, at ein = 4). Thus, to a large
extent, MM/GBSA may be a more suitable option for end-point
binding free energy calculations (especially for a diverse dataset).

Capability to reproduce the absolute binding free energy for
each strategy

Beside analyzing the Pearson correlation between the five strate-
gies, we also compared the capability of MM/GBSA and MM/PBSA
to reproduce the absolute binding affinity for the investigated
strategies based on the ff03 force field. As illustrated in Table 1,
consistent results are shown for MM/GBSA and MM/PBSA for all
the calculating strategies, where the binding free energies esti-
mated based on theMD trajectories (DGnmode_md_9Å) give the lowest
absolute deviation on average compared with the other methods
for both MM/GBSA and MM/PBSA. The reason why the average
absolute deviations of the binding free energies calculated by the
minimized structures (DGnmode_min_9Å) are larger than the corres-
ponding DGnmode_md_9Ås may be attributed to the fact that the
optimized single structure can always give the lowest global energy,
which usually leads to the tightest binding between the ligand
and receptor. Compared with the average absolute deviation of
DGnmode_md_9Ås, the average absolute deviations of DGinteraction_entropy

are larger and increase markedly with the increase of the solute
dielectric constant. This is because the IE algorithm decreases
the electrostatic effect (eqn (5)) with the increase of the solute
dielectric constant. Therefore, taken as a whole, in terms of
reproducing the absolute binding affinities, the NME-MD based
method (DGnmode_md_9Å) can give the best results for both
MM/GBSA and MM/PBSA, though it still largely overestimates
the binding affinities compared with the experimental data.

System dependence of the entropy effects on the performance
of MM/GBSA

Numerous studies have shown that system dependence prevails
for almost all ligand–target binding estimation methods,
from the high-speed docking scoring approaches to the time-
consuming alchemical approaches.80,84,85 Thus, here, we also
explored the system dependence of the entropy effects on the

performance of MM/GBSA for several representative drug targets
such as kinases (99 samples), HIV proteases (178 samples), and
thrombin-like proteins (173 samples), which take up toB30% of
the systems in the dataset.

The entropy effects on kinases

Fig. 4 summarizes the entropy effects on the performance of
MM/GBSA for the kinase systems, where the NMEs based on the
full-length structures were only computed for the ff03 force
field (purple line in Fig. 4A) because it performed the best
among the 6 tested force fields. As shown in Fig. 4, to a large
extent, the tendency of the entropy effects varies from each
other in different force fields and calculation strategies. How-
ever, consistent results are observed at a low dielectric constant
(ein = 1), where the MM/GBSA calculations with the addition of
entropies (including NMEs and IEs; orange, cyan, purple, and
green lines) perform worse than the corresponding results
based on the minimized structures (red line) and the MD
trajectories (blue line) for all the tested force fields. With the
increase of the dielectric constant, different entropic effects
exhibit for different force fields. In addition to the ff03
force field (6 calculation strategies were compared, Fig. 4A),
although the binding free energies with the full-length NMEs
(DGnmode_md_full-length, purple line in Fig. 4A) are better than
those calculated with the 9 Å-truncated NMEs (DGnmode_md_9Å,
cyan line in Fig. 4A), the full-length NMEs still perform worse
than the MD-based enthalpies (enthalpymd, blue line in
Fig. 4A). And similar results are also observed for the three
ff99 based force fields (ff99, ff99SB, and ff99SBildn force fields),
where the cyan lines are all lower than the corresponding blue
lines (panels D–E in Fig. 4). In addition, other consistent results
are observed for the binding free energies calculated with
the truncated NMEs based on the minimized structures
(DGnmode_min_9Å, orange lines in Fig. 4), where all the orange
lines are lower than the corresponding red lines. Thus, all the
above data implies that, in most cases, the addition of NMEs
cannot improve the prediction accuracy of MM/GBSA for the
kinases systems. Nevertheless, DGnmode_md_9Å performs well for
the ff02 and ff14SB force fields at a relatively high dielectric
constant (ein = 4). Moreover, although the performance of
DGinteraction_entropy (green lines in Fig. 4) is not satisfactory,
either, even at a relatively high dielectric constant (ein = 4), the
ff03 (Fig. 4A) and ff99SBildn (Fig. 4F) force fields perform the best
among the tested strategies and the rps with DGinteraction_entropy

based on the ff14SB, ff99, and ff99SB force fields (green lines)
are also higher than (or comparable to) the corresponding
enthalpies calculated based on the MD trajectories (enthalpymd,
blue lines). In summary, considering the calculation of IEs will
not incur any additional computational resource, it seems
feasible to add IEs to the MD-based MM/GBSA calculations
with the above recommended force fields (except the ff02 force
field) for the kinase systems.

The entropy effects on HIV proteases

Compared with the kinase systems, very consistent results
are observed for the HIV proteases for the four calculating

Table 1 Average absolute deviations between the experimental data and
the MM/GB(PB)SA results based on the ff03 force field (kcal mol�1)

ein

MM/GBSA MM/PBSA

1 2 4 1 2 4

Enthalpymin 42.2 43.2 43.8 36.7 40.9 43.7
Enthalpymd 35.1 38.1 39.7 31.9 37.4 40.3
DGnmode_min_9Å 20.8 21.0 21.7 22.6 20.1 21.6
DGnmode_md_9Å 14.7 16.0 17.4 17.6 16.1 18.0
DGinteraction_entropy 22.4 28.9 33.4 21.6 28.3 34.0
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strategies with the 6 tested force fields (Fig. 5). For example,
DGinteraction_entropy (green lines in Fig. 5) always performs the

best among the four calculation strategies at ein = 1 among all
the tested force fields. Besides, the truncated NMEs also show a

Fig. 5 Entropy effects on HIV proteases (178 systems). Pearson correlation coefficients are used for the comparison, where binding free energies based
on IEs (DGinteraction_entropy), 9 Å-truncated NMEs with minimized structures (DGnmode_min_9Å), and enthalpies based on the minimized structures
(enthalpymin) and the MD trajectories (enthalpymd) are shown by green, yellow, red, and blue lines, respectively. The detailed data and the corresponding
standard deviations are illustrated in Table S5 (ESI†).

Fig. 4 Entropy effects on kinases (99 systems). Pearson correlation coefficients are used for the comparison, where binding free energies based on IEs
(DGinteraction_entropy), 9 Å-truncated NMEs with minimized structures (DGnmode_min_9Å) and the MD trajectory (DGnmode_md_9Å), and enthalpies based on the
minimized structure (enthalpymin) and the MD trajectories (enthalpymd) are shown with green, yellow, cyan, red, and blue lines, respectively. Full-length
MD-based NMEs (DGnmode_md_full-length) were only used for the ff03 force field (purple line in panel A). The detailed data and the corresponding standard
deviations are illustrated in Table S4 (ESI†).
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positive effect on improving the performance of MM/GBSA for the
HIV protease systems, where the orange lines (DGnmode_min_9Å) are
always higher than the corresponding red lines (enthalpymin).
These results mean that the entropic contribution is necessary for
the drugs binding to the HIV protease, and it has been validated
by numerous studies that the ligand binding to the HIV protease
is an entropy-enthalpy process.86–88 Nevertheless, the rps of all the
tested strategies are lower than 0.3, meaning that it is still urgent
to develop system-specific calculation strategies for the worse-
performing systems.

The entropy effects on thrombin-like proteins

Similar to the HIV protease systems, very consistent results
are observed for the thrombin-like proteins for the four calcu-
lation strategies with the 6 force fields (Fig. 6). However,
unfortunately, the entropic contributions exhibit negative
effects on the performance of MM/GBSA in all cases (i.e. rp of
DGnmode_min_9Å o DGinteraction_entropy o enthalpymd o enthalpymin

at ein = 4 for all the tested force fields), meaning that the currently
widely used entropy calculation methods may be not suitable
for thrombin-like proteins. The deep reason may be attributed
to the surface-located binding sites of the thrombin-like pro-
teins (Fig. S1, ESI†), which need low conformational change
when binding with a ligand, thus leading to lower confor-
mational entropies that cannot be effectively captured by
entropy calculation approaches. Thus, it depends, whether to
incorporate entropy effects into the end-point binding free
energy calculations, where entropic contributions may be
necessary for the systems with deep or flexible binding pockets

(such as kinases and HIV proteases) and less important for the
systems with surface-located active sites (such as thrombin-like
proteins).

Conclusion

In this study, we comprehensively investigated the entropy
effects on the performance of the MM/GBSA and MM/PBSA
approaches. Although the NMEs calculated with the truncated
structures are quite consistent with those calculated with the
full-length structures, NMA performs worse and cannot improve
the accuracy of MM/GBSA and MM/PBSA in most cases for the
minimized structures. Thus, one should be cautious of estimat-
ing ligand-binding free energies with NMA when using the
minimized structures. Different from the results of NMEs on
the minimized structures, for the MD trajectories, the inclusion
of the truncated NMEs can improve the performance of both
MM/GBSA and MM/PBSA results at a relatively high dielectric
constant (ein = 4) compared with the MD-based enthalpies
(enthalpymd), but the calculation of NMEs based on MD trajec-
tories needs much more computational resource. Compared
with NMEs, the addition of IEs can reasonably improve the
performance of MM/GBSA and MM/PBSA at a low dielectric
constant (ein = 1) for any simulation strategy and can also
totally defeat the enthalpy results based on the MD trajectories
(enthalpymd) for any dielectric constant. Considering the
calculation of IEs does not incur additional computational cost,
we recommend to calculate end-point binding free energies with
IEs based on MD simulations. Nevertheless, system dependence

Fig. 6 Entropy effects on thrombin-like proteins (173 systems). Pearson correlation coefficients are used for the comparison, where binding free
energies based on IEs (DGinteraction_entropy), 9 Å-truncated NMEs with minimized structures (DGnmode_min_9Å), and enthalpies based on the minimized
structures (enthalpymin) and the MD trajectories (enthalpymd) are shown by green, yellow, red, and blue lines, respectively. The detailed data and the
corresponding standard deviations are illustrated in Table S6 (ESI†).
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always exists, and for any case, it is better to do a prior test or at
least use the publication-recommended methods for a specific
system. The current conclusions of entropy calculations are
mainly summarized from short-time MD simulations, and
long-time MD simulations may be carried out to further validate
the convergence problem of entropy calculations. Furthermore,
in terms of reproducing the absolute binding free energy, the
NME-MD based method (DGnmode_md_9Å) can give the lowest
deviations against the experimental data for both MM/GBSA
and MM/PBSA in all the tested strategies. Besides, although
the ff03 force field performs the best in all the tested simulation
protocols, no large difference is observed among the tested force
fields, implying that all the force fields may be reasonable in the
MM/GBSA binding free energy calculations (however, the ff03
force field may be the best choice).
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