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Abstract 

Deciphering the structural determinants of protein–protein interactions (PPIs) is essential to gain a deep understand-
ing of many important biological functions in the living cells. Computational approaches for the structural modeling 
of PPIs, such as protein–protein docking, are quite needed to complement existing experimental techniques. The 
reliability of a protein–protein docking method is dependent on the ability of the scoring function to accurately 
distinguish the near-native binding structures from a huge number of decoys. In this study, we developed HawkRank, 
a novel scoring function designed for the sampling stage of protein–protein docking by summing the contributions 
from several energy terms, including van der Waals potentials, electrostatic potentials and desolvation potentials. First, 
based on the solvation free energies predicted by the Generalized Born model for ~ 800 proteins, a SASA (solvent 
accessible surface area)-based solvation model was developed, which can give the aqueous solvation free energies 
for proteins by summing the contributions of 21 atom types. Then, the van der Waals potentials and electrostatic 
potentials based on the Amber ff14SB force field were computed. Finally, the HawkRank scoring function was derived 
by determining the most optimal weights for five energy terms based on the training set. Here, MSR (modified 
success rate), a novel protein–protein scoring quality index, was used to assess the performance of HawkRank and 
three other popular protein–protein scoring functions, including ZRANK, FireDock and dDFIRE. The results show that 
HawkRank outperformed the other three scoring functions according to the total number of hits and MSR. HawkRank 
is available at http://cadd.zju.edu.cn/programs/hawkrank.
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Background
Protein–protein interactions (PPIs) are involved in a 
wide variety of biological processes, such as signal trans-
duction [1, 2], transmembrane transport [3, 4], and 
antibody-antigen pairing [5, 6]. Deciphering structural 
and energetic determinants of PPIs is a prerequisite 
to understanding the PPIs-mediated functions in liv-
ing cells. Unfortunately, only a tiny fraction of protein–
protein complex structures have been characterized by 
high-resolution experimental techniques, such as X-ray 
crystallography, solution nuclear magnetic resonance 

(NMR) spectroscopy and cryo-electron microscopy 
(cryo-EM), which cannot keep pace with the growing 
demand in structure-based interactome analysis. Moreo-
ver, many weak and/or transient PPIs that play essential 
roles in regulating dynamic networks in bio-systems can-
not be easily captured by experiments due to their unsta-
ble nature. On that account, computational approaches, 
especially protein–protein docking, are expected to 
provide an alternative and efficient way based on the 
unbound protein structures for predicting the binding 
complexes and understanding the recognition mecha-
nisms at the atomic level [7–9].

The ultimate goal of protein–protein docking is the 
prediction of a near-native structure of the complex from 
many docking decoys, which generally falls into two 
stages: sampling and refinement. In the sampling stage, a 
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large number of docking poses are generated and scored 
by various scoring functions; and in the refinement stage, 
the top-hit poses (or decoys) given by the first stage are 
re-scored and re-ranked by more rigorous scoring func-
tions. Apparently, the success of protein–protein docking 
is, to a large degree, dependent on the ability of the scor-
ing function to score and rank the decoys accurately. So 
far a large number of scoring functions have been devel-
oped, ranging from force field-based scoring functions 
such as ZRANK and FireDock [10–13], to knowledge-
based ones such as dDFIRE and InterEvScore [14–16] 
and machine-learning scoring functions [17, 18]. How-
ever, recognizing near-native structures from a huge pool 
of alternatives is still quite challenging because the accu-
racy of most scoring functions needs to be improved. 
Besides, the ease of use, efficiency and general utility of 
the scoring functions should also be taken into account. 
Since the establishment of the Critical Assessment of 
PRedicted Interactions (CAPRI) campaign [19] in 2001 
offers a community-wide platform that assesses the accu-
racy of protein–protein docking approaches, all related 
scoring functions and algorithms can be evaluated by 
comparing the submitted structures with the unpub-
lished crystal structures from wide range of participants 
including predictors, servers and scorers. In 2010, Kastri-
tis and Bonvin assessed the performances of 9 commonly 
used scoring functions and a free energy prediction 
algorithm on their ability to predict the binding affini-
ties for 81 complexes [20]. They found that all the tested 
scoring functions could not provide reliable predictions 
because they all failed to correlate the experimental bind-
ing affinities (pKd) with the scores predicted by the cor-
responding scoring function, with the highest correlation 
of only − 0.32. Recently, our group analyzed the predic-
tion results for the 24 targets tested from ROUND14 to 
ROUND 28 of CAPRI [21], and we found that, although 
the scorers perform better than the uploaders and predic-
tors, they could give relatively high success rates (> 50%) 
for only two targets. Therefore, more approaches should 
be explored in order to improve the prediction accuracy 
of scoring functions for more reliable protein–protein 
docking.

In the past decade, more theoretically rigorous free 
energy calculation methods, such as Molecular Mechan-
ics/Poisson Boltzmann Surface Area (MM/PBSA) and 
Molecular Mechanics/Generalized Born Surface Area 
(MM/GBSA), have been employed to predict binding 
affinities and identify correct binding structures for pro-
tein–protein systems [22–29]. For example, in our previ-
ous study [22], we evaluated the performances of MM/
PBSA and MM/GBSA to predict the binding affinities 
and recognize the near-native binding structures for 
more than forty protein–protein complexes. The results 

show that, compared with most scoring functions used 
in protein–protein docking, MM/GBSA achieved better 
accuracy to predict the correct binding modes and bind-
ing affinities for the studied protein–protein systems. 
Therefore, the desolvation energy, which is related to the 
leading role of solvent exclusion during the protein inter-
molecular assembly, is critical to identify these correct 
binding poses.

Although MM/GBSA is of more computational effi-
ciency than other end-state free-energy calculation 
methods like thermodynamic integration (TI) and free 
energy perturbation (FEP), it is still much more time-
consuming than the commonly used scoring functions in 
protein–protein docking, such as ZRANK, which treats 
the desolvation energy term with Atomic Contact Energy 
(ACE) model [30]. The computational cost in MM/GBSA 
is mainly attributed to the calculation of the polar des-
olvation energy term based on the GB model. In that 
regard, we developed HawkRank, a force field-based 
scoring function in which the energy terms are similar to 
those in MM/GBSA. Besides the frequently used van der 
Waals and electrostatic potentials, a simplified aqueous 
solvation model based on SASA (solvent accessible sur-
face areas) was implemented into our scoring function. 
HawkRank is designed for the sampling stage of pro-
tein–protein docking and it can score a huge number of 
docked structures with low computational cost and high 
efficiency. We developed and benchmarked the present 
scoring function based on 176 high-resolution protein–
protein complexes that are nonredundant at the family–
family pair level. Compared with ZRANK, FireDock and 
dDFIRE, HawkRank performs consistently best on both 
the total number of hits and the (modified) success rate.

Methods
HawkRank was developed by combining the weighted 
van der Waals potentials, electrostatic potentials and des-
olvation potentials. The workflow of the development of 
HawkRank is discussed below in details.

Preparation of the protein–protein decoy dataset
More and more protein–protein complexes have been dis-
covered, researchers classify protein–protein complexes 
based on various angles. The most common is that classify 
protein–protein complexes by protein family. The other 
researchers classify complexes as homo- and hetero-oli-
gomeric complexes, non-obligate and obligate complexes 
and transient and permanent complexes, by the type of 
protein–protein interaction [31]. Besides, some research-
ers also excavate many effective statistical knowledge from 
the interface of the protein–protein interaction, such as 
the reported by Ref [32] and Ref [33]. Therefore, collect-
ing a protein–protein complex database is a challenging 
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task, by reason that, comprehensive consideration includ-
ing protein family, the type of protein–protein interac-
tion or characteristics of interface is need. However, there 
are still some databases pick out protein–protein com-
plexes for theoretical research, such as protein–protein 
complexes in PDBbind [34], 2P2I-DB [35, 36], ZDOCK 
benchmark [37] and etc. The protein–protein complexes 
in ZDOCK benchmark 4.0 [38] were chose to develop the 
HawkRank scoring function in our study. ZDOCK bench-
mark 4.0 provides 176 nonredundant protein–protein 
complexes with high-resolution X-ray or NMR structures 
in bound and unbound states at the family–family pair 
level, including 124 complexes in the previous version 3.0 
plus 52 newly-added ones. Besides, the protein–protein 
complex dataset used in training ZARNK and FireDock 
is the same ZDOCK benchmark series. More than that, 
the structured files of predictions docked by the unbound 
receptor and ligand from the ZDCOK benchmark are 
available from Zlab official website (https://zlab.umass-
med.edu/zdock/benchmark.shtml), which is conveni-
ence for the training of scoring function. Therefore, we 
choose ZDOCK benchmark 4.0 for its convenience and 
the rationality of comparing HawkRank with ZRANK and 
FireDock. In this study, the 124 complexes were used as 
the training set to develop HawkRank and the other 52 
ones as the test set to validate the actual performance of 
HawkRank. It should be noted that the benchmark 4.0 
only contains binary interactions, so HawkRank is not 
suitable for the interactions between more than two pro-
teins. Besides, HawkRank is also not suitable for the inter-
actions between protein and peptide.

ZDOCK (version 3.0) was used to generate the decoys 
for each complex. ZDOCK systematically evaluates a 
huge number of docked conformations on a grid by using 
a combination of shape complementarity, electrostatics 
and statistical potential terms for scoring [39], and the 
search process is accelerated by the Fast Fourier Trans-
formation (FFT) algorithm [11]. Depending on the sam-
pling density in the rotational space (15° or 6°), ZDOCK 
can output 3600 or 54,000 predictions for each system. 
Benchmark 4.0 was downloaded from Zlab official web-
site. For each system, the unbound RCSB Protein Data 
Bank (PDB) files of the receptor and ligand are pro-
vided in Benchmark 4.0. Cases in Benchmark 4.0 have 
been docked using ZDOCK3.0 and the results depend-
ing on the sampling density in the 6° rotational space 
are deposited in decoys_bm4_zd3.0_6  deg package file 
which can be download from Zlab official website. The 
missing hydrogen atoms in the unbound structures were 
added by using the reduce program (version 3.24) [40]. 
The decoys for each complex were generated by the Perl 
script in decoys_bm4_zd3.0_6  deg offered by ZDOCK, 
and a total of 54,000 decoys sorted by the ZDOCK scores 

were generated for each system. It should be noted that 
for each system only the top scored 10,000 decoys were 
used in our analysis.

Criteria to evaluate the performance of protein–protein 
docking
Generally, in a protein–protein complex, the smaller pro-
tein is defined as the ligand protein and the larger one as 
the receptor protein. In our study, two types of root mean 
square deviations (RMSDs) between the predicted struc-
ture and the corresponding crystal structure, including 
ligand RMSD (L_RMSD) and interface RMSD (I_RMSD), 
were used as the criteria to evaluate the performance 
of protein–protein docking. L_RMSD, which is calcu-
lated over the  Cα atoms of the ligand proteins when the 
receptors are superposed, was used to assess the global 
geometric fit between the predicted and native confor-
mations [41]. I_RMSD, calculated over the  Cα atoms of 
the interfacial residues when the predefined interfacial 
residues are superposed, was used to measure the geo-
metric fit of the interface regions [41]. The interfacial 
residues in a protein–protein complex are defined as the 
residues within 10 Å of any atom in another protein [42]. 
The L_RMSDs and I_RMSDs were calculated by using 
the ProFit program [43], which employs the McLachlan 
algorithm in fitting. The structures of the protein–pro-
tein complexes were predicted from the unbound pro-
teins, and therefore the structures of the proteins in the 
crystal complexes and the predicted complexes may have 
obvious difference.

The criteria to evaluate the performance of protein–
protein docking for Target 107 in Round 35 of the CAPRI 
campaign are summarized in Additional file 1: Table S1. 
Based on these criteria, the predictions can be classified 
into several categories: incorrect, acceptable, medium, 
and high quality predictions. In this study, the hits are the 
predictions with L_RMSD less than 10 Å or I_RMSD less 
than 4 Å, which follows the criteria used in CAPRI.

Parameterization of the SASA‑based solvation model
Because of the high computational cost of MM/GBSA, 
particularly the GB calculation, the use of MM/GBSA 
as a scoring function to rank thousands to even millions 
of docked conformations is computationally unafford-
able. In order to balance computational cost and predic-
tion accuracy, a novel SASA-based solvation model was 
developed by fitting the solvation free energies of pro-
teins predicted by GB, as shown in Fig. 1a.

Generation of the protein dataset for the GB calculation
A protein dataset was established for the GB calculations 
(referred to as the GB dataset). The 1640 proteins in this 
dataset were selected from PDB based on the following 

https://zlab.umassmed.edu/zdock/benchmark.shtml
https://zlab.umassmed.edu/zdock/benchmark.shtml
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criteria: (1). the structures are obtained by X-ray experi-
ment, (2). the resolution should be lower than 2 Å, (3) the 
proteins do not contain any small molecule ligands, (4). 
the proteins are asymmetric, and (5) the proteins do not 
contain any modified residue.

Besides, for multiple structures whose sequences have 
at least 30% sequence identity, only a single structure is 
included in the dataset. Moreover, the protein structures 
with multiple conformations were eliminated.

Calculation of polar solvation free energies based on the GB 
model
The electrostatic/polar solvation free energies for the 
proteins in the GB dataset were computed by using the 
GB model implemented in Amber14. First, all missing 
heavy atoms and hydrogens of the proteins were added by 
using the tleap program in Amber14, and then the partial 
charges and force field parameters of the ff14SB force field 
were assigned. Subsequently, all proteins were optimized 
by 5000 cycles of minimization (2500 cycles of steepest 
descent and 2500 cycles of conjugate gradient). At last, 
the electrostatic solvation free energy for each protein was 
computed by using the modified GB model developed by 
Onufriev and colleagues (referred to as  GBOBC1) [44]. A 
value of 80 was used for the exterior dielectric constant, 
and 1 was used for the solute dielectric constant.

Definition of atom types
Based on the study reported by Hou et al. [45], all atoms 
in the 20 standard amino acids were classified into 21 

atom types shown in Table 1. The atoms that have similar 
chemical environment are defined as the same atom type.

Parameterization of the SASA‑based solvation model
For each protein in the GB dataset, the SASAs were cal-
culated by the NSC function that is an implementation 
of the DCLM (Double Cubic Lattice Method) variant of 
the Shrake’s and Rupley’s algorithm for surface calcu-
lation [46]. The van der Waals radii for H, C, N, O and 
S are listed in Additional file  1: Table S2 [47], and the 
radius of the solvent probe was defined to 0.6 Å, which 
performed best to develop the solvation model based on 
SASAs [48]. Consequently, the SASAs for the 21 differ-
ent atom types could be calculated, and the SASA-based 
solvation model given by Equation function (1) was 
developed.

where psolSASA represents the polar component of sol-
vation free energy; i is the IDs (Table  1) of the atom 
types for a given protein; wi is the weight for atom type 
i; SASAi is the sum of SASAs for atom type i in the given 
protein; Nres represents the total number of the residues 
in a given protein, and w0 is the weight of Nres; constant 
is the constant term in this formula. The whole GB data-
set was randomly split into a training set (~  800 pro-
tiens) with 50% of the proteins and a test set with the 

(1)
psolSASA = w0Nres +

21∑

i=1

wiSASAi + constant

i = 1, 2, 3 . . . 21

Fig. 1 Workflow of the development of a the SASA-based solvation model and b the HawkRank scoring function
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remaining proteins. Least-square fitting was applied to 
optimize the weights of different atom types and Nres 
based on the training set, and then the reliability of the 
developed solvation model was evaluated by the consist-
ency between the predictions given by the GB model and 
those given by the SASA-based model to the test set.

Development of the HawkRank scoring function
The HawkRank scoring function is a linear weighted 
sum of the van der Waals attractive and repulsive poten-
tials, the electrostatic attractive and repulsive poten-
tials, and the desolvation potentials. The core formula 
of HawkRank is shown in Equation function (2), where 
ΔE is the value of potentials and w is the weight of cor-
responding potentials:

The details about the energy terms used in the scoring 
function are described below. The workflow of the devel-
opment of HawkRank is shown in Fig. 1b.

(2)

HawkRank Score = wvdWattr
�EvdWattr

+ wvdWrepu
�EvdWrepu

+ welecattr�Eelecattr + welecrepu�Eelecrepu

+ wpdsol�Epdsol

Calculation of the van der Waals potentials
The definition of the van der Waals potentials (Equation 
function 3) is the same to that used in Kortemme’s study 
[49]. The formula was modified from the classical 6-12 
Lennard-Jones potential. As shown in Equation function 
(3), the van der Waals potentials are split into the attrac-
tive and repulsive parts. The repulsive part was calculated 
by the linear formula to reduce the potential local clashes 
caused by the discrete rotamers of side chains and fixed 
backbones [49], and the attractive part was defined as the 
traditional formula of the classical 6–12 Lennard-Jones 
potential. To improve computational efficiency, only the 
van der Waals interactions between two atoms with dis-
tance less than 12 Å were calculated.

where i and j are atoms i and j, rij is the interatomic dis-
tance between them, σij is the sum of atomic radii, and 
εij is the well depth derived from the Amber ff14SB force 
field [50].

(3)

Eattr = εij

{(
σij

rij

)12

− 2

(
σij

rij

)6
}

for 0.89σij < rij < 12 Å

Erepu = 10.0

(
1−

rij

0.89σij

)
for 0.89σij > rij

Table 1 The definitions of the 21 atom types of proteins used in the SASA-based solvation model

ID Weight Feature ID Weight Feature ID Weight Feature

1 –0.96 8 0.77 15 1.74 The rest of C atoms

2 3.32 9 0.05 16 7.81

3 0.55 10 6.82 17 0.94

4 0.33 11 2.69 18 0.13

5 9.34 12 1.51 19 0.23

6 0.73 13 1.89 20 0.84

7 3.69 14 2.63 21 0.23 The rest of H atoms

–

–

–

–

–

–

–

–

–

(1) α represents C that is connected with only one O atom; (2) β represents C with sp3 hybridization; (3) X is O or S atom; (4) Y is N or C atom; (5) R is H or C atom; (6) 
Atoms at E1, E2 and E3 are N, O or S
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Calculation of the electrostatic potentials
For the electrostatic potentials, the standard Coulomb 
equationis used (Equation function 4):

where i and j are atoms i and j, rij is the interatomic dis-
tance between them, qi and qj are the atomic partial 
charges afforded by the Amber ff14SB force field [50]. The 
dielectric constant ε was set to 1. The electrostatic poten-
tials are also split into an attractive and a repulsive parts. 
If the Eele between two atoms is less than zero, it will be 
added into the electrostatic attractive potentials, and oth-
erwise added into the electrostatic repulsive potentials.

Calculation of desolvation potentials
The SASA-based solvation model developed in this 
study was used to compute the solvation potentials of 
the unbound receptor, unbound ligand and complex 
for each system. Then, the desolvation (ΔEpdsol) was 
calculated by taking the polar solvation free energy of 
complex (psolSASA(com)) to subtract the sum of the polar 
solvation free energies of receptor (psolSASA(rec)) and 
ligand (psolSASA(lig)) (Equation function 5).

Training the scoring function
For each case in ZDOCK benchmark 4.0, the I_RMSDs 
and L_RMSDs for the top 10,000 decoys were calcu-
lated. After eliminating those cases whose hits could not 
be found in the top 10,000 decoys, 151 cases out of 176 
were included in the whole dataset. The 105 cases out of 
the 124 found in ZDOCK benchmark 3.0 were put into 
the training set and the remaining 46 cases into the test 
set. Then, based on the training set, genetic algorithm 
(GA) implemented in the R package (genalg) was used to 
determine the optimal set of the weights for the energy 
terms used in HawkRank. We set the maximum (3.0) and 
minimum (0.0) value for the weight of the van der Waals 
attractive potentials, electrostatic attractive potentials, 
electrostatic repulsive potentials and the polar desolva-
tion potentials. However, we set the maximum (0.001) 
and minimum (0.0) value for the weight of the van der 
Waals repulsive potentials, on account of inherent defect 
in the equation function to calculate the van der Waals 
repulsive potentials and we want to reduce the impact of 
the van der Waals repulsive potentials on the whole scor-
ing function. Besides, the population size was set as 200, 
the number of iterations was set as 1500 and the number 
of chromosomes that are kept into the next generation 
was about 20% of the population size.

(4)Eelec = 332
qiqj

εrij

(5)

�Epdsol = psolSASA(com) −

(
psolSASA(lig) + psolSASA(rec)

)

Evaluation of the performance of HawkRank
The capability of HawkRank to recognize the near-native 
poses from the decoys was compared with those of two 
popular force field-based scoring functions used in pro-
tein–protein docking, ZRANK [11] and FireDock [12], 
and a knowledge-based scoring function named dDFIRE 
[15].

ZRANK is a force field-based scoring function that is 
a linear combination of atom-based potentials, including 
electrostatics, van der Waals, and desolvation potentials. 
Pairwise Atomic Contact Energy (ACE) model [30] is 
used to calculate the desolvation energy. Parameters used 
to calculate the van der Waals and desolvation potentials 
in the ZRANK scoring function are derived from the 
CHARMM 19 polar hydrogen force field.

FireDock is a method for the refinement and rescoring 
of rigid-body docking solutions. The function of Fire-
Dock includes ACE, softened van der Waals interactions, 
electrostatic interactions and internal energy. Moreover, 
hydrogen and disulfide bonds, π-stacking and aliphatic 
interactions are also considered [12]. Compared with 
ZRANK and HawkRank, FireDock includes more energy 
terms.

dDFIRE is an all-atom statistical and knowledge-
based energy function. Each polar atom is treated as a 
dipole with a direction. The orientation of the dipole is 
defined by the bond vectors that connect the polar atoms 
with other heavy atoms, and the function of dDFIRE is 
extracted from protein structures based on the distance 
between two atoms and the three angles involved in 
dipole–dipole interactions [15]. Besides, the hydrogen 
bonding interactions are considered in dDFIRE via the 
physical dipole–dipole interactions.

It is well known that how to quantitatively evaluate the 
performance of a scoring function is quite essential. Tra-
ditionally, success rate (SR), the proportion of total cases 
with at least one hit in the top N predictions, has been 
widely used to evaluate the performance of a given scor-
ing function [16]. However, SR has its own intrinsic defi-
ciency. For example, for two different protein–protein 
complexes, one has nine hits in the top 100 predictions 
while the other has only one hit in the top 100 predic-
tions. However, when we calculate SR for these two 
systems, the contributions of the predictions for these 
two complexes to SR are identical, but nonetheless, the 
capacity of the scoring function to correctly rank the pre-
dictions for these two complexes is quite different. More-
over, SR ignores the rank for each hit. The “top-ranking” 
method is also a popular way to evaluate the performance 
of a given scoring function by identifying the first hit in 
the ranked predictions and comparing their ranks. The 
two evaluation strategies mentioned above are relatively 
intuitional, but not quite reasonable.
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In order to evaluate the ranking performance of a scor-
ing function on the whole benchmark in a reasonable 
way, MSR (modified success rate) proposed by us (Equa-
tion function 6) [21] was used in this study.

where xi represents a protein–protein complex, size(X) is 
the total number of the studied systems in a benchmark, 
HIT equals to the total number of the hits for a protein–
protein complex, ranki is the rank number of a hit, topj is 
the reciprocal of rankj, Y is the integrated value to evalu-
ate the performance of the scoring function for multiple 
protein–protein complexes, and F is the value to evalu-
ate the performance of the scoring function for a specific 
protein–protein complex.

Results and discussion
Performance of the SASA‑based solvation model
On the whole, the SASA-based solvation model (Equa-
tion function 2) yields satisfactory results for the training 
set (r = 0.96). The plot of the polar solvation free ener-
gies predicted by the SASA-based model versus those 
predicted by the GB model is shown in Fig. 2a. Moreo-
ver, the model illustrates good predictive ability on the 
test set (r = 0.93, Fig. 2b), suggesting that the developed 
model is reliable and not overfitting. The weights (wi) for 
the 21 atom types derived by fitting the GB polar solva-
tion free energies for the training set are listed in Table 1. 
The w0 and the constant term determined by fitting are 
− 10.51 and 59.78, respectively.

Performance of HawkRank
Based on the training set, the optimal weights for the five 
types of potentials were determined by GA as follows: 
0.850 for the van der Waals attractive potentials, 0.0005 
for the van der Waals repulsive potentials, 1.887 for the 
electrostatic attractive potentials, 1.853 for the electro-
static repulsive potentials, and 0.9303 for the polar des-
olvation potentials. Then, the trained HawkRank scoring 
function was used to score the decoys for the test set. 
Among the 46 cases in the test set, the correct binding 
structures for 2 cases (1CLV, 2AYO) are the best hits, 
those for 6 cases (1CLV, 1SYX, 2AYO, 2OUL, 3D5S, 
4CPA) can be found in the top 5 ranked predictions and 
those for 13 cases can be found in the top 20 ranked 
predictions. Then, we calculated the SR values (N =  10, 

(6)Y =

∑
F(xi)/size(X)

(7)F =

∑N
j=1 (1+ topj)

HIT

(8)topj =
1

rankj

20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 
600, 650, 700, 750, 800, 850, 900, 950, and 1000) for the 
46 cases in the test set. As shown in Fig. 3, HawkRank’s 
SR is higher than 50% when N is larger than 150 while 
ZRANK’s SR is higher than 50% when N is larger than 
100. When N is larger than 600, HawkRank’s SR value 
equals to or exceeds ZRANK’s SR value. According to SR, 
the performances of HawkRank and ZRANK are compar-
ative. However, HawkRank’s SR values are always higher 
than those of dDFIRE and FireDock.

Next, we analyzed the performance of each individual 
energy term used in HawkRank from the view of MSR. 
The Y values of the five energy terms are shown in Addi-
tional file  1: Figure S1. The performances of the two 
repulsive potentials are not satisfactory, but the attractive 
ones perform much better, especially the electrostatic 
attractive potentials. When N ≤  200, the polar desolva-
tion potentials show good performance, and its perfor-
mance decreases gradually with the increase of N.

The performance of HawkRank was then compared with 
those of ZRANK, FireDock and dDFIRE. The Y values 

Fig. 2 Comparison of the solvation free energies predicted by the 
GB model and the SASA-based solvation model for the a training set 
and b test set



Page 8 of 15Feng et al. J Cheminform  (2017) 9:66 

(from N = 20 to N = 2000) were calculated for each scor-
ing function. Overall, as shown in Fig. 4, HawkRank out-
performs ZRANK, FireDock and dDFIRE for both of the 
training set and test set. In details, when N is small than 
160, HawkRank shows comparative performance with 
ZRANK and dDFIRE, but when N becomes higher than 
160 it performs better. With N increases, the Y values of 
HawkRank increase much faster than those of the other 
three scoring functions. Therefore the HawkRank scor-
ing function can identify more hits with better ranking 
in the top N =  160–20,000 than the other three scoring 
functions. Besides, the performance of Firedock performs 
apparently worse than the other three scoring functions 
(Fig. 4). In summary, we can make the following conclu-
sion: for a force field-based scoring function, inclusion of 
more energy terms may not be necessary to achieve better 
ranking capabilities. The energy terms used in HawkRank 
are similar to those used in ZRANK while the major dif-
ference lies in the desolvation term. In HawkRank, a 
SASA-based solvation model was used to calculate the 
polar desolvation potentials, instead of the frequently-used 
ACE model used in ZRANK. The better performance of 
HawkRank over ZRANK was believed to be attributed to 
the better estimation of protein–protein desolvation free 
energy. Therefore we believe that, by fitting the solvation 
free energies predicted by GB, the SASA-based model 
should provide more reliable predictions than ACE.

Comparison of Pearson correlations between RMSDs 
and scores
Generally, the smaller the RMSD between the predicted 
complex structure and its native conformation is, the 
more similar these two structures are. The calculation of 
RMSD requires a prior superimposition of the predicted 

complex structure onto its native conformation, but the 
superimposition that minimizes the global RMSD of the 
predicted complex to the native conformation may be not 
necessarily the best solution: such superimposition is often 
compromised by a small number of significantly deviat-
ing fragments [51]. Therefore, we cannot exclude the pos-
sibility that a good docked structure with low energy has 
relatively larger I_RMSD or L_RMSD. It is expected that a 
lower RMSD is associated with a better docking score and 
vice versa. Therefore for a good scoring function which 
has lower scores for better predictions, a positive correla-
tion between RMSDs and the docking scores should be 
observed. Then, the correlations between I/L_RMSDs 
and the docking scores predicted by ZRANK, FireDock, 
dDFIRE or HawkRank were analyzed for the 176 cases 
in the dataset. Here, rI is referred to as the correlation 
between the scores and I_RMSDs and rL as the correla-
tion between the scores and L_RMSDs. Here, the rI or rL 
values were partitioned into the following four inter-
vals: 0 < rI/rL ≤ 0.2, 0.2 < rI/rL ≤ 0.4, 0.4 < rI/rL ≤ 0.6, and 
0.6 < rI/rL ≤  0.8. The results are shown in Fig. 5. Moreo-
ver, the cumulative occurrences of the rI/rL values are listed 
Table 2. For HawkRank, rL achieves 0.4 for 13 cases and rI 
achieves 0.4 for 23 cases in the training set, and rL achieves 
0.4 for 9 cases and rI achieves 0.4 for 11 cases in the test 
set. For dDFIRE, rL achieves 0.4 for 3 cases and rI achieves 
0.4 for 3 cases in the training set, and rL achieves 0.4 for 5 
cases and rI achieves 0.4 for 5 cases in the test set. ZRANK’s 
rI/rL and Firedock’s rI/rL even cannot achieve 0.4 for any 
case. Apparently, according to the cumulative occurrences 
of rI/rL shown in Table 2, HawkRank achieves much better 
performance than the other three scoring functions. 

Three examples (1JIW, 2AYO, and 1SYX) with rI/
rL  >  0.4 and three examples (2FJU, 1PVH, and 1GXD) 
with rI/rL < 0 are shown in Figs. 6 and 7, respectively. In 
next section, we also found that 2AYO and 1SYX were 
predicted accurately while 2FJU and 1GXD were pre-
dicted inaccurately by HawkRank. We also calculated the 
correlations  (r) between I/L_RMSDs and each energy 
term given by HawkRank, and the numbers of the cases 
in four intervals of r are also displayed in Fig. 8. It seems 
that the electrostatic attractive potentials have better cor-
relation with I/L_RMSDs than the other energy terms, 
indicating that the electrostatic attractive potentials con-
tribute more to the total scoring than any other energy 
term. In summary, the HawkRank scoring function pro-
vides a better funnel-shaped energy landscape than the 
other three scoring functions.  

Limitations of HawkRank
Although HawkRank has better ranking capability than 
ZRANK, FireDock and dDFIRE, it still has some limita-
tions. The F (N = 500) values for the 46 tested cases with the 

Fig. 3 The Success Rate (SR) as a function of the number of the top 
predictions (N) for HawkRank, ZRANK, dDFIRE and FireDock
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hits found in the top 10,000 decoys are listed in Additional 
file 1: Table S3. The 46 cases are ranked by the HawkRank’s 
F values in ascending order. F = 0 means that the scoring 
function does not find any hit in the top 500 predictions. For 
dDFIRE, ZRANK, FireDock and HawkRank, the numbers 

of the cases with F =  0 are 16, 8, 12 and 10, respectively. 
For 1XU1, 1ZHH, 2B4 J and 2OOR, the four scoring func-
tions cannot find any hit in their top 500 predictions. For 
1GXD, 1JZD, 1US7 and 2FJU, more than 60 hits docked by 
ZDOCK, but HawkRank performs poorly on them.

Fig. 4 The Y curves for the four scoring functions: a N from 20 to 300 for the training set, b N from 20 to 300 for the test set, c N from 320 to 1000 for 
the training set, d N from 320 to 1000 for the test set, e N from 1050 to 2000 for the training set, and f N from 1050 to 2000 for the test set
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Fig. 5 Number of the cases for each scoring function in four intervals: a number of cases about  rL for the training set, b number of cases about 
 rL for the test set, c number of cases about  rI for the training set, d number of cases about  rI for the test set

Table 2 Number of the cases for each scoring function in different intervals of ra

a For each scoring function, the first column is the number for rL, and the second column is the number for rI

dDFIRE ZRANK FireDock HawkRank

Training set (124 cases)

0.6 < r ≤ 0.8 1a 1a 0 0 0 0 1 0

0.4 < r ≤ 0.8 3 3 0 0 0 0 13 23

0.2 < r ≤ 0.8 25 28 12 7 1 1 55 60

0.0 < r ≤ 0.8 78 83 51 52 26 21 98 105

Test set (52 cases)

0.6 < r ≤ 0.8 1 0 0 0 0 0 1 0

0.4 < r ≤ 0.8 5 5 0 0 0 0 9 11

0.2 < r ≤ 0.8 16 20 7 5 0 0 27 28

0.0 < r ≤ 0.8 39 46 25 25 13 10 44 47



Page 11 of 15Feng et al. J Cheminform  (2017) 9:66 

The COCOMAPS online service [52] was used to ana-
lyze the protein–protein interfaces for the 46 cases in 
the test set. We found that the four cases (1GXD, 1JZD, 
1US7 and 2FJU) that cannot be successfully predicted 
by HawkRank have quite low percentages of near-native 

interface areas relative to the total surface areas. The 
four cases (1SYX, 2AYO, 2OZA and 3D5S) that can be 
well predicted by HawkRank have relatively high per-
centages of near-native interface areas relative to the 
total surface areas. In other words, for the cases with 

Fig. 6 Correlations between I/L_RMSDs and the scores predicted by HawkRank for 1JIW, 2AYO and 1SYX  (rI/rL > 0.4): a the correlation between I_
RMSDs and scores for 1JIW, b the correlation between L_RMSDs and scores for 1JIW, c the correlation between I_RMSDs and scores for 2AYO, d the 
correlation between L_RMSDs and scores for 2AYO, e the correlation between I_RMSDs and scores for 1SYX, f the correlation between L_RMSDs 
and scores for 1SYX
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the higher percentages of near-native interface areas, 
HawkRank may provide better ranking capability. Then, 
we used the COCOMAPS online service to analyze the 
interface characteristics of the best solutions predicted 
by HawkRank for 1GXD, 1JZD, 1US7 and 2FJU. As 
shown in Table 3, the percentages of the interface areas 

in the native complex structures for the four cases are 
much lower than those in the top ranked structures. 
Generally, for a protein–protein complex, larger inter-
face area implies that the receptor and ligand can form 
more favorable surface complementary. Apparently, 
HawkRank is apt to recognize the decoys with larger 

Fig. 7 Correlations between I/L_RMSDs and the scores predicted by HawkRank for 2FJU, 1PVH and 1GXD (rI/rL < 0): a the correlation between I_
RMSDs and scores for 2FJU, b the correlation between L_RMSDs and scores for 2FJU, c the correlation between I_RMSDs and scores for 1PVH, d the 
correlation between L_RMSDs and scores for 1PVH, e the correlation between I_RMSDs and scores for 1GXD, f the correlation between L_RMSDs 
and scores for 1GXD
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interface area percentages in near-native structures. 
This is also the reason why HawkRank can find more 
hits in its top 500 predictions for these cases with larger 

native interface areas such as 1SYX, 2AYO, 2OZA and 
3D5S.

Computational cost of HawkRank
The arithmetic speed of HawkRank is closely related to 
the size of the protein–protein complex. The speed of 
HawkRank is fast enough to meet the requirements for 
scoring a large number of decoys in the sampling stage 
of protein–protein docking. The scoring of a complex 
with 500 residues needs less than 0.3  s on a core (Intel 
Xeon CPU E5-2692 v2 @2.20 GHz) with Linux operating 
system.

Conclusions
In this study, we developed a new scoring function named 
HawkRank by combining polar desolvation potentials, 
van der Waal potentials and electrostatic potentials. 

Fig. 8 Number of the cases for each energy term of HawkRank in four intervals: a number of cases about  rL for the training set, b number of cases 
about  rL for the test set, c number of cases about  rI for the training set, d number of cases about  rI for the test set

Table 3 Comparative analysis of the interface areas 
for 1GXD, 1JZD, 1US7 and 2FJU

a The percentage of the near-native interface areas relative to the total surface 
areas of the native complex
b The percentage of the interface areas relative to total surface areas of the best 
solutions predicted by HawkRank

Native percentage (%)a Spurious percentage (%)b

1GXD 2.885 5.665

1JZD 3.650 9.005

1US7 2.405 8.765

2FJU 1.611 4.470
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HawkRank introduces a fast and effective way to calcu-
late the desolvation potentials based on a SASA-based 
solvation model. Compared with ZRANK, FireDock and 
dDFIRE, HawkRank shows better ranking capabilities 
to the 46 cases in test set. Besides, the scores predicted 
by HawkRank have higher correlations with L/I_RMSDs 
than those predicted by ZRANK, FireDock and dDFIRE, 
suggesting that the HawkRank scoring gives a better fun-
nel-shaped energy landscape than the other three scoring 
functions. Although its prediction accuracy still needs to 
be improved for some protein–protein complexes with 
small interface areas, HawkRank is efficient to meet cur-
rent requirements for scoring a large number of decoys 
in the sampling stage of protein–protein docking. In the 
light of the above assessment and the conclusion in our 
previous study that MM/GBSA rescoring has good capa-
bility to distinguish the correct protein–protein binding 
structures from the decoys, it would suggest to be an effi-
cient protocol of using HawkRank followed by the MM/
GBSA rescoring to improve the predictions of protein–
protein docking.

Authors’ contributions
TF and TH designed and implement the algorithm. TF, FC and YK performed 
the simulations. TF, HS, HL, DL and FZ analyzed the data. TF and TH wrote the 
manuscript. All authors read and approved the final manuscript.

Author details
1 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, 
Zhejiang, China. 2 State Key Lab of CAD&CG, Zhejiang University, Hang-
zhou 310058, Zhejiang, China. 

Acknowledgements
We thank the National Supercomputer Center in Guangzhou (NSCC-GZ) for 
providing the computing resources.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This study was supported by the National Key R&D Program of China 
(2016YFA0501701), the National Science Foundation of China (81773632, 
21575128, 81302679), and the Fundamental Research Funds for the Central 
Universities (2017QNA7032, 2017QNA7033, 2017QNA7034).

Additional file

Additional file 1: Contains the supplementary information of the 
manuscript. This includes Table S1. Criteria of assessing predictions in 
CAPRI (Å); Table S2. The van der Waals radii for H, C, N, O and S (Å); Table 
S3. The F values for the 46 cases in test set; Figure S1. The Y curves for the 
five energy terms in HawkRank: (A) N from 20 to 300 for the training set, 
(B) N from 20 to 300 for the test set, (C) N from 320 to 1000 for the training 
set, (D) N from 320 to 1000 for the test set, (E) N from 1050 to 2000 for the 
training set, and (F) N from 1050 to 2000 for the test set.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 19 September 2017   Accepted: 14 December 2017

References
 1. Arkin MR, Whitty A (2009) The road less traveled: modulating signal 

transduction enzymes by inhibiting their protein-protein interactions. 
Curr Opin Chem Biol 13(3):284–290

 2. Pawson T, Nash P (2000) Protein-protein interactions define specificity in 
signal transduction. Gene Dev 14(9):1027–1047

 3. Hicke L, Dunn R (2003) Regulation of membrane protein transport 
by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 
19:141–172

 4. Stone TA, Deber CM (2017) Therapeutic design of peptide modulators 
of protein-protein interactions in membranes. Biochim Biophys Acta-
Biomembr 1859(4):577–585

 5. Peng HP, Lee KH, Jian JW, Yang AS (2014) Origins of specificity and 
affinity in antibody-protein interactions. Proc Natl Acad Sci USA 
111(26):E2656–E2665

 6. Davies DR, Cohen GH (1996) Interactions of protein antigens with anti-
bodies. Proc Natl Acad Sci USA 93(1):7–12

 7. Gong X, Wang P, Yang F, Chang S, Liu B, He H, Cao L, Xu X, Li C, Chen W, 
Wang C (2010) Protein-protein docking with binding site patch predic-
tion and network-based terms enhanced combinatorial scoring. Proteins 
78(15):3150–3155

 8. Moretti R, Fleishman SJ, Agius R, Torchala M, Bates PA, Kastritis PL, Rodri-
gues JPGLM, Trellet M, Bonvin AMJJ, Cui M, Rooman M, Gillis D, Dehouck 
Y, Moal I, Romero-Durana M, Perez-Cano L, Pallara C, Jimenez B, Fernan-
dez-Recio J, Flores S, Pacella M, Kilambi KP, Gray JJ, Popov P, Grudinin S, 
Esquivel-Rodriguez J, Kihara D, Zhao N, Korkin D, Zhu X, Demerdash ONA, 
Mitchell JC, Kanamori E, Tsuchiya Y, Nakamura H, Lee H, Park H, Seok C, 
Sarmiento J, Liang S, Teraguchi S, Standley DM, Shimoyama H, Terashi G, 
Takeda-Shitaka M, Iwadate M, Umeyama H, Beglov D, Hall DR, Kozakov D, 
Vajda S, Pierce BG, Hwang H, Vreven T, Weng Z, Huang Y, Li H, Yang X, Ji X, 
Liu S, Xiao Y, Zacharias M, Qin S, Zhou H-X, Huang S-Y, Zou X, Velankar S, 
Janin J, Wodak SJ, Baker D (2013) Community-wide evaluation of meth-
ods for predicting the effect of mutations on protein-protein interactions. 
Proteins 81(11):1980–1987

 9. Huang S-Y, Yan C, Grinter SZ, Chang S, Jiang L, Zou X (2013) Inclusion of 
the orientational entropic effect and low-resolution experimental infor-
mation for protein-protein docking in Critical Assessment of PRedicted 
Interactions (CAPRI). Proteins 81(12):2183–2191

 10. Camacho CJ, Zhang C (2005) FastContact: rapid estimate of contact and 
binding free energies. Bioinformatics (Oxford, England) 21(10):2534–2536

 11. Pierce B, Weng Z (2007) ZRANK: reranking protein docking predictions 
with an optimized energy function. Proteins 67(4):1078–1086

 12. Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction 
refinement in molecular docking. Proteins 69(1):139–159

 13. Cheng TM, Blundell TL, Fernandez-Recio J (2007) pyDock: electrostatics 
and desolvation for effective scoring of rigid-body protein-protein dock-
ing. Proteins 68(2):503–515

 14. Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference 
state improves structure-derived potentials of mean force for struc-
ture selection and stability prediction. Protein Sci Publ Protein Soci 
11(11):2714–2726

 15. Yang Y, Zhou Y (2008) Specific interactions for ab initio folding of protein 
terminal regions with secondary structures. Proteins 72(2):793–803

 16. Andreani J, Faure G, Guerois R (2013) InterEvScore: a novel coarse-grained 
interface scoring function using a multi-body statistical potential cou-
pled to evolution. Bioinformatics (Oxford, England) 29(14):1742–1749

 17. Shih ES, Hwang MJ (2015) NPPD: a protein-protein docking scoring 
function based on dyadic differences in networks of hydrophobic and 
hydrophilic amino acid residues. Biology 4(2):282–297

 18. Khashan R, Zheng W, Tropsha A (2012) Scoring protein interaction decoys 
using exposed residues (SPIDER): a novel multibody interaction scoring 

https://doi.org/10.1186/s13321-017-0254-7


Page 15 of 15Feng et al. J Cheminform  (2017) 9:66 

function based on frequent geometric patterns of interfacial residues. 
Proteins 80(9):2207–2217

 19. Janin J (2010) Protein-protein docking tested in blind predictions: the 
CAPRI experiment. Mol BioSyst 6(12):2351–2362

 20. Kastritis PL, Bonvin AM (2010) Are scoring functions in protein-protein 
docking ready to predict interactomes? Clues from a novel binding affin-
ity benchmark. J Proteome Res 9(5):2216–2225

 21. Zhang Q, Feng T, Xu L, Sun H, Pan P, Li Y, Li D, Hou T (2016) 
Recent advances in protein–protein docking. Curr Drug Targets 
17(14):1586–1594

 22. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T (2016) Assessing the 
performance of the MM/PBSA and MM/GBSA methods. 6. Capability 
to predict protein-protein binding free energies and re-rank binding 
poses generated by protein-protein docking. Phys Chem Chem Phys 
18(32):22129–22139

 23. Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by 
binding free energy calculation and free energy decomposition for the 
Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330(4):891–913

 24. Gohlke H, Klebe G (2002) Approaches to the description and prediction 
of the binding affinity of small-molecule ligands to macromolecular 
receptors. Angew Chem Int Ed Engl 41(15):2644–2676

 25. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the 
MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free 
energy calculations based on molecular dynamics simulations. J Chem 
Inf Model 51(1):69–82

 26. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the 
molecular mechanics/Poisson Boltzmann surface area and molecular 
mechanics/generalized Born surface area methods. II. The accuracy of 
ranking poses generated from docking. J Comput Chem 32(5):866–877

 27. Sun H, Li Y, Shen M, Tian S, Xu L, Pan P, Guan Y, Hou T (2014) Assessing the 
performance of MM/PBSA and MM/GBSA methods. 5. Improved docking 
performance using high solute dielectric constant MM/GBSA and MM/
PBSA rescoring. Phys Chem Chem Phys 16(40):22035–22045

 28. Sun H, Li Y, Tian S, Xu L, Hou T (2014) Assessing the performance of MM/
PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA 
methodologies evaluated by various simulation protocols using PDBbind 
data set. Phys Chem Chem Phys 16(31):16719–16729

 29. Tian S, Li Y, Wang J, Xu X, Xu L, Wang X, Chen L, Hou T (2013) Drug-
likeness analysis of traditional Chinese medicines: 2. Characterization 
of scaffold architectures for drug-like compounds, non-drug-like com-
pounds, and natural compounds from traditional Chinese medicines. J 
Cheminform 5:5

 30. Zhang C, Vasmatzis G, Cornette JL, DeLisi C (1997) Determination of 
atomic desolvation energies from the structures of crystallized proteins. J 
Mol Biol 267(3):707–726

 31. Nooren IMA, Thornton JM (2003) Diversity of protein–protein interactions. 
EMBO J 22(14):3486–3492

 32. Janin J, Bahadur RP, Chakrabarti P (2008) Protein-protein interaction and 
quaternary structure. Q Rev Biophys 41(2):133–180

 33. Jubb H, Blundell TL, Ascher DB (2015) Flexibility and small pockets at 
protein-protein interfaces: new insights into druggability. Prog Biophys 
Mol Biol 119(1):2–9

 34. Liu Z, Li Y, Han L, Li J, Liu J, Zhao Z, Nie W, Liu Y, Wang R (2015) PDB-wide 
collection of binding data: current status of the PDBbind database. Bioin-
formatics 31(3):405–412

 35. Basse MJ, Betzi S, Bourgeas R, Bouzidi S, Chetrit B, Hamon V, Morelli 
X, Roche P (2013) 2P2Idb: a structural database dedicated to orthos-
teric modulation of protein-protein interactions. Nucleic Acids Res 
41(D1):D824–D827

 36. Basse MJ, Betzi S, Morelli X, Roche P (2016) 2P2Idb v2: update of a struc-
tural database dedicated to orthosteric modulation of protein-protein 
interactions. Database 6:baw007

 37. Chen R, Mintseris J, Janin J, Weng ZP (2003) A protein-protein docking 
benchmark. Proteins-Struct Funct Genet 52(1):88–91

 38. Hwang H, Vreven T, Janin J, Weng Z (2010) Protein-protein docking 
benchmark version 4.0. Proteins 78(15):3111–3114

 39. Mintseris J, Pierce B, Wiehe K, Anderson R, Chen R, Weng Z (2007) 
Integrating statistical pair potentials into protein complex prediction. 
Proteins 69(3):511–520

 40. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and 
glutamine: using hydrogen atom contacts in the choice of side-chain 
amide orientation. J Mol Biol 285(4):1735–1747

 41. Janin J (2005) Assessing predictions of protein-protein interaction: the 
CAPRI experiment. Protein Sci Publ Protein Soc 14(2):278–283

 42. Mendez R, Leplae R, Lensink MF, Wodak SJ (2005) Assessment of CAPRI 
predictions in rounds 3-5 shows progress in docking procedures. Proteins 
60(2):150–169

 43. McLachlan A (1982) Rapid comparison of protein structures. Acta Crystal-
logr A 38(6):871–873

 44. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states 
and large-scale conformational changes with a modified generalized 
born model. Proteins 55(2):383–394

 45. Hou T, Zhang W, Huang Q, Xu X (2005) An extended aqueous solvation 
model based on atom-weighted solvent accessible surface areas: SAWSA 
v2.0 model. J Mol Model 11(1):26–40

 46. Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double 
cubic lattice method—efficient approaches to numerical-integration 
of surface-area and volume and to dot surface contouring of molecular 
assemblies. J Comput Chem 16(3):273–284

 47. van der Bondi A (1964) Waals volumes and radii. J Phys Chem 
68(3):441–451

 48. Wang JM, Wang W, Huo SH, Lee M, Kollman PA (2001) Solvation model 
based on weighted solvent accessible surface area. J Phys Chem B 
105(21):5055–5067

 49. Kortemme T, Baker D (2002) A simple physical model for binding 
energy hot spots in protein-protein complexes. Proc Natl Acad Sci USA 
99(22):14116–14121

 50. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling 
C (2015) ff14SB: improving the accuracy of protein side chain and back-
bone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713

 51. Kufareva I, Abagyan R (2012) Methods of protein structure comparison. 
Methods Mol Biol 857:231–257

 52. Vangone A, Spinelli R, Scarano V, Cavallo L, Oliva R (2011) COCOMAPS: a 
web application to analyze and visualize contacts at the interface of bio-
molecular complexes. Bioinformatics (Oxford, England) 27(20):2915–2916


	HawkRank: a new scoring function for protein–protein docking based on weighted energy terms
	Abstract 
	Background
	Methods
	Preparation of the protein–protein decoy dataset
	Criteria to evaluate the performance of protein–protein docking
	Parameterization of the SASA-based solvation model
	Generation of the protein dataset for the GB calculation
	Calculation of polar solvation free energies based on the GB model
	Definition of atom types
	Parameterization of the SASA-based solvation model

	Development of the HawkRank scoring function
	Calculation of the van der Waals potentials
	Calculation of the electrostatic potentials
	Calculation of desolvation potentials
	Training the scoring function

	Evaluation of the performance of HawkRank

	Results and discussion
	Performance of the SASA-based solvation model
	Performance of HawkRank
	Comparison of Pearson correlations between RMSDs and scores
	Limitations of HawkRank
	Computational cost of HawkRank

	Conclusions
	Authors’ contributions
	References




