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ABSTRACT

Diverse forms of unwanted signal variations in mass
spectrometry-based metabolomics data adversely
affect the accuracies of metabolic profiling. A vari-
ety of normalization methods have been developed
for addressing this problem. However, their perfor-
mances vary greatly and depend heavily on the na-
ture of the studied data. Moreover, given the com-
plexity of the actual data, it is not feasible to assess
the performance of methods by single criterion. We
therefore developed NOREVA to enable performance
evaluation of various normalization methods from
multiple perspectives. NOREVA integrated five well-
established criteria (each with a distinct underlying
theory) to ensure more comprehensive evaluation
than any single criterion. It provided the most com-
plete set of the available normalization methods, with
unique features of removing overall unwanted varia-
tions based on quality control metabolites and allow-
ing quality control samples based correction sequen-
tially followed by data normalization. The originality
of NOREVA and the reliability of its algorithms were
extensively validated by case studies on five bench-
mark datasets. In sum, NOREVA is distinguished for
its capability of identifying the well performed nor-
malization method by taking multiple criteria into
consideration and can be an indispensable comple-
ment to other available tools. NOREVA can be freely
accessed at http://server.idrb.cqu.edu.cn/noreva/.

INTRODUCTION

Metabolomics aims at understanding biological and disease
processes by systematic profiling of all metabolites in the
studied organisms or biological samples (1–3). At present,

mass spectrometry (MS) has become one of the most widely
applied platforms for sensitively and reproducibly detecting
thousands of metabolites from cells, tissues and bio-fluids
(4–6), which substantially facilitates biomarker identifica-
tion (7–9), pathological study (10–12) and drug discovery
(13–15). In MS-based metabolomic analysis, various forms
of unwanted experimental and biological variations includ-
ing technical errors in the raw omics data may significantly
hamper the identification of differential metabolic profiles,
and in turn affect the effectiveness of metabolomics analysis
(16–18). To remove these unwanted variations to the max-
imum extent, several processes such as signal drift correc-
tion (5,18), batch effect removal (19,20) and normalization
(21,22) have been extensively employed.

Signal drift and batch effect are frequently encountered in
metabolic profiling, especially the long-term and large-scale
one whose time span is usually several months or even years
(5,23). To correct signal drifts and remove batch effects,
quality control sample (QCS) over the entire time course
of large-scale study has been applied to concatenate data
of multiple analytical blocks into a single dataset (24,25)
and been recognized as an essential measurement in pre-
processing large-scale metabolomics data (26). Moreover,
normalization is recommended to be further employed (27),
the aim of which is to improve the differential profile by
detecting and decreasing unwanted variations arising from
errors in sample preparation (28) and other biological fluc-
tuations (21,27). Normalization is now widely considered
as an integral part of data processing (29) and ≥19 meth-
ods (Supplementary Table S1) are utilized for MS-based
metabolomics data (18,28,30). These methods (Supplemen-
tary Methods) can be grouped into two classes (31). Meth-
ods in the first class, such as Pareto (32), tend to reduce
heteroscedasticity among metabolites, while the rest, like
MSTUS (30), aim at removing the sample-to-sample vari-
ations. Besides the QCS-based correction followed by data
normalization as mentioned above, several popular normal-
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ization methods based on the internal standard (IS) and/or
quality control metabolite (QCM) are also widely used in
current metabolomics studies (Supplementary Table S1).
These methods include CCMN (33), NOMIS (34), RUV-2
(28), RUV-random (18) and SIS (35). Particularly, CCMN,
NOMIS and SIS are methods based on single or multiple
ISs and capable of removing unwanted experimental vari-
ations (18). Meanwhile, the RUV methods using QCM are
constructed to remove overall unwanted variations (includ-
ing both experimental and biological variations) in one-go
(18,28).

Because of the significantly varied theories underlying
each normalization method, different methods can produce
conflicting results for the same dataset (21,36) and the suit-
ability of a method is reported to be greatly dependent on
the various nature of the analyzed datasets (37). Therefore,
it is necessary to distinguish the best performed one from
other methods for a given dataset. However, single criterion
is not sufficient to assess the suitability of those methods
and collective consideration of multiple criteria is recom-
mended to ‘thoroughly’ evaluate each method from differ-
ent perspectives (36). In particular, five well-established cri-
teria are currently available by assessing (a) method’s capa-
bility of reducing intragroup variation among samples (37),
(b) method’s effect on differential metabolic analysis (36),
(c) method’s consistency of the identified metabolic mark-
ers among different datasets (38), (d) method’s influence on
classification accuracy (28,39,40) and (e) level of correspon-
dence between normalized and reference data (36). Taken
together, a comprehensive performance evaluation by mul-
tiple criteria is essential for assessing the suitability of nor-
malization methods.

Several powerful pipelines for analyzing the
metabolomics data are currently available online, where
various normalization methods are provided as one step in
their analysis chain. These online pipelines include XCMS
(41), MetaboAnalyst (42), Normalyzer (37), MetaDB (43),
MetDAT (44), MSPrep (45), Metabolomics Workbench
(46) and Workflow4Metabolomics (47). Most of these
online pipelines focus on normalization service without
performance evaluation. Normalyzer (37) and MetaPre
(22) offer the function of outcome assessment using single
criterion a and d, respectively (22,37), but none of them
employ multiple criteria for the performance evaluation.
Because 7 out of those 24 methods popular in MS-based
metabolomics (listed in Supplementary Table S1) are not
covered by either Normalyzer or MetaPre (Supplementary
Table S2), it is not feasible to evaluate their performances.
Moreover, some of the important tools and approaches are
not provided by available online pipelines. These include
the QCM-based removal of overall unwanted variation (18)
and sequential strategy integrating QCS-based correction
and normalization (27). Therefore, it is necessary to pro-
vide a publicly available service for comprehensively and
comparatively evaluating the normalization performance
of those methods used in MS-based metabolomics study.

In this work, an online tool NOREVA, designed for not
only normalizing the MS-based metabolomics data but also
comparatively evaluating the suitability of different nor-
malization methods from various perspectives, was con-
structed and maintained at http://server.idrb.cqu.edu.cn/

noreva/. The NOREVA could conduct normalization us-
ing all 24 methods mentioned above, and provided evalu-
ation report by collectively considering 5 different criteria
for assessing the normalization performance. Moreover, the
originality and usefulness of this novel service were exten-
sively exhibited by 4 case studies in the last section of this
work. In summary, NOREVA aimed at normalizing MS-
based metabolomics data, and distinguishing the best per-
formed method from the others based on multiple evalua-
tion criteria, which provided valuable guidance to the selec-
tion of suitable algorithm in metabolomics data analysis.

MATERIALS AND METHODS

Methods used for signal correction and data normalization

A univariate approach termed QC-based robust LOESS sig-
nal correction (QC-RLSC) to correct signal drift and re-
move batch effect from given large-scale metabolomics data
(5), was provided in NOREVA by integrating the statTar-
get package (48) in the R software. Moreover, 24 meth-
ods in total popular for MS-based metabolomics data nor-
malization were provided including Auto Scaling, CCMN,
Contrast, Cubic Splines, Cyclic Loess, EigenMS, Level Scal-
ing, Linear Baseline Scaling, Log-transform, Mean Normal-
ization, Median Normalization, MSTUS, NOMIS, Pareto
Scaling, Power Scaling, PQN, Quantile, Range Scaling,
RUV-2, RUV-random, SIS, Total Sum, Vast Scaling and
VSN. Detailed descriptions of all these 24 methods could
be found in Supplementary Methods.

Criteria and measures used for evaluating the normalization
performance

Five well-established criteria available for assessing the
normalization performance were provided in NOREVA.
(a) Method’s capability of reducing intragroup variation
among samples (37). Common measures of intragroup
variability including pooled coefficient of variation (PCV),
pooled estimate of variance (PEV) and pooled median abso-
lute deviation (PMAD) were adopted under this criterion to
evaluate variation between samples (36). A lower value (il-
lustrated by boxplots) of these three measures denotes more
thorough removal of experimentally induced noise and indi-
cates a better performance. Moreover, the relative log abun-
dance (RLA) plots (28) used to measure possible variations,
clustering tendencies, trends and outliers across groups or
within group were also provided. Boxplots of RLA were
used to visualize the tightness of samples across or within
group(s). The median in boxplots would be close to zero
and the variation around the median would be low (29). In
addition, the principal component analysis (PCA) was also
used to visualize differences across groups. The more dis-
tinct group variations indicate better performance of the ap-
plied normalization method.

(b) Method’s effect on differential metabolic analysis (36).
The differential significance of metabolites between two
groups measured by P-values was calculated by limma pack-
age (49). The distribution of P-values and clustering den-
drogram and heatmap plots based on differential metabo-
lites were provided (39). Methods would be considered as
well-performed when a uniform distribution of P-values
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and an obvious differentiation between two groups in den-
drogram and heatmap were both achieved.

(c) Method’s consistency of the identified metabolic
markers among different datasets (38). Under this criterion,
a consistency score was defined to quantitatively measure
the overlap of identified metabolic markers among differ-
ent partitions of a given dataset (38). The higher consistency
score represents the more robust results in metabolic marker
identification for that given dataset.

(d) Method’s influence on classification accuracy
(28,39,40). Under this situation, receiver operating char-
acteristic (ROC) curve together with area under the curve
(AUC) values based on support vector machine (SVM)
were provided. First, differential metabolic features were
identified by partial least squares discriminant analysis
(PLS-DA). Second, the SVM models were constructed
based on these differential features identified. After k-folds
cross validation, a method with larger area under the
ROC curve and higher AUC value was recognized as well
performed.

(e) Level of correspondence between normalized and ref-
erence data (36). Additional experimental data were fre-
quently generated as references to validate or adjust prior
result of metabolomics analysis (50). These references could
be spike-in compounds and various molecules detected by
quantitative analysis (50). Here, log fold changes (logFCs)
of concentration between two groups were calculated, and
the level of correspondence between normalized data and
references was then estimated. The performance of each
method could be reflected by how well the logFCs of nor-
malized data corresponded to what were expected based on
references (36). Moreover, a boxplot illustrating these varia-
tions was provided. The preferred median in boxplot would
be zero with minimized variations.

In summary, criterion (a) aimed at estimating the meth-
ods’ capacity on reducing intragroup variations among
samples by various measures; criterion (b) emphasized the
influence on differential metabolic analysis; criterion (d) re-
lied on the classification strategies; and identification of
metabolic biomarkers was required by criteria (c and d).
Different from these four criteria (a–d) general and useful
for exploratory metabolomics study, criterion (e) required
the prior knowledge of metabolites’ concentrations used as
standard test sets. It was necessary to emphasize that se-
lection of the appropriate methods could result in bias and
overfitting if the audiences chose the method that gave re-
sults closest to their wanted ones.

All those criteria and the corresponding measures
mentioned above were fully provided and functional in
NOREVA. Each criterion made the performance assess-
ment possible from its own perspective, and the combina-
tion of multiple criteria could therefore provide a compre-
hensive evaluation on the studied method. Evaluation re-
sults of all these criteria and measures were directly dis-
played on the web page, and fully downloadable from the
website as separate reports. Detailed descriptions on these
criteria together with their corresponding measures could
be found in Supplementary Methods.

Implementation details

The NOREVA website is deployed on server with 128GB
RAM, and CPU E7-4820 × 32 cores running the Cen-
tOS Linux v6.5 operating system, the Apache Tomcat servlet
container and the Apache HTTP web server v2.2.15 (http:
//httpd.apache.org). The web interface was constructed us-
ing R v3.2.2 and R package Shiny v0.13.1 running on
the Shiny-server v1.4.1.759 (http://www.rstudio.com/shiny).
Several R packages were utilized in the background pro-
cesses including affy, AUC, DiffCorr, DT, e1071, fastlo,
ggfortify, ggsci, impute, limma, metabolomics, MetNorm,
png, RcmdrMisc, rmarkdown, ropls, shiny, shinyBS, shiny-
dashboard, shinyRGL, statTarget and vsn. NOREVA web-
site can be readily accessed by all users with no login re-
quirement, and by a variety of popular web browsers in-
cluding Google Chrome, Mozilla Firefox, Safari and Inter-
net Explorer (10 or later).

Comparing with standalone applications, the web-based
servers were expected to be slower due to the cost of web
connection and the shared nature of computational re-
sources (51). To test the time cost of NOREVA, a large-scale
metabolomics dataset MTBLS28 (52) with >1000 samples
(469 patients and 536 controls) and 1807 metabolic features
was collected. On the one hand, the cost of web connection
was evaluated by uploading MTBLS28 data to NOREVA
from different universities around the world (Supplemen-
tary Table S3). As shown, the time costs were acceptable
(within 5 min). On the other hand, the calculation time of
different normalization methods was further assessed by
processing MTBLS28 and the time costs of the majority of
these methods were <5 min with just one (EigenMS) ex-
ceeding 10 min (Supplementary Table S3). In summary, the
network and hardware architectures of current NOREVA
made it suitable for processing large-scale metabolomics
dataset.

Required data formats in the input files

The file required at the beginning of NOREVA analysis
should provide a sample-by-feature matrix in a csv format.
For the analysis of metabolomics data with QC samples, the
sample ID, batch ID, class of samples and injection order
are sequentially provided in the first four columns of in-
put file. Names of these columns must be kept as ‘sample’,
‘batch’, ‘class’ and ‘order’ without any changes during the
entire analysis. The sample ID is uniquely assigned accord-
ing to users’ preference; the batch ID refers to different an-
alytical blocks or batches, and is labeled with ordinal num-
ber, e.g. 1, 2, 3, . . . ; the class of samples indicates two sam-
ple groups and QC samples (the name of sample groups is
different, and QC samples are all labeled as ‘NA’); the in-
jection order is strictly follow the sequence of experiment.
For experiments ignoring QC preparation and metabolomics
dataset without QC samples, only sample ID and class of
samples are required in the first two columns of the input
file and are kept as ‘SampleName’ and ‘Label’. In the col-
umn of class of samples, ‘NA’ is not labeled to any sample
due to the absence of QC samples. In the following columns
of both types of input file, the raw peak intensities across all
samples without logarithmic scaling are further provided.
Unique IDs of each metabolite are listed in the first row of
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the csv file. For metabolomics studies based on IS and QCM,
the required format of the input file is the same as that of
input dataset without QC samples. Moreover, input file in
correct format could be readily generated based on results
of several popular tools such as XCMS online (41). Exam-
ple file strictly following the above requirements can be di-
rectly downloaded from NOREVA’s ‘Analysis’ panel. The
uploaded csv file could be separated by comma, tab or semi-
colon.

To evaluate methods based on the last criterion, addi-
tional file providing information of the reference metabo-
lites (e.g. spike-in compounds) is needed. In this file, the
sample ID and the class of samples are required in the first
two columns. Their names are provided as ‘sample’ and
‘class’. The sample ID is also uniquely assigned according
to users’ preference and the class of samples indicates two
sample groups of different name. Example file can also be
downloaded from NOREVA.

Benchmark datasets collected for the validation case studies
of this work

In order to test the utility of NOREVA, three benchmark
datasets MTBLS59 (50), MTBLS79 (53) and MTBLS146
(54) collected from the MetaboLights (55) and two GC-MS-
based metabolomics datasets (28,33) were collected and
used in four case studies respectively in this work. These
studies included: (�) collective evaluation of methods’ nor-
malization performance on dataset MTBLS79, (�) assess-
ment of methods’ normalization performance based on
the spike-in metabolites of MTBLS59, (�) evaluation of
QC-RLSC’s effect on correcting the signal drifts in MT-
BLS146 and (�) assessment of IS- and QCM-based meth-
ods on removing unwanted variations in two GC-MS-based
metabolomics datasets.

For the case study � : MTBLS79 comprised of 20 car-
diac tissue extracts analyzed repeatedly by direct infusion
MS (DIMS) in eight batches across 7 days, together with a
concurrent set of QC samples. In total, 48 metabolites were
measured for each extract. This dataset was originally de-
signed to test the efficacy of a batch-correction algorithm,
and could serve as a benchmark for DIMS metabolomics.
In the case study �: MTBLS59 presented metabolic spec-
tra (each containing 1632 metabolites) of apple extracts de-
tected by the ultra-performance liquid chromatography MS
(UPLC-MS). This set of data consisted of 10 control sam-
ples and 3 spiked datasets of the same size, where the spiked
compounds were added in different concentrations. MT-
BLS59 could therefore be used as benchmark dataset for
performance assessment by comparing spiked ‘true’ mark-
ers with normalized results. For case study �: MTBLS146
provided women’s profiles of 1312 metabolites based on
LC-MS analysis. This set of data contained a total of 180
pregnant women divided into 6 subgroups of 30 individu-
als according to their variation in gestational weeks. Mul-
tiple batches and 39 QC samples in this dataset made it a
good benchmark data for evaluating the performance of
QC-RLSC correction used in NOREVA. In the last case
study �: two sets of GC/TOF-MS based metabolomics data
were collected. The first set of data (33) consisted of 42
samples mixed with 35 metabolites and 11 isotope-labeled

Figure 1. The general workflow of NOREVA. (A) Uploading of mass
spectrometry (MS)-based metabolomics data with or without IS, QCM
and quality control sample (QCS); (B) Data pre-processing by QC-RLSC
and imputation of missing signals; (C) Data normalization based on the
studied methods; (D) Performance evaluation by multiple criteria.

internal standards (ISs), and the second set (28) provided
185 profiles of 33 metabolites including 9 QCMs identi-
fied by De Livera et al. These datasets could thus be used
as benchmarks for assessing the performances of IS-based
and QCM-based normalization methods. Detailed infor-
mation of these five datasets were also provided on the web-
site of the MetaboLights (55) and in the related publications
(28,33).

RESULTS AND DISCUSSION

Web-service and operating procedure of NOREVA

From the users’ perspective, the analysis implemented in
NOREVA could be summarized into four steps: (i) upload
of metabolomics data, (ii) data pre-processing, (iii) data
normalization and (iv) performance evaluation. The gen-
eral workflow of NOREVA integrating all these steps was
illustrated in Figure 1. Detailed user manual and website
demo were systematically provided in NOREVA’s ‘Manual’
panel.

In the step of metabolomics data upload, dataset with or
without QCS, IS and QCM could be accepted. NOREVA
stood out among available tools by providing sequential
strategy integrating the QCS-based signal correction with
normalization methods (19,47) and removing unwanted
variations based on IS and QCM (18,28). Secondly, data
pre-processing corrected signals by QC-RLSC (5) and miss-
ing value imputation (56). QC-RLSC provided various
choices of filtering criteria, smoothing parameters and re-
gression models for dataset with QC samples. Meanwhile,
popular imputing algorithms (e.g. KNN, median values and
minimum values) were further provided to fill missing sig-
nals. In the third step, data normalization integrated 24
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methods popular in MS-based metabolomics. The result-
ing data matrix normalized by given methods was displayed
and downloadable from the corresponding web page. In ad-
dition, the boxplot illustrating data distribution before and
after normalization was provided. Finally, during perfor-
mance evaluation, five distinct criteria were applied to eval-
uate methods from different perspectives. Dozens of mea-
sures representing the normalization performance were as-
sessed by numerical values or illustrated by statistical graph-
ics. After all those four steps shown in Figure 1, a report
containing evaluation results was generated and download-
able in the format of PDF, HTML and DOC. In the case
of normalizing large dataset, time cost on data processing
would be expensive; the function of delivering evaluation re-
ports via e-mail was thus required. In NOREVA, this func-
tion was made possible by simply typing an e-mail address
in the panel of ‘Generate Evaluation Report’.

Case studies illustrating the new biological insights provided
by NOREVA

(α) Collective evaluation of methods’ normalization per-
formance. Dataset (53) used in this case study was a
well-defined benchmark for the DIMS metabolomics. This
dataset was analyzed by following the same procedure as
demonstrated in the previous section, and the first four cri-
teria (a–d) were chosen for performance evaluation. Table
1 showed their evaluation results. For each criterion, only
one of the most representative measures was selected (a full
list of results for all measures in each criterion was also
demonstrated in Supplementary Table S4). On one hand,
the performance of different methods evaluated by the same
criterion varied significantly. To take PMAD in criterion a
as an example, its values for 19 methods varied from 0.006
(for MSTUS) to 2.72 (for Vast Scaling), indicating substan-
tial variations in performance among those 19 methods. On
the other hand, the performance ranks of the same method
assessed by different criteria also varied greatly. The worst
method mentioned above (Vast Scaling), for example, was
ranked even higher than the best (MSTUS), when consid-
ering criterion c. Thus, it is essential to first understand the
nature of studied biological problem, which could then fa-
cilitate the selection of the most appropriate criterion be-
fore performance evaluation. In other words, only when re-
searchers selected the proper criterion, could the identifica-
tion of the well performed methods be meaningful for an-
swering that biological question. Moreover, if the nature of
a biological problem asked for a collective assessment based
on multiple criteria, the services provided by NOREVA fur-
ther made it distinguished from other available tools.

(β) Assessment of methods’ normalization performance
based on the spike-in metabolites. Dataset (50) used in the
second case study was also a benchmark dataset for per-
formance assessment by comparing the spiked ‘true’ mark-
ers with the normalized results. The analysis procedure was
also specified in the previous section, but criterion e was se-
lected this time for performance evaluation. The variations
in logFCs between the normalized results and the spike-
in metabolites were represented by boxplots in Figure 2.
This type of boxplots was previously used by Risso et al.

Figure 2. Difference between logFCs of the normalized results across var-
ious methods and those of the spike-in metabolites (used here as the gold
standard). Only one method (Contrast) led to unbiased logFC estimates
and thus effectively preserved the true biological variations.

(39). As illustrated in Figure 2, only one method (Contrast)
stood out from the rest by making the normalized data
closer to the reference ones, which therefore effectively pre-
serving the ‘true’ biological variations. Besides of the spike-
in compounds, various ‘true’ markers detected by quanti-
tative analysis and other analytical technics could be also
uploaded to NOREVA as the golden standards for perfor-
mance evaluation.

(γ ) Evaluation of QC-RLSC’s effect on signal drifts correc-
tion. Dataset (54) used in the third case study was a widely
tested sample dataset for signal drifts correction and batch
effects removal. Effects of QC samples on signal correction
were frequently reflected by the corrected peak area plots (5)
and PCA (28). In this case, QC-RLSC (5) was applied to
correct signals between two analytical batches. In contrast
to Figure 3A (before QCS-based correction), intensities of
an example metabolite M72T126 in Figure 3B (after correc-
tion) were greatly corrected. In particular, the intensities of
QC samples in Figure 3B lay in a more straight line com-
paring to that before correction. Moreover, Figure 3C and
D shown the first two principal components of the data be-
fore and after correction. Signal variations between two an-
alytical batches were clearly evident in Figure 3C and were
effectively suppressed by signal correction (shown in Fig-
ure 3D). These results demonstrated the extensive power of
NOREVA on signal drift correction, which made it a func-
tional tool for analyzing metabolomics data.

(δ) Assessment of IS- and QCM-based methods on remov-
ing unwanted variations. Benchmark datasets (28,33) used
in this case study were applied to assess the performance of
IS- and QCM-based methods by the commonly accepted
measure–RLA plots (18,28). In this case study, the perfor-
mance of three IS-based methods (CCMN, NOMIS and
SIS) was evaluated by the corresponding RLA plots before
and after their normalization. As shown in Figure 4A, com-
pared with the RLA plots of unadjusted data, the plots af-
ter the normalization by CCMN and NOMIS resulted in a
median closer to zero and lower variations around the me-
dian. Because the normalization by single IS was reported
to be sensitive to its own obscuring variation (34), the per-
formance of methods based on multiple ISs (CCMN and
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Table 1. Evaluation results of four criteria on benchmark dataset MTBLS79 (selected measure under each criterion was shown in bracket)

Criterion (a) Criterion (b) Criterion (c) Criterion (d)
(PMAD) (distribution of P-value) (consistency) (AUC)

Auto scaling 0.8360 Good 14.6500 0.8344
Contrast 0.7797 Fair 9.7500 0.6250
Cubic splines 0.1393 Excellent 13.7500 0.8322
Cyclic loess 0.3188 Good 15.6500 0.8356
EigenMS 0.1799 Good 16.4000 0.8010
Level scaling 0.2890 Good 15.1000 0.8345
Linear baseline 0.6035 Fair 6.3000 0.7072
Log-transform 0.1349 Good 14.7500 0.8168
Mean 0.3100 Good 14.7500 0.8213
Median 0.3100 Good 14.5500 0.8177
MSTUS 0.0064 Good 14.3500 0.8405
Pareto scaling 0.5320 Good 14.9500 0.8344
Power scaling 0.1660 Good 14.9500 0.8314
PQN 0.3260 Good 13.7000 0.8309
Quantile 0.2989 Excellent 13.8000 0.8119
Range scaling 0.1573 Good 15.3500 0.8344
Total sum 2.4336 Fair 14.7000 0.7538
Vast scaling 2.7200 Good 15.0000 0.8344
VSN 0.5626 Excellent 13.7500 0.8373

The way calculating those measures was described in ’Materials and Methods’ section and ’Supplementary Methods’ section. Besides of quantitative
measures, qualitative ones such as distribution of P-value were also evaluated and three performance levels were provided (Excellent, Good and Fair).
Qualitative measures were evaluated by visual inspection and examples illustrating how those three performance levels were assigned were shown in
Supplementary Figure S1.

Figure 3. Evaluation of QC-RLSC’s effect on signal drifts correction. (A and B) performance evaluation based on the intensity of an example metabolite
M72T126. In contrast to M72T126′s intensity before QCS-based correction (A), the results after correction were greatly corrected (B) by lining QC samples
(blue dots) in a more straight line. (C and D) The first two principal components of the dataset MTBLS146 before and after QCS-based correction. Signal
variations between two analytical batches were clearly evident (C) and were effectively suppressed by signal correction (D).
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Figure 4. Performance assessment of (A) three IS-based normalization methods and (B) one QCM-based normalization method on removing unwanted
variations by the RLA plots before and after normalization. Parameters used in this case study for the RUV-random method were set as k = 3 and λ =
0.03.

NOMIS) was found (Figure 4A) to be much better than that
of single IS (SIS). Moreover, as a QCM-based method, the
performance of RUV-random was analyzed by RLA plot be-
fore and after its normalization (Figure 4B). As illustrated,
this method performed very well on removing unwanted ex-
perimental variations (28).

CONCLUSION

NOREVA was developed to enable performance evalu-
ation of various normalization methods from multiple
perspectives. It complemented other available tools by
providing (1) an integrated analysis based on five well-
established criteria for more comprehensive evaluation
and (2) the most complete set of normalization methods
with unique features of removing overall unwanted vari-
ations based on QCMs and allowing QCS-based correc-
tion sequentially followed by normalization. Because of
the substantial similarities among different types of OMIC
data (such as sparsity, high dimension, systematic bias
and so on), it was also feasible to extend the scope of
NOREVA from MS-based metabolomics to other OMICs
studies such as proteomics and nuclear magnetic resonance-
based metabolomics. With the advent of precision medicine
and big data era, NOREVA and other available tools
could collectively contribute to various aspects of life sci-
ence research, such as pathological study, drug discovery,
biomarker identification and so on.
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