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ABSTRACT: Attention-deficit/hyperactivity disorder
(ADHD) is the most commonly diagnosed mental disorder
of children and adolescents. Although psychostimulants are
currently the first-line drugs for ADHD, their highly addictive
profile raises great abuse concerns. It is known that
psychostimulants’ addictiveness is largely attributed to their
interaction with dopamine transporter (DAT) and their
binding modes in DAT can thus facilitate the understanding
of the mechanism underlining drugs’ addictiveness. However,
no DAT residue able to discriminate ADHD drugs’
addictiveness is identified, and the way how different drug structures affect their abuse liability is still elusive. In this study,
multiple computational methods were integrated to differentiate binding modes between approved psychostimulants and ADHD
drugs of little addictiveness. As a result, variation in energy contribution of 8 residues between addictive and nonaddictive drugs
was observed, and a reduction in hydrophobicity of drugs’ 2 functional groups was identified as the indicator of drugs’
addictiveness. This finding agreed well with the physicochemical properties of 8 officially reported controlled substances. The
identified variations in binding mode can shed light on the mechanism underlining drugs’ addictiveness, which may thus facilitate
the discovery of improved ADHD therapeutics with reduced addictive profile.
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■ INTRODUCTION

As a common neurodevelopmental disease, attention-deficit/
hyperactivity disorder (ADHD) seriously affects the daily life of
40 million people,1 and is estimated to influence 10% of
children and 4.5% of adults.2 Two-thirds of patients diagnosed
in childhood show that the disorder persists into adulthood3

leading to extensive handicap in behavior, emotion, social-
ization, and career development.4 As reported, cognitive
dysfunctions in ADHD patients are mainly regulated by
catecholaminergic signaling in their prefrontal cortex (PFC),5

and attenuation in PFC’s neurotransmission of norepinephrine
(NE) and dopamine (DA) has profound effects on ADHD’s
development.6−8 Besides of PFC, nucleus accumbens and
striatum are also closely associated with ADHD, and elevation
of DA in these regions can improve patients’ cognitive
function.9

With the approval of the first selective NE reuptake inhibitor
(sNRI) atomoxetine, sNRI was found to be capable of elevating
both NE and DA in PFC but with little effect on striatal DA,

which made it less effective comparing to another class of
ADHD drugs−the psychostimulants.9−11 Until now, nine
ADHD drugs were approved by United States Food and
Drug Administration (FDA) and no less than five were in
clinical trial (Table 1). Six out of those nine approved drugs
were psychostimulants which were prescribed as first-line
ADHD medications.12−14 Psychostimulants elevated catechol-
amines in regions of not only PFC but also nucleus accumbens
and striatum by dual targeting norepinephrine transporter
(NET) and dopamine transporter (DAT).15−17 Both targets
were critical,18,19 which ensured psychostimulants’ rapid onset
of action and relatively high response rate (∼75%) in treating
ADHD.20

However, one of the major concerns about psychostimulants
was their highly addictive profile (with great abuse
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potential),21−24 and this class of drugs was consequently
scheduled as controlled substances by the United States
Controlled Substances Act.25 Imaging study demonstrated
that attenuation in DA release played key role in people’s
vulnerability to drug abuse,26 and the drug−DAT interactions
were reported as the major etiology of psychostimulants’
addictiveness27−29 In particular, DAT inhibition controlled
dopamine reuptake into presynaptic neuron,30 and led to the
reinforcing effects underling stimulants’ addictiveness.31,32 In
contrast, comparing to psychostimulants, various DAT
inhibitors treating ADHD (like bupropion and modafinil)
showed far milder abuse liability33,34 indicating that the
addictiveness of ADHD drugs could not be simply charac-
terized by the existence of DAT inhibition.35−37

DAT inhibitors of different structures were reported to
stabilize different DAT conformations, and in turn affected
their addictiveness.38 Particularly, site-directed mutagenesis39

and cysteine accessibility38 studies discovered that the DAT
conformations stabilized by stimulants and inhibitors with little
abuse liability varied.38 Computational modeling studies,
especially molecular dynamics (MD) simulation, had been
applied to identify conformation variation induced by ADHD
drugs with different degrees of addictiveness40−42 These
computational studies discovered conformation preferentially
stabilized by modafinil/bupropion and psychostimulant (meth-
ylphenidate),40,43 which agreed with the findings of experi-
ments38,39,44 Similarly, the conformation stabilized by another
psychostimulant (amphetamine) was simulated and identified
as similar to that of psychostimulants.41 It was known that
differences in molecular mode of interaction in DAT between
psychostimulants and the drugs of little abuse liability
(especially those of clinical importance in Table 1) could
help to discover improved and efficacious ADHD drugs.38,40

However, no study was conducted to identify residues capable
of discriminating ADHD drugs’ addictiveness, and the way
different structures affected the drugs’ abuse liability was still
elusive. Therefore, it was of great interest to reveal the

mechanism underlying the addictiveness of those clinically
important (approved or in clinical trial) ADHD drugs.
In this study, a comparative analysis on the modes of

interaction between addictive and nonaddictive ADHD drugs
was carried out. First, six clinically important drugs were
docked into the modeled DAT for MD simulation, and three
lines of evidence were provided to verify the simulation results.
Second, different modes of interaction between three
psychostimulants and three drugs of little addictiveness were
identified by variations in per-residue binding energies. Finally,
the drugs’ key functional groups discriminating their addictive-
ness were discovered. The identified variations in molecular
mode of interaction shed light on mechanism underlining
psychostimulants’ addictiveness, which may therefore facilitate
the discovery of improved therapeutics for ADHD.

■ RESULTS AND DISCUSSION

Validation of Homology Models and Construction of
Drug−Protein Complexes. As shown in Figure S1, >99.6%
residues for all constructed models were identified as located in
the allowed zone, which indicated the reasonable homology
models constructed in this study.45 Recently, the X-ray
structure of human serotonin transporter (hSERT) was
solved.46 On one hand, sequence identity between hSERT
and DAT was 52%, which was slightly lower than that (55%)
between dDAT47,48 and DAT. On the other hand, 57% residues
of hSERT’s S1 binding site (TM1, 3, 6, 8, and 10 regions) were
conserved comparing to DAT,49 which was still lower than that
of dDAT (78%). Therefore, the crystal structures of dDAT
complexed with various ligands were used to construct
homology models of DAT in this study. Here, DAT homology
model using hSERT (PDB code 5I6Z)46 as template was
compared with that using dDAT (Figure S2). As illustrated, the
structural superimposition between the homology models
based on dDAT and hSERT revealed that the binding sites
of these 2 models were substantially similar to each other (the
majority of RMSD < 1). Although a relatively large RMSD

Table 1. ADHD Drugs Approved and Tested in Clinical Trial Together with Their Mode of Action, Drug Abuse, and
Dependence Information

ADHD drugs approved by FDA

drug name trade name drug mode of actionc drug abuse and dependence company year referencea

amphetamine Adderall NDRI, psychostimulant schedule II controlled substance Shire 2001 NDA 021303
atomoxetine Strattera sNRI, nonstimulant not a controlled substance Lilly 2002 NDA 021411
clonidine Kapvay α2-agonist, nonstimulant not a controlled substance Concordia 2009 NDA 022331
dexmethylphenidate Focalin NDRI, psychostimulant schedule II controlled substance Novartis 2001 NDA 021278
dextroamphetamine Dexedrine NDRI, psychostimulant schedule II controlled substance Amedra before 1980 NDA 017078
guanfacine Intuniv α2-agonist, nonstimulant not a controlled substance Shire 2009 NDA 022037
lisdexamfetamine Vyvanse NDRI, psychostimulant schedule II controlled substance Shire 2007 NDA 021977
methamphetamine Desoxyn NDRI, psychostimulant schedule II controlled substance Recordati before 1980 NDA 005378
methylphenidate Ritalin NDRI, psychostimulant schedule II controlled substance Novartis before 1980 NDA 010187

ADHD drugs in clinical trial development

Drug name clinical phase drug mode of action drug abuse and dependence sponsor study start referenceb

bupropion phase 4 NDRI, nonstimulant not a controlled substance CU Denver 2009 NCT00936299
LY2216684 phase 2/3 sNRI, nonstimulant not a controlled substance Lilly 2009 NCT00922636
modafinil phase 2 sDRI, nonstimulant schedule IV controlled substance Cephalon 2006 NCT00315276
SPN-812 phase 2 sNRI, nonstimulant not a controlled substance Supernus 2016 NCT02633527
SS-reboxetine phase 2 sNRI, nonstimulant not a controlled substance Pfizer 2007 NCT00562055

aInformation collected from the Drugs@FDA provided by the FDA official Web site. bInformation collected from the ClinicalTrials.gov provided by
the U.S. National Institute of Health. cNDRI, norepinephrine−dopamine reuptake inhibitor; sNRI, selective norepinephrine reuptake inhibitor;
sDRI, selective dopamine reuptake inhibitor.
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(2.44−3.05 Å) over all residues of protein was observed,
variations came mostly from the EL2 domain of the protein
(Figure S2A−E). Therefore, dDAT crystal structures did
provide ideal templates to build homology models of DAT,
especially for S1 site for drug binding.
Docking poses of six drugs in DAT’s S1 binding site

surrounded by TM 1, 3, 6, 8, and 10 are provided in Figure S3.
To validate the drug−protein complexes constructed, cross-
docking45 was applied. In particular, cross-docking was carried
out between dextroamphetamine and dextromethamphetamine,
which were cocrystallized with dDAT in 4XP9 and 4XP6,
respectively. As shown in Figure S4, the resulting cross-docking
poses of both drugs were very similar in orientation and
conformation comparing to their cocrystallized poses, which
indicated the reliability of docking procedure used in this work.
For those studied drugs, their resulting docking poses were
selected based on a similar orientation as cocrystallized poses of
their corresponding ligand templates. As shown in Figure S5,
ammonium groups with protonated nitrogen (−N+) of all
studied drugs in DAT oriented in similar way as ligand
templates in dDAT,47,48,50 which formed an ionic interaction
with Asp46 in dDAT (Asp79 in DAT). According to the
overlay for dextroamphetamine, dextromethamphetamine,
dexmethylphenidate, and R-bupropion with their templates
(Figure S5A, B, D, and E), it was clear that aromatic groups of
drugs embedded in hydrophobic cleft in similar conformational
orientation as their cocrystallized ligand templates. The best
docking pose of atomoxetine was also identified by its aromatic
group and aryloxy inserting into two hydrophobic clefts in a

similar way as S-nisoxetine (Figure S5C), and the selection of
docking pose for R-modafinil should consider the conformation
of sulfinyl group based on previous work51 because of the same
phenyl groups (Figure S5F).

Assessment of ADHD Drugs’ Binding Modes in DAT.
Analysis of Simulation Stabilities and Binding Free Energy.
Six systems were assessed by 900 ns MD simulation, and the
root-mean-square deviation (RMSD) was applied to assess
whether the system reached the equilibration state or not. As
illustrated in Figure S6, the RMSDs of protein backbone atoms,
ligand heavy atoms, and binding site residue atoms are
provided, and each system reached equilibration around 100
ns. In this study, simulation was extended by 50 ns to
demonstrate the state of equilibration, and only slight
fluctuation (within 1 Å) in monitored RMSD was observed
in Figure S6.
Binding free energies (ΔGcalc) of six ADHD drugs in DAT

were calculated and compared with the previous experi-
ments33,52−55 Experimental binding affinities (ΔGexp) were
estimated based on the Ki values.

25,61−64 As shown in Table 2,
calculated binding affinities (ΔGcalc) were overestimated
compared to the experimental ones. For drugs with similar
structures and binding modes, entropy contribution could be
omitted if only the relative order of binding affinities was of
interest.56 The relative difference of calculated binding energies
(ΔΔGcalc) and that of experimental ones (ΔΔGexp) among
ADHD drugs were thus calculated (Table 2) to interpret
whether the overestimation came from the exclusion of entropy
or not. Moreover, Figure 1 further provided the chart of

Table 2. Calculated and Experimental Binding Energies of six Studied ADHD Drug Binding to Wild Type DAT (ΔG is in kcal/
mol and Ki Value is in nM)

ADHD drug Ki
a ΔGcalc

b ΔΔGexp
c ΔGcalc

d ΔΔGcalc
c

atomoxetine 1451 −8.275 1.353 −41.31 3.45
dexmethylphenidate 161 −9.628 0 −44.76 0
dextroamphetamine 5680 −7.435 2.193 −34.2 10.56
dextromethamphetamine 1850 −8.126 1.502 −38.12 6.64
R-bupropion 871 −8.589 1.039 −40.78 3.98
R-modafinil 780 −8.657 0.971 −40.7 4.06

aExperimental Ki values reported in previous publications.
33,52−55 bEstimated binding energy based on Ki values using ΔGexp = RT ln(Ki), where R =

8.314J/(mol·K) and T = 310 K. cBinding energy difference was computed using ΔΔG = ΔG − ΔGdexmethylphenidate.
dCalculated binding energy in this

work.

Figure 1. Graphical representation of correlation between the binding energy differences of simulation (ΔΔGcalc) and that of experiment (ΔΔGexp)
for six studied drug complexes with the wild type DAT.
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correlation between ΔΔGcalc and ΔΔGexp, which correlated
very well with each other (R2 = 0.8976). The ascending trend of
energy difference (ΔΔGexp) from experiment25,61−64 was
reproduced very well by ΔΔGcalc in this study, though their
values were still estimated higher than experiment.25,61−64 The
overestimated energy calculated in this work was also found in
other publication using the MM/GBSA methods.57−62 In Table
S1, the detailed contributions of each energy components in eq
1 are listed. As shown, the binding of ADHD drugs to DAT was
mainly contributed by energy terms of van der Waals (ΔEvdW)

and electrostatic interaction (ΔEele), but hampered by that of
polar solvent energy (ΔGpol).

Validation of the Simulation Models. Besides the good
correlation between simulation and experiment shown in
previous section, three lines of evidence were further provided
to validate simulation models constructed in this study. The
first line of evidence was the capability of MD simulation in
discovering the sensitivity profile of DAT residues revealed by
mutagenesis experiments. Because the sensitivity profile could
reveal the binding mode of ADHD drugs,40,51,63 variations in

Table 3. Comparison of Binding Free Energies Calculated by the in Silico Mutation Analyses of This Study with That of Site-
Directed Mutagenesis Experiments40,51,63 and NET-like Mutational Experiments in DAT65 (ΔG was in kcal/mol)a

calculation results reported experimental results

ADHD drug mutation site(s) (sensitivity profile)b ΔΔGcalc
c .FCcalc

d FCexp
e ΔΔGexp

f

comparison between the site-directed mutagenesis experiments40,51,63 and the in silico single point mutation analyses
dexmethylphenidate W84L (NS) −0.50 0.44 0.52 (0.38, 0.73) −0.40 (−0.60, −0.19)

D313N (NS) −0.49 0.45 0.54 (0.44, 0.67) −0.38 (−0.51, −0.25)
dextroamphetamine W84L (MS) 0.47 2.15 2.51 (2.12, 2.95) 0.57 (0.46, 0.67)

D313N (SE) 1.53 12.01 12.71 (10.74, 14.95) 1.56 (1.46, 1.66)
dextromethamphetamine W84L (ME) 0.74 3.33 3.38 (2.53, 4.48) 0.75 (0.57, 0.92)

D313N (ME) 0.74 3.33 4.27 (3.39, 5.41) 0.89 (0.75, 1.04)
R-bupropion W84L (ME) 0.47 2.15 2.33 (2.13, 2.58) 0.52 (0.47, 0.58)

D313N (NS) −0.01 0.98 1.11 (0.98, 1.26) 0.06 (−0.01, 0.14)
R-modafinil Y156F (SE) 1.64 14.36 14.40 (8.33, 22.39) 1.64 (1.30, 1.91)

comparison between the NET-like mutational experiments in DAT65 and the in silico single point mutation analyses
atomoxetine

S149A-F155Y-V318I-C319F-A423S-S429A
−0.75 0.30 0.55 (0.38−0.77) −0.37 (−0.60, −0.16)

R-bupropion −0.49 0.45 0.47 (0.32−0.67) −0.46 (−0.70, −0.25)
aDetailed information of each energy term calculated can be found in Table S2. bSensitivity profile of reported mutation sites.40,51,63 SE, sensitive
mutation (FCexp ≥ 5); MS, medium sensitive mutation (2 ≤ FCexp < 5); NS, nonsensitive mutation (0.5 ≤ FCexp < 2). cΔΔGcalc = ΔGmutation −
ΔGwildtype.

dFold changes of potency measured by MD simulation (FCcalc) were derived from equation: ΔΔGcalc = RTIn(FCcalc), where R = 8.314J/
(mol·K) and T = 310 K. eFold changes of potency measured by reported experiments (FCexp = Kimutation/

/Kiwildtype).
40,51,63,65 Numbers in the brackets

indicate the fold changes derived from the mean experimental values of both Kimutation
and Kiwildtype The first number in the brackets indicates the

minimum fold changes, while the second one indicates the maximum fold changes. fΔΔGexp values were derived from the FCexp by the equation
ΔΔGexp = RT ln(FCexp), where R = 8.314J/(mol·K) and T = 310 K.

Figure 2. Graphical representation of correlation between the fold changes of simulation (FCcalc) and that of experiment (FCexp) for nine studied
point mutations in five drug−DAT complexes. The experimental fold change was measured by FCexp = Ki (mutation)/Ki (wild type), and the
calculated one was derived from ΔΔGcalc= RT ln(FCcalc). Sensitivity profile of those nine point mutations were categorized into three groups: (1)
sensitive mutation64 (FCexp ≥ 5, pink color), (2) medium sensitive mutation64 (2 ≤ FCexp < 5, light green), and (3) nonsensitive mutation64 (0.5 ≤
FCexp < 2, gray color). The five drug−DAT complexes measured in this study included D-AMP (dextroamphetamine), D-METH
(dextromethamphetamine), D-MPH (dexmethylphenidate), R-bupropion, and R-modafinil. Corresponding point mutations in these five complexes
are provided in brackets.
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binding energies before and after in silico mutation were
calculated. In this work, two sensitive mutations with ≥5-fold
changes64 in binding affinity (D313N63 and Y156F51 for
binding of dextroamphetamine and R-modafinil, respectively),
4 medium sensitive ones with less than 5 but no less than 2-fold
changes64 (W84L40,63 for dextroamphetamine, dextrometham-
phetamine, and R-bupropion and D313N63 for binding of
dextromethamphetamine) and three nonsensitive ones with
less than 2-fold changes64 (D31340 for both dexmethylpheni-
date and R-bupropion and W84L40 for dexmethylphenidate)
identified by previous experimental mutagenesis studies40,51,63

were selected and extensively explored. In particular, DAT of
those mutations in complex with the corresponding ADHD
drugs were studied by adding 20 ns simulation based on the
MD-simulated wild type DAT. As shown in Figure S7, RMSD
plots of ligand binding site backbone, ligand heavy atoms, and
protein backbone for nine single-point mutant DATs
complexed with studied drugs as a function of simulations

time are provided. These plots monitored whether those
simulations of mutant complexes reached equilibration within
the additional 20 ns simulations. As shown in Figure S7, the
simulation of all complexes reached equilibration around 15 ns,
and the last 5 ns equilibrium trajectory was utilized to calculate
the ΔΔGcalc in Table 3 and Table S2. The resulting binding
energies and corresponding fold changes in drug affinity
calculated by in silico mutations were demonstrated in Table 3,
and contributions of each energy term were shown in Table S2.
As shown, the sensitivity profile of DAT residues revealed by
experiments40,51,63 were completely reproduced by the
simulation (FCcalc) of this study. In particular, two sensitive
(FCcalc > 12.01), four medium sensitive (2.15 ≤ FCcalc ≤ 3.33),
and three nonsensitive (0.44 ≤ FCcalc ≤ 0.98) mutations were
discovered. Moreover, correlation between the fold changes of
simulation (FCcalc) and that of experiment (FCexp) for those
nine point mutations is further illustrated in Figure 2, which
resulted in a good correlation (R2 = 0.9961). In sum, simulation

Figure 3. Per-residue binding free energy decomposition of six studied drug−DAT complexes. Residues with high energy contribution (the absolute
energy contribution ≥ 0.5 kcal/mol) were labeled.
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models constructed in this study were capable of discovering
sensitivity profile of DAT residues revealed by experiments,
which could be considered as suitable evidence to verify the
constructed models. Moreover, examples of variation in ligand
binding site backbone, ligand heavy atoms and protein
backbone among different mutants with drugs docked were
depicted by the average RMSD (±SD) from the last 5 ns
equilibrium trajectories (Figure S8). The average RMSD of
ligand binding site backbone for dexmethylphenidate bound
DAT caused by W84L was lower than that by D313N,
indicating a relatively weaker influence on the conformation
change of the binding site induced by W84L than that of
D313N (in Figure S8A). Meanwhile, W84L and D313N led to
similar degree of conformation changes in the binding sites
with dextroamphetamine, dextromethamphetamine and R-
bupropion bound. Conformation changes in DAT binding
pocket and shifts of drugs into the pocket are also shown in
Figure S9. Although the above sensitive or medium sensitive
mutation D313N reported by a previous study63 was located
outside the S1 pocket, MD simulation was capable of
identifying its sensitivity profile. As demonstrated in Figure
S9, D313N indirectly but significantly influenced DAT’s
interaction with dextroamphetamine by inducing dramatic
conformation change of residues Phe320 and Ser422. Similar to
dextroamphetamine, D313N indirectly affected dextrometham-
phetamine’s binding, and significant conformation changes in
Tyr156 and Gly426 were observed (Figure S9).
The second line of evidence was from a recently identified

group of residues that collectively control drug selectivity to
NET.65 Specifically, the mutations on six residues (Ser149,
Phe155, Val318, Cys319, Ala423 and Ser429) in the S1 site of
DAT to the complementary residues in NET transferred NET-
like pharmacology to DAT.65 However, the selectivity of two
ADHD drugs (atomoxetine and R-bupropion) to NET was
tested to be not sensitively determined by those 6 residues, and
it was noteworthy that the S1 site of DAT has little effect on
ADHD drugs’ selectivity.65 In this work, in silico mutations on
these 6 residues to their corresponding residues in NET
(S149A-F155Y-V318I-C319F-A423S-S429A) were explored. As
illustrated in Figure S10, atomoxetine and R-bupropion in
complex with the NET-like DAT were simulated by extending
20 ns simulation based on the MD-simulated wild type DAT.
The resulting binding free energies and corresponding fold
changes in affinity calculated by in silico mutational analyses
were shown in Table 3, and the contributions of each energy
term were demonstrated in Table S2. As shown, the
nonsensitive determination of the drugs’ selectivity by those
six residues65 was reproduced by simulation (FCcalc). In
particular, values of FCcalc equaled to 0.30 and 0.45 for
atomoxetine and R-bupropion, respectively, which were
comparable to that of experiment.65 Since those additional 20
ns simulations were all based on the models of wild type DAT
constructed in this study, this reproduction of experiments
could act as another line of evidence for verifying our resulting
simulation models. The conformational changes in DAT’s S1
pocket and orientation shifts of atomoxetine and R-bupropion
to accommodate into the pocket were illustrated in Figure S11.
The above evidence was further supported by the third line

of evidence from the crystallography study, which reported
cocrystallized structures of amphetamine and methamphet-
amine in dDAT.47 Of these two drug−dDAT complexes, the
amino group of both ADHD drugs interacted with dDAT’s
Asp46 residue (the corresponding residue Asp79 in DAT), and

occupied the cavity formed by residues Phe43, Ala44, Phe319,
and Ser320 in dDAT (the corresponding residues Phe76,
Ala77, Phe320, and Ser321 in DAT).47 Furthermore, the
phenyl group of both drugs were stabilized by inserting into
hydropholic cleft formed by Val120, Tyr124, Phe319, Phe325,
and Ser422 in dDAT (the corresponding residues Val152,
Tyr156, Phe320, Phe326, and Ala423 in DAT), which further
stabilized amphetamine and methamphetamine in the S1 site of
DAT.47 In this work, all of those mentioned residues were
identified as high contribution ones (with the absolute energy
contribution ≥ 0.5 kcal/mol) for the binding of ADHD drugs
(shown in Figure 3), which could be the third evidence for
verifying our resulting simulation models.

Binding Modes of ADHD Drugs in DAT. Representative
interaction snapshots of studied complexes extracted from
equilibrated MD trajectories were shown in Figure S12. All
structures demonstrated electrostatic interactions between
protonated nitrogen (−N+) in the ammonium group of
ADHD drugs and negative charged oxygen (O−) of Asp79,
and the electrostatic interaction including salt bridge and
hydrogen bond (Figure S13 and Table S3) were relatively
stable during the MD simulation. These were consistent with
previous studies that the interaction between ADHD drugs’
ammonium group and Asp79 was essential for their
recognition.
As illustrated by the binding free energy decomposition of

DAT’s residues (Figure 3), 11, 11, 9, 12, 11, and 11 residues
contributed significantly (absolute energy contribution ≥ 0.5
kcal/mol) to binding of atomoxetine, dexmethylphenidate,
dextroamphetamine, dextromethamphetamine, R-bupropion,
and R-modafinil, respectively. Among those residues above,
Phe326 was identified as distinguished one in discriminating
energy contributions between psychostimulants (−1.23 to
−1.63 kcal/mol) and inhibitors with little abuse liability (−1.68
to −1.75 kcal/mol). As reported, differences between binding
modes of approved psychostimulants and that of inhibitors with
little abuse liability could facilitate the discovery of mechanism
underlying ADHD drugs’ addictiveness.66 To the best of our
knowledge, Phe326 was the first reported residue able to
discriminate the addictiveness of ADHD drugs. However, to
fully understand the way how different drug structures affected
their abuse liability, collective impacts of residues (not just
Phe326) discriminating drugs’ addictiveness should be further
identified and assessed. Thus, differences in molecular modes of
interaction between psychostimulants (amphetamine, meth-
amphetamine, and methylphenidate) and drugs of little
addictiveness (atomoxetine, bupropion and modafinil) were
further explored from perspective of per-residue energy
contribution to the drugs’ binding.

Comparing the Binding Modes of Addictive ADHD
Drugs and that of Nonaddictive Ones. To differentiate the
binding modes between two types of ADHD drugs (addictive
and nonaddictive), the hierarchical clustering was applied to
identify the binding modes of each drug type. In particular, 224
(for addictive type) and 246 (for nonaddictive type) residues
with energy contribution (≠0 kcal/mol) to at least one drug in
their corresponding drug type were clustered based on their
per-residue binding energies. As illustrated by the hierarchical
trees in Figures S14 and S15, five residue groups (A−E) were
discovered for both addictive and nonaddictive ADHD drugs.
Per-residue binding free energies favoring the drugs’ binding
were colored in red, with the highest energy (−6.17 and −4.46
kcal/mol for addictive and nonaddictive drugs, respectively) set
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as exact red and lower energies gradually fading toward white
(0 kcal/mol). Per-residue energies hampering the drugs’
binding are displayed in blue, with the highest (0.21 and 0.37
kcal/mol for addictive and nonaddictive drugs, respectively) set
as exact blue and lower ones gradually fading toward white. To
avoid any misunderstanding, energies represented by exact red
are 29 and 12 times stronger than that by exact blue in Figures
S14 and S15, respectively.

The per-residue energies of residue groups A and B were
consistently higher for all drugs in each type than those of
groups C−E, which made them the primary contributors
favoring the drugs’ binding. Therefore, those residues in group
A and B were further selected to comparatively analyze the
binding modes of addictive and nonaddictive drugs (Figure 4).
As shown, six residues (Phe76, Asp79, Val152, Tyr156, Phe320,
and Phe326) in group A were the major contributors for the

Figure 4. Comparison of the residues in group A (light blue background) and B (light green background) identified in Figures S14 and S15. Per-
residue binding energy contributions favoring ligand binding are displayed in red, with the highest contribution set as exact red and lower
contributions gradually fading toward white (no contribution).

Figure 5. Binding mode of studied ADHD drugs in DAT. (a) Side view of drug binding site surrounded by eight residues of significant energy fold
changes between addictive and nonaddictive drugs. Residues preferentially binding nonaddictive drugs were represented in red, while residues
favoring binding of addictive drugs were shown in black. (b) Schematic representation of the binding modes between drugs and residues. Binding
mode of studied drugs was collectively defined by electrostatic and hydrophobic interactions between three chemical groups (R1, R2, and R3) and
eight residues colored in the same way as (a). R1 (reddish) were ammonium group with electrostatic interaction to residues in the vicinity, especially
the D79. R2 (light blue) and R3 (dark blue) were aromatic moieties with only hydrophobic interaction to nearby residues.
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binding of both drug types, which consisted of 57.73−67.59%
and 52.32−62.39% of the total binding energy for addictive and
nonaddictive drugs, respectively. Moreover, there were 9 and
10 residues identified as very important contributors for the
binding of addictive and nonaddictive drugs (group B), which
offered 23.90−26.33% and 24.30−25.93% of the total binding
energy for each drug type. Among those important residues,
seven residues (Ala77, Ser149, Ser321, Gly323, Ser422, Ala423,
and Gly426) were shared by both types, while three (Gly153,
Leu322, and Asp421) and two (Phe155 and Ala480) residues
were distinct for addictive and nonaddictive drugs, respectively.
Conformations of 6 studied drugs accommodating into those
18 residues were illustrated in Figure S16. Due to the primary
energy contribution (>75%) offered by those 18 residues for
both drug types, a comparatively analysis on energies of those
residues between addictive and nonaddictive drugs could offer
great insight into the understanding of how different drug
structures affected their abuse liability.
Identifying Functional Groups of Studied ADHD

Drugs Discriminating their Addictive Profile. To under-
stand how different drug structures discriminating the addictive
profile of the studied drugs, the binding free energies of 18
residues shown in Figure 4 were statistically compared by fold
change analysis. As demonstrated in Table S4, eight residues
(Ala77, Val152, Gly153, Phe155, Phe320, Phe326, Asp421, and
Ala480) of significant fold changes (>1)67 between addictive
and nonaddictive ADHD drugs were identified. Five out of
those eight residues (Ala77, Val152, Phe155, Phe326, and
Ala480) preferentially binding nonaddictive drugs are shown in
red, while the remaining three (Gly153, Phe320, and Asp421)
favoring addictive ones are shown in black (Figure 5a). Based
on the conformation of six studied drugs surrounded by eight
residues (Figures 5a and S17), a schematic representation of
the binding modes between drugs and residues are generalized
and illustrated in Figure 5b, which was collectively defined by
electrostatic and hydrophobic interactions between three
chemical groups (R1, R2, and R3) and those eight residues
identified above. In particular, the R3 occupied the hydrophobic
cleft sculpted by Phe155, Phe326, and Ala480. Significant
reduction in hydrophobic interaction of addictive drugs
induced by these 3 residues was identified and reflected by
lower hydrophobic property in R3 of addictive drugs (methyl
and methoxycarbonyl groups) than that of nonaddictive ones
(phenyl and trimethyl groups). Similarly, the hydrophobic

interactions of R2 in addictive drugs were substantially reduced,
which was contributed by two hydrophilic (Gly153 and
Asp421) and three hydrophobic (Val152, Phe155, and
Phe326) residues. This reduction should come from weaker
hydrophobic property in R2 of addictive drugs (phenyl group)
than that of nonaddictive ones (chlorine- and methyl-
substituted phenyl groups). Structural variation in studied
drugs could also induce changes in interaction between R1 and
surrounding residues (Ala77 and Phe320).
The identified reductions of hydrophobic property in both R2

and R3 of studied addictive drugs could be further observed in
eight controlled substances inhibiting DAT (IC50/Ki < 1 μM)
scheduled by the United States Controlled Substances Act25

(Table S5). These eight substances were collected from the
official Web site of the United States Electronic Code of
Federal Regulations (http://www.ecfr.gov) including six
schedule I (AMT, MDMA, MDMC, MDPV, methcathinone,
and naphyrone) and two schedule II (cocaine and pethidine)
controlled substances. As shown in Figure 6, hydrophobic
property in R3 of all 8 controlled substances (methyl, propyl,
methoxycarbonyl and ethoxycarbonyl groups) was weaker than
that of nonaddictive ADHD drugs studied (phenyl and
trimethyl groups). Similarly, the hydrophobic property in R2
of those 8 substances (3,4-methylenedioxyphenyl, indolyl,
naphthalene and phenyl group) was generally lower than that
of studied nonaddictive drugs (chlorine- and methyl-substituted
phenyl groups). In summary, the reduction of hydrophobic
property in 2 functional groups of those 8 reported controlled
substances agreed well with the finding of this work. Increased
hydrophobicity of substituted-group in R2 and R3 could lead to
the reduction of ADHD drugs’ addictiveness by enhanced
hydrophobic interactions with DAT. This could facilitate the
discovery of improved ADHD drugs with reduced addictive
profile.

■ CONCLUSIONS

In this work, a comparative analysis on the molecular mode of
interaction discriminating addictiveness among six ADHD
drugs was carried out by multiple computational methods. As a
result, eight key residues of significant fold change in binding
energy and the hydrophobic property of two key functional
groups in studied drugs discriminating addictiveness were
discovered. The identified variations in molecular mode of

Figure 6. Structures and functional groups of eight controlled substances with high affinity to DAT (IC50/Ki < 1 μM) scheduled by the United States
Controlled Substances Act collected from official Web site of the United States Electronic Code of Federal Regulations (ECFR). Functional groups
(R1, R2, and R3) of those eight substances were identified by molecular docking, and are marked by reddish solid rectangular (R1), light blue (R2),
and dark blue (R3) solid ellipse. Detailed information can also be found in Table S5.
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interaction indicated increased hydrophobicity of substituted-
group in R2 and R3 could lead to the reduction of ADHD drugs’
addictiveness by enhanced hydrophobic interactions with DAT,
which shed light on the mechanism underlining the
addictiveness of studied drugs. This result may therefore be
utilized as structural and energetic blueprint for discovering
improved ADHD therapeutics.

■ METHODS
Collection of ADHD Drugs. Among those drugs listed in Table 1,

nine were reported as active in inhibiting DAT (<10 μM). Five out of
these nine were racemic compounds (amphetamine, bupropion,
methamphetamine, methylphenidate, and modafinil), and D-enan-
tiomers of amphetamine and methylphenidate had already been
approved. In the meantime, the D-enantiomer of methamphetamine
was reported to offer the main therapeutic efficacy,68 and R-bupropion
and R-modafinil demonstrated greater efficacy in inhibiting DAT.40,69

Thus, six drugs of distinct structure (atomoxetine, dexmethylpheni-
date, dextroamphetamine, dextromethamphetamine, R-bupropion, and
R-modafinil) in Figure 7a were simulated in this study, including three
psychostimulants and three drugs of little addictiveness. It was
necessary to clarify that lisdexamfetamine was an inactive prodrug of
dextroamphetamine,70 and no simulation was thus applied.
Homology Modeling. Sequences alignment between DAT and

Drosophila melanogaster dopamine transporter (dDAT) using
ClustalW271 in Figure S18 showed their higher sequence identity
with more than 55%. Therefore, crystal structures of dDAT complexed
with various ligands47,48 were used to construct homology models of
DAT by automated mode in SWISS-MODEL.72 Particularly, ligands
structurally similar by visual inspection to any of the studied ADHD
drugs were identified (Figure 7b) and the corresponding dDAT
structures were selected as templates for homology modeling (Table
S6). Comparing to the popular template LeuT,73 dDAT showed much
higher sequence identity (55.2−56.5%) with DAT, which made it
reliable starting point for simulation. Sequences in model construction
covered all DAT’s transmembranes (TMs) and loops, and stereo-
chemical quality were validated by the PROCHECK.74,75 Additionally,
two functional Na+ and one Cl− were fitted into binding sites of all
models via PyMOL.76 Two cholesterols were added into models from
4XNU, 4XPH, and 4XNX, while cholesterol and cholesteryl
hemisuccinate were transferred into models from 4XP6 and 4XP9.
Molecular Docking. Initial poses for simulation were identified by

molecular docking via standard precision (SP) in Schrödinger Glide
module.77 In particular, by using Receptor Grid Generation tool in
Glide,77 the docking grid box for each studied drug was defined by
centering on the corresponding ligand template in modeled DAT S1

binding site (surrounded by TM 1, 3, 6, 8, and 10).47,48 As a results,
the docking poses of six studied drugs with the most similar
orientation with those of ligand templates (Table S6) were selected as
their initial binding poses for simulation. To validate the reliability of
molecular docking procedure in this study, cross-docking78 was
applied. Detailed information on molecular docking and cross-docking
is extensively described in Supporting Information Methods.

Protein−Ligand/Membrane System Setup and MD Simu-
lation. Protein−ligand/membrane systems were constructed by
inserting the resulting docking complexes into a 1-palmitoyl-2-
oleoylphosphatidylcholine (POPC) bilayer generated by the Mem-
brane Builder in CHARMM-GUI.79 These systems were solvated with
TIP3P water of 20 Å thickness80 and neutralized Na+ and Cl− at salt
concentration of 0.15 mol/L. Each system contained 92 000−99 000
atoms per periodic cell with various box size as summarized in Table
S6. Detailed information on the above process is extensively described
in Supporting Information Methods.

MD simulations were carried out using AMBER14 package81 based
on ff14SB and Lipid14 force fields for proteins and lipids respectively
by GPU-accelerated PMEMD.45 Prior to each simulation, systems
underwent a succession of pretreatments including (1) steepest
descent minimization, (2) heating to 310 K through two sequential
stages, and (3) 5 ns equilibration at 310 K.45,82 After these, 150 ns MD
simulation was executed at 310 K and 1 atm in NPT ensemble by the
periodic boundary condition. Moreover, the long-range electrostatic
interaction (cutoff = 10 Å) was used to evaluate direct space
interaction with the particle-mesh Ewald method,83 and all bonds
involving hydrogen atoms were constrained by using the SHAKE
algorithm84 with a 2 fs time step. Finally, 500 snapshots were retrieved
from the last 50 ns equilibrium trajectory of each system. Detailed
information can be found in Supporting Information Methods.

Binding Free Energy Analysis. Total binding free energies
(ΔGcalc) neglected entropic contribution were calculated by MM/
GBSA method according to 500 snapshots of each single-
trajectory.85−88 For each snapshot, the binding energy was obtained
by the following equation:

Δ = Δ + Δ + Δ + ΔG E E G Gcalc vdW ele pol nonpol (1)

ΔEvdW and ΔEele originate from van der Waals interaction and
electrostatic contribution in gas phase, respectively. ΔGpol and
ΔGnonpol indicate polar and nonpolar solvent interaction energies. In
particular, ΔGnonpol was calculated by 0.0072 × ΔSASA, and ΔSASA
was estimated by linear combination of pairwise overlaps method
(LCPO) with 1.4 Å Probe radii.89,90 Moreover, per-residue
decomposition energy (ΔGcalc

per−residue) used to quantitatively evaluate
each residue’s contribution to the binding was calculated by the
following equation:

Figure 7. Structures of (a) six clinically important ADHD drugs studied in this work and (b) their corresponding ligand templates used for docking
pose selection.
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per residue
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per residue

(2)

ΔEvdWper−residue, ΔEeleper−residue, and ΔGpol
per−residue were the same as those in eq

1, and nonpolar solvation free energy contribution was estimated as
ΔGnonpol

per−residue = 0.0072 × ΔSASA. The ΔSASA was achieved by using
the icosahedron (ICOSA) method.81

Hierarchical Clustering Analysis on Per-residue Binding
Free Energies. Here, 224 residues with contributions to the binding
of at least one psychostimulant (≠ 0 kcal/mol) were identified, and
corresponding per-reside energies to 3 studied psychostimulants were
used to generate 3-dimensional vectors. Similarly, 246 residues for 3
little addictive drugs were identified. Then, 224 and 246 vectors were
analyzed by the hierarchical clustering algorithm in the R Statistic
analysis software,91 respectively. Similarity degrees among vectors
(residues) were reflected by the Manhattan distance:

∑= | − |
=

a b a bdistance( , )
i

l

i i
1 (3)

where l indicates the dimension of vector and i refers to certain residue
energy for each ADHD drug. The Ward’s minimum variance was used
to minimize the total within-cluster variance.92 The hierarchical trees
were visualized by using the online tool iTOL.93
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