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In-silico methods have been explored as potential tools for assessing ADME and ADME regulatory properties
particularly in early drug discovery stages. Machine learning methods, with their ability in classifying diverse
structures and complex mechanisms, are well suited for predicting ADME and ADME regulatory properties.
Recent efforts have been directed at the broadening of application scopes and the improvement of predictive
performance with particular focuses on the coverage of ADME properties, and exploration of more diversified
training data, appropriate molecular features, and consensus modeling. Moreover, several online machine
learning ADMEprediction servers have emerged. Herewe review these progresses and discuss the performances,
application prospects and challenges of exploring machine learning methods as useful tools in predicting ADME
and ADME regulatory properties.
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1. Introduction

The discovery and optimization of therapeutic agents with desirable
pharmacodynamics, pharmacokinetic toxicological properties is the key
focus of drug development efforts [1]. Predictive tools for accurately
assessing pharmacokinetic and toxicological properties as well as
pharmacodynamic properties in early development stages are highly
useful for increased productivity in drug discovery processes [1–3]. As
part of the efforts for developing these tools, computational methods
have been developed and improved for the prediction of compound
absorption, distribution, metabolism, and excretion (ADME) proper-
ties [4,5]. In particular, machine learning (ML) methods have shown
promising potential in predicting ADME properties by correlating
these properties to molecular features and by establishing the complex
structure–property relationships for diverse ranges of molecular
structures and mechanisms [6,7].

More recently, efforts have been directed at the development and
refinement of ML models for improved prediction and more exten-
sive coverage of various ADME properties particularly excretion
[8–10] and distribution [11,12] properties, and for the prediction of
regulators of drug metabolism [13–16] and excretion [8] implicated
in drug–drug interactions andmulti-drug resistance respectively. Ef-
forts have also been made to further explore consensus modeling for
improved prediction of the ADME properties and ADME regulatory
properties of drug candidates [8,13]. Moreover, online machine
learning ADME and ADME regulatory property prediction servers
have emerged [15,17]. Here we review these progresses and discuss
the performances, application prospects and challenges of exploring
ML methods as tools for predicting ADME and ADME regulatory
properties.

2. Molecular descriptors for representing compounds in ADME
prediction

Molecular descriptors have been extensively used for
representing structural and physicochemical properties of com-
pounds from their molecular structures. The compounds associated
with a specific ADME property are typically of high structural and
mechanistic diversity. Therefore, the prediction of various ADME
properties requires different sets of molecular descriptors that ade-
quately cover the relevant molecular features. A large variety of
N3000 molecular descriptors can be computed from such software
as DRAGON [18], E-DRAGON [19], Molconn-Z [20], JOELib [21],
MODEL [22] and PaDEL [23]. These descriptors are broadly divided
into 18 classes, which include constitutional descriptors such as
molecular weight, geometrical descriptors such as surface areas, topo-
logical descriptors such as topological index, RDF descriptors
representing such features as inter-atomic distances [24], molecular
walk counts [25], 3D-MoRSE descriptors describing such properties as
polarizabilities [26], BCUT descriptors representing such information
as connectivity [27], WHIM descriptors describing such features as mo-
lecular symmetries [28], Galvez topological charge indices and charge
descriptors [29], GETAWAY descriptors [30], 2D autocorrelations,
functional groups, atom-centered descriptors, aromaticity indices [31],
Randic molecular profiles [32], electrotopological state descriptors
[33], and linear solvation energy relationship descriptors [34].

Not all molecular descriptors are necessary for predicting an
ADME property. The relevant descriptors can be selected by either
intuition [35] or feature selection methods. The commonly used fea-
ture selection methods include recursive feature eliminations (RFE)
[36], genetic algorithm-based approaches [37], and simulated
annealing-based methods [38]. Some methods such as RFE have
gained popularity due to their effectiveness for discovering features
informative of ADME properties [39–41]. The general feature selec-
tion strategy is outlined as follows: First, a ML model is generated
by using either all or a few descriptors. This model is further used
to rank the predictive contribution of the descriptors with the least
contributing ones eliminated. In the next step, a new ML model is
constructed by using either the reduced set of descriptors for the
all-descriptors model or the retained set of descriptors plus newly
added descriptors for the few-descriptors model. This new model is
subsequently used to rank and eliminate/add descriptors. This itera-
tion process continues until all of the irrelevant descriptors are elim-
inated or added. In many cases, it is difficult to uniquely select an
optimal set of descriptors due to the high redundancy and overlap-
ping of many descriptors [42]. Separate sets of descriptors with re-
dundant and/or overlapping feature coverage have been found to
give similar predictive accuracies [43]. The interpretation of the pre-
dictive results should be more appropriately conducted at the fea-
ture class level where redundant and overlapping descriptors are
grouped into one class [44–46].

The currently available descriptors, though capable of representing a
wide range of molecular features, seem to be insufficient to describe
certain molecular features relevant for ADME prediction, leading to
higher false positive rates in the prediction of some ADME proper-
ties [39,47]. Examples of the inadequately-describedmolecular features
are inflexible multi-rings, highly polar tetrazole rings, complex two ring
system with multiple heteroatoms, polycyclic aromatic structures, long
flexible chains, hydrazine group, andmultiple ionisable groups. There is
a need to develop new molecular descriptors covering these and other
molecular features.
3. Commonly used machine learning methods for developing
classification models

A number of ML methods have been used for developing ADME
predictive tools. These include Linear Discriminant Analysis (LDA),
k Nearest Neighbor (kNN), Artificial Neural Network (ANN), Probabilistic
Neural Network (PNN), Support Vector Machine (SVM), Decision Tree
(DT), Recursive Partitioning (RP), Random Forest (RF), Naïve Bayesian
(NB), Multiple Linear Regression (MLR), Partial Least Squares Regression
(PLSR), kNN Regression (kNNR), Support Vector Regression (SVR),
Random Forest Regression (RFR), and combined classifier approaches.
Websites for the freely downloadable codes of these methods are
given in Table 1.



Table 1
Some websites that contain freely downloadable codes of machine learning methods.

Decision tree
Simple Decision Tree https://sites.google.com/site/simpledecisiontree/
OC1 http://www.cbcb.umd.edu/~salzberg/announce-oc1.html
SMILES http://users.dsic.upv.es/~flip/smiles/
PC4.5 http://www.cs.nyu.edu/~binli/pc4.5/
YaDT http://www.di.unipi.it/~ruggieri/software.html
C4.5 and C5.0 http://www.rulequest.com/Personal/

Random forests
Random Forests http://www.stat.berkeley.edu/~breiman/RandomForests/
randomForest R package http://cran.r-project.org/web/packages/randomForest/index.html
FastRandomForest https://code.google.com/p/fast-random-forest/

KNN
kNN classifier http://www.fit.vutbr.cz/~bartik/Arcbc/kNN.htm
k Nearest Neighbor demo http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html
GPU-FS-kNN http://sourceforge.net/projects/gpufsknn/
GA/KNN http://www.niehs.nih.gov/research/resources/software/biostatistics/gaknn/
Dense K Nearest Neighbor http://www.autonlab.org/autonweb/10522.html

Neural network
BrainMaker http://www.calsci.com/
fann http://leenissen.dk/fann/
NuClass http://www.uta.edu/faculty/manry/new_software.html
sciengyrpf http://sourceforge.net/projects/sciengyrpf/
Sharky Neural Network http://sharktime.com/us_SharkyNeuralNetwork.html

SVM
LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/
SVM light http://svmlight.joachims.org/
M-SVM http://www.loria.fr/~guermeur/
mySVM http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html
e1071 R package http://cran.r-project.org/web/packages/e1071/index.html
BSVM http://www.csie.ntu.edu.tw/~cjlin/bsvm/
LS-SVMlab http://www.esat.kuleuven.be/sista/lssvmlab/
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3.1. Linear discriminant analysis (LDA)

LDA [48] (Fig. 1) separates two classes of vectors by constructing a
hyperplane defined by the following linear discriminant function L =
∑i

kwixi, where L is the resultant classification score andwi is the weight
associatedwith the corresponding descriptor xi. A positive or negative L
value indicates that a vector x belongs to the positive or negative class
respectively.
3.2. k nearest neighbor (kNN) and kNN regression (kNNR)

In kNN (Fig. 2), the Euclidean distance D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjx−xijj2

p
between an

unclassified vector x and each individual vector xi in the training set is
measured [49]. A total of k number of vectors nearest to the unclassified
vector x are used to determine the class of that unclassified vector. The
class of themajority of the k nearest neighbors is chosen as the predict-
ed class of the unclassified vector x. The activity of the studied
compound is determined by averaging the activity values of a total of
k number of training compounds nearest to that compound ŷ =
(∑i = 1

k yi)/k.
3.3. Artificial neural network (ANN)

An ANN (Fig. 3) is an information-processing paradigm inspired
by the way the densely interconnected, parallel structure of the
mammalian brain processes information. ANN consists of a set of
highly interconnected entities, called nodes or units. Each unit is de-
signed to mimic its biological counterpart, the neuron, mathemati-
cally. Each node accepts a weighted set of inputs and responds
with an output respectively [50].
3.4. Probabilistic neural network (PNN)

PNN (Fig. 4) is a form of neural network that uses Bayes optimal
decision rule hicifi(x) N hjcjfj(x) for classification [51], where hi and
hj are the prior probabilities, ci and cj are the costs of misclassification
and fi(x) and fj(x) are the probability density function for class i and j
respectively. An unknown vector x is classified into population i if the
product of all the three terms is greater for class i than for any other
class j (not equal to i). In most applications, the prior probabilities
and costs of misclassifications are treated as being equal. The
probability density function for each class for a multivariate case
can be estimated by using the Parzen's nonparametric estimator

g xð Þ ¼ 1
n∑

n
i¼1 exp −∑p

j¼1
xj−xi j
σ j

� �2
 !

[52], where n is the number

of samples in the population, p is the number of features, xj is the
jth feature of an unclassified sample, xij is the jth feature of the ith
sample in the population, and σj is the smoothing factor of this fea-
ture. Traditional neural networks such as feed-forward back-
propagation neural network rely on multiple parameters and net-
work architectures to be optimized. In contrast, PNN only has a sin-
gle adjustable parameter, a smoothing factor σ for the radial basis
function in the Parzen's nonparametric estimator. Thus the training
process of PNN is usually orders of magnitude faster than those of
the traditional neural networks.
3.5. Support vector machine (SVM) and support vector regression (SVR)

SVM is illustrated in Fig. 5. Linear SVM constructs a hyperplane sep-
arating two different classes of feature vectors with a maximummargin
[53]. This hyperplane is constructed by finding a vectorw and a param-
eter b that minimizes ||w|| which satisfies the following conditions:
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http://www.stat.berkeley.edu/~breiman/RandomForests/
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Fig. 1. Schematic diagram illustrating the processing of the prediction of compounds of a particular property from their structure by using a machine learning method — linear discrim-
inative analysis (LDA). Feature vector (x1, x2, x3, …) represents structural and physiochemical properties such as hydrophobicity, volume, polarizability, etc.
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w ⋅ xi− b ≥ 1 (positive class) andw ⋅ xi− b ≤−1 (negative class). Here xi
is a feature vector, w is a vector normal to the hyperplane, b

wj jj j is the

perpendicular distance from the hyperplane to the origin and ||w||
is the Euclidean norm of w. Nonlinear SVM projects feature vectors
into a high dimensional feature space by using a kernel function
such as k(xi, xj) = exp(−γ|xi − xj|2), for γ N 0, the linear SVM proce-
dure is then applied to the feature vectors in this feature space. After
the determination of w and b, a given vector x can be classified by
using f(x) = sign(∑i = 1

n ai
0yiK(x, xi) + b), where the coefficients αi

0

and b are determined by maximizing the following Lagrangian ex-
pression ∑n

i¼1ai−
1
2∑

n
i¼1∑

n
j¼1aiajyiy jK xi; xj

� �
, under conditions

ai ≥ 0 and ∑i = 1
n aiyi = 0. A positive or negative f(x) value indicates

that the vector x belongs to the positive or negative class
respectively.

SVR is an extension of support vector machine (SVM) to solve non-
linear regression problems by introducing an ε-insensitive loss function
[53–55]. A kernel function (in the form of a polynomial, gaussian, or
sigmoidal function) is used to map the input vectors into a higher
dimensional feature space and then a linear regression model is con-
ducted in this feature space. The quality of estimation is measured by
the ε-insensitive loss function L(y, f(x, ω)) = 0 if |y − f(x, w)| ≤ ε,
otherwise L(y, f(x,ω)) = |y− f(x,ω)|− ε. The optimal regression func-
tion can be represented by ŷ = ∑i = 1

Nsv (ai − ai⁎)K(xi, x) + b under the
conditions 0 ≤ ai, ai⁎ ≤ C and ∑i = 1

n (ai + ai⁎) = 0, where ŷ represents
the predicted activity value of a specific property, Nsv is the number
of support vectors, constant C determines the trade-off between the
flatness of function f and the amount up to which deviations larger
than ε are tolerated and K is the kernel function, normally Gaussian

kernel function K xi; xj
� � ¼ e− x j−xij j2

� �
= 2σ2ð Þ is used.

3.6. C4.5 decision tree (C4.5 DT)

C4.5 DT (Fig. 6) is a branch-test-based classifier [56]. A branch of the
decision tree corresponds to a group of classes and a leaf represents a
specific class. A decision node specifies a test on a single attri-
bute value, with one branch and its subsequent classes as possi-
ble outcomes. C4.5 decision tree uses recursive partitioning to
examine every attribute of the data and rank them according
to their ability to partition the remaining data, thereby con-
structing a decision tree. A vector x is classified by starting at



Fig. 2. Schematic diagram illustrating the processing of the prediction of compounds of a particular property from their structure by using a machine learningmethod— k nearest neigh-
bors (kNN). Feature vector (x1, x2, x3, …) is the same as that in Fig. 1.
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the root of the tree and moving through the tree until a leaf is
encountered. At each non-leaf decision node, a test is conducted
to move into a branch. Upon reaching the destination leaf, the
class of the vector x is predicted to be that of the leaf. This pro-
cess continues to allow the tree to grow to the full size, which
is then pruned back to an appropriate size based on the evalua-
tion of its overall prediction performance.

The estimation criterion in the decision tree algorithm is the selec-
tion of an attribute to test at each decision node in the tree. The goal is
to select the attribute that is most useful for classifying examples. A
good quantitative measure of the worth of an attribute is a statistical

property called information gain Gain S;Að Þ ¼ S−∑v∈Value Að Þ
Svj j
Sj j Sv that

measures how well a given attribute separates the training exam-
ples according to their target classification. Here S = ∑i = 1

n −
pi log2pi, S is called entropy that characterizes the (im)purity of an
arbitrary collection of examples, pi is the proportion of S belonging
to class I, values(A) is the set of all possible values for attribute A,
and Sv is the subset of S for which attribute A has value v
(i.e., Sv = {sÎS|A(s) = v}).

3.7. Recursive partitioning (RP) classifiers

RP creates a decision tree to classify compounds into separate
classes based on a set of predefined variables (e.g. descriptors). RP
models are constructed by successively splitting a dataset into in-
creasingly homogeneous subsets until they can no longer be split,
based on a set of “stopping rules”. At each splitting point, the RP al-
gorithm searches a pool of independent variables (e.g. descriptors)
and identifies a single variable and the corresponding splitting
value that best purify the group of compounds entering the node.
The splitting process continues until either no further improve-
ment can be achieved, or the number of compounds in each purified
group is too small to justify further splitting.



Fig. 3. Schematic diagram illustrating the processing of the prediction of compounds of a particular property from their structure by using a machine learning method— artificial neural
network (ANN) or neural network (NN). A, B are the agents with this property, E, F are the agents without this property, and their feature vector (x1, x2, x3,…) is the same as that in Fig. 1.
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3.8. Random forest (RF)

RF (Fig. 7) is a non-linear multiple classification algorithm, by
making prediction based on majority voting from an ensemble of
unpruned decision trees. Each decision tree is grown by a bootstrap
sampling of the training dataset. Each node is split by a subset of
features randomly chosen at that node, where the best node split is
selected based on the criterion to minimize the variance within the
branches. Each leaf in each decision tree is an entry in the training
data.
3.9. Naïve Bayesian classifiers

A naive Bayesian classifier is a simple probabilistic classifier based on
the Bayes' theoremwith strong (naive) independence assumptions [57].
The probability model for a classifier is a conditional model P(Y|x1,…, xn)
over a dependent class variable C with a small number of outcomes or
classes (e.g. C = + for compounds associated with an ADME property,
C = − for compounds not associated with the property), conditional
on feature variables x1 through xn (e.g. molecular descriptors). When

Bayes's theorem is used: P þjx1;…; xnð Þ ¼ P x1 ;…;xn jþð ÞP þð Þ
P x;…;xnð Þ where

P(x1, …, xn|+) is the conditional probability of a particular compound
being classified as a member of the+ class, P(+) is the prior probability,
a probability induced froma set of compounds in the training set; P(x1,…,
xn) is the marginal probability of the given descriptors that will occur in
the training set.
3.10. Multiple linear regression (MLR)

MLR [58] is one of the most commonly used and simplest methods
for constructing QSPR models. A MLR model is constructed under the
assumption that a linear relationship exists between a set of molecular
descriptors of a compound (which is represented by a feature vector x
with each descriptor as its component) and a specific ADME activity
(which is represented by a quantity y). A MLR model can be de-
scribed using the following equation ŷ = β0 + β1x1 + … + βnxn,
where {x1, …, xn} are molecular descriptors, β0 is the regression
model constant, β1 to βn are the coefficients for individual



Fig. 4. Schematic diagram illustrating theprocessing of theprediction of compoundsof a particular property from their structure byusing amachine learningmethod—probabilistic neural
network (PNN). A, B, E, F and feature vector (x1, x2, x3, …) are the same as those in Figs. 1 and 3.
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descriptor x1 to xn. The values for β0 to βn are chosen by minimizing
the sum of squares of the residuals between the observed and pre-
dicted values defined by the equation so as to give the best predic-
tion of y from x.

The advantage of MLR is its simplistic form and easily interpret-
able mathematical expression. The sign of the coefficients β1 to βn in-
dicates whether each molecular descriptor contributes positively or
negatively to a specific activity and their magnitudes indicates the
relative importance of each descriptor to that activity. However,
MLR works well only when the structure–property relationship is
linear in nature, the set of molecular descriptors are mathematically
independent (orthogonal) of each another, and the number of
compounds in the training set exceeds the number of molecular de-
scriptors by at least a factor of five [59]. It has been found that, when
collinear descriptors are used, the derived coefficients β1 to βn tend
to be larger than the real values and sometimes have opposite signs
[60]. Therefore, the assumption of a linear relationship between a
set of molecular descriptors and a specific activity may not always
be appropriate, especially in the cases involving multiple
mechanisms.
3.11. Partial least squares regression (PLSR) and logistic PLS

PLSR is a generalization of MLR [61]. It hasmore enhanced capability
than MLR in classifying data with strongly collinear (correlated), noisy,
and numerous descriptors, and in simultaneously predicting the
multiple responses. Given a feature vector x composed of molecular de-
scriptors {x1, …, xn}, a linear PLSR model finds a few “new” variables,
called X-scores and denoted by ta (a = 1,2,…,A), for predicting the re-
sponse y as linear combinations of {x1, …, xn} with the weights Wna

(a = 1,2,…,A), namely tia = ∑nWna × xin.
Logistic PLS (Fig. 8) is a variation of ordinary PLS, possessing all its

useful features in combination with the ability to analyze binary data.
The predicted value is the logit transformation of probability for a com-
pound to possess a specific ADME property (p) which is calculated as

the sum of the contributions of all descriptors: logit pð Þ ¼ ln p
1−p

� �
¼

∑iai f i þ c, where p is the probability for a compound to exhibit an
ADME property; fi is the occurrence sum of the ith descriptor, ai is the
statistical coefficient of the descriptor determined using logistic PLS,
and c is the intercept.



Fig. 5. Schematic diagram illustrating the processing of the prediction of compounds of a particular property from their structure by using a machine learning method — support vector
machine (SVM). A, B, E, F and feature vector (x1, x2, x3, …) are the same as those in Figs. 1 and 3.
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3.12. Combined classifiers approach

The combined classifier approach, illustrated in Fig. 9, explores
the collective predictive power of multiple ML classifiers, with the
probability output of each independent ML model processed by a de-
cision network [13]. This decision network consists of two layers of
units, an input layer and an output layer. First, each individual ML
model is trained separately. Then the predictive outcomes of the
multiple ML models are evaluated to obtain the probability output
(Pi + 1 and Pi − 1, i = 1,2,3,4). These probability outputs are used as
new descriptors to develop a neural network model, such as a Back-
Propagation ANN model [13], that generates the final combination
decision probability (PC+1 and PC

−1). In predicting a specific ADME
property of a compound, it is first classified by each ML model and
then put into the neural network model developed by the training set
to make the final prediction.

4. The exploration of machine learning classification methods for
predicting ADME properties

ML classification methods classify compounds into one of the two
opposing classes, one associated with a property (e.g. an ADME proper-
ty) and the other not associatedwith the property. Because of their abil-
ity in classifying compounds of diverse range of structures and
physicochemical properties, ML classification methods have been
extensively explored for predicting various ADME properties that are



Fig. 6. Schematic diagram illustrating the processing of the prediction of compounds of a
particular property from their structure by using a machine learning method — C4.5
decision tree. A, B, E, and F are the same as those in Fig. 3.
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typically associated with compounds of diverse structures (e.g. sub-
strates of a drug transporter) and in some cases multiple mechanisms
(e.g. blood brain barrier crossing), Table 2 summarises the recently de-
veloped ML classification models and consensus models for predicting
compounds of various ADME properties. Most of these models are for
the prediction of transporter-mediated excretion properties, reflecting
the recent efforts for more extensive coverage of key drug efflux and in-
flux transporters and for improved predictive performance by expand-
ed training datasets and appropriate selection of molecular descriptors
[8–10]. Several models are for the prediction of distribution properties
in plasma protein binding and blood brain barrier crossing, reflecting
continuous efforts in developing improved predictive models by
expanded training datasets and appropriate selection of molecular
descriptors [17,62].

The ADME predictive performance of these ML models has typically
beenmeasured by the sensitivity SE, specificity SP, and overall accuracy
AC, whichmeasure the predictive accuracy for the compounds associat-
ed with an ADME property, compounds not associatedwith the proper-
ty, and all compounds respectively. As shown in Table 2, the developed
ML models showed good predictive capability in terms of these perfor-
mance indicators. Specifically, the SEs and SPs in predicting human
serum albumin substrates and blood–brain barrier crossing in ADME
category E are in ranges of 81%–96%, 70%–83%, respectively. The SEs,
SPs and ACs in predicting P-glycoprotein substrates in ADME category
D are in ranges of 61–78%, 56%–76%, and 65%–79% respectively. The
ACs in predicting BCRP, MRP1, MRP2, MRP3, MRP4, ASBT, OATP2B1,
OCT1, and PEPT1 substrates in category D are in ranges of 66%–87%,
76%–96%, 76%–96%, 82%–100%, 67%–97%, 77%–100%, 50%–90%, 65%–
96, and 69%–93% respectively. The overall SEs, SPs and ACs are in ranges
of 61%–96%, 56%–83% and 50%–100%, with themajority of data concen-
trated between 74% and 92%, 66% and 76%, 72% and 92%, respectively.
These further demonstrate that ML classification methods are capable
of predicting ADME properties at reasonably good accuracy levels. The
slightly lower SPs than SEs possibly reflects the tendency to optimize
SE at a slight expense of SP.

5. The exploration of machine learning classification methods for
predicting ADME regulatory properties

ML classification methods have also been extensively used for
predicting regulators of drug ADME properties, particularly the
inhibitors of drug efflux and influx transporters for regulating multi-
drug resistance (Table 3) [8,64,65] and the inhibitors of drug
metabolism enzymes for assessing drug–drug interactions (Table 4)
[13,14,66]. These studies have primarily focused on the extended cover-
age of drug transporters (9 transporters) [8] and metabolism enzymes
(5 CYP enzymes CYP 1A2, 2C9, 2C19, 2D6, 3A4) [13,15,16], improve-
ment of predictive performance by such strategies as the use of expand-
ed training datasets [8,64–67], and both objectives [13,16].

The SEs, SPs, and ACs in predicting P-glycoprotein inhibitors are in
ranges of 58%–99%, 47%–91%, and 62%–94% respectively. The ACs in
predicting BCRP, MRP1, MRP2, MRP4, ASBT, MCT1, OATP2B1, OCT1,
PEPT1, and hERG inhibitors are in ranges of 71%–87%, 78%–94%, 73%–
98%, 48%–78%, 80%–97%, 100%–100%, 66%–89%, 76%–98%, 45%–87%,
and 86%–89% respectively. The overall SEs, SPs and ACs in predicting
inhibitors of these drug efflux and influx transporters are in ranges
of 58%–99%, 47%–91% and 45%–100%, with the majority of data con-
centrated between 84% and 97%, 53% and 73%, 70% and 95%,
respectively.

The SEs, SPs and ACs for predicting inhibitors of drug metabolism
enzymes are in ranges of 26%–87%, 60%–96% and 64%–90%,with thema-
jority of data concentrated between 73% and 87%, 65% and 88%, 73% and
85%, respectively. Specifically, the SEs, SPs andACs in predicting CYP1A2
inhibitors are in ranges of 73%–87%, 65%–88%, and 73%–88 respectively,
those in predicting CYP2C9 inhibitors are in ranges of 56%–84%, 69%–
87%, and 67%–83% respectively, CYP2C19 inhibitors 52%–86%, 67%–
86%, and 68%–85%, CYP2D6 inhibitors 26%–75%, 65%–96%, and 73%–
90%, and CYP3A4 inhibitors 39%–84%, 60%–86%, and 64%–84%,
respectively. These further demonstrate the capability of ML classifica-
tion methods in predicting ADME properties. The training datasets
(inhibitors of drug transporters andmetabolism enzymes) in themajor-
ity of these studies are substantially larger than those of the substrates
of drug transporters andmetabolism enzymes. But their prediction per-
formance is not markedly improved over that of the substrates of drug
transporters and metabolism enzymes. One possible reason is the
inadequate representation of the non-inhibitors of a specific drug trans-
porter or metabolism enzyme. The number of the inhibitors in the pub-
lished studies is typically in the range of a few hundred or less, which is
unlikely to be sufficient to fully represent the vast non-inhibitor
chemspace of millions of compounds in the current versions of the
chemical databases.

6. The exploration of machine learning regression methods for
predicting ADME and ADME regulatory properties

ML regression methods are intended for estimating the affinity/
activity level in addition to the determination of whether or not a com-
pound possesses or regulates a specific ADME property. Table 5 summa-
rises the performance of the recently developedML regressionmethods
for predicting the affinity/activity level of ADME and ADME regulatory
properties. Partly because of the limited availability of experimental
affinity/activity levels, ML regression models have been developed for
a limited variety of ADME and ADME regulatory properties and most
of them have been trained by a significantly smaller training dataset
than those of the ML classification models for predicting ADME and
ADME regulatory properties. These models enable the prediction of
female genital tract penetrators [71] in category A, apparent volume
of distribution [11] and blood–brain barrier crossing [62] in category
D, and intrinsic clearance [11,72] in category E. They also enable the
prediction of inhibitors of P-glycoprotein [73,74] and 8 drug metab-
olism enzymes (CYP 1A2, 2C8, 2C9, 2A6, 2C19, 2D6, 3A4, and 17)
[75].

The performance of these models has primarily been evaluated by
the R2 value, which measures the variance between the computed and
experimental activity levels. Moreover, RMSE values have also been fre-
quently computed for measuring the root mean square errors of the de-
veloped models. The computed R2 values are ~0.4 in predicting female
genital tract penetrators in ADME category A, 0.56–0.74 and 0.42–0.69
in predicting apparent volume of distribution and blood–brain barrier



Fig. 7. Schematic diagram illustrating the processing of the prediction of compounds of a particular property from their structure by using a machine learning method — random forest
(RF). Feature vector (x1, x2, x3, …) is the same as that in Fig. 1.
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crossing in category D, 0.43–0.96 and 0.64 in predicting intrinsic clear-
ance and systemic clearance in category E, 0.69–0.87 in predicting P-
glycoprotein inhibitors, and 0.65, 0.96, 0.99, 0.99, 0.99, 0.98, 0.99, 0.99
in predicting CYP2D6, CYP1A2, CYP3A4, CYP2A6, CYP2C9, CYP2C8,
CPY2C19 and CYP17 inhibitors respectively. The majority of R2 values
are in the range of 0.55–0.85, which is comparable to the range of 0.51
to 0.88 of the conventional QSAR and QSPR studies [76,77]. These sug-
gest that ML regression methods are capable of predicting the activity
values of ADME and ADME regulatory properties at accuracy levels
comparable to conventional QSAR and QSPR methods for pharmacody-
namics and toxicological properties.

7. The trends in the development of machine learning models for
predicting ADME and ADME regulatory properties

There are noticeable trends in the recent efforts for developing ML
models to predict ADME andADME regulatory properties. In developing
ML classification models for predicting ADME and ADME regulatory
properties, three ML methods support vector machines (SVM, 38
models), random forest (RF, 27 models) and k nearest neighbor (kNN,
25 models) have been more frequently used than other ML regression
methods (4 models). These three methods have also been used for de-
veloping all the consensus ML models for predicting ADME and ADME
regulatory properties. These three methods have been widely used be-
cause of their consistently superior performances [6,78–80], robustness
in accommodating diverse structures and sample redundancy, and the
lower over-fitting risks [81,82].

On the other hand,more variety ofmethods has been used for devel-
oping ML regression models to predict ADME and ADME regulatory
properties. These are support vector machines regression (SVR, 4
models), multiple linear regression (MLR, 4 models), random forest re-
gression (RFR, 3 models), neural network regression (NNR, 2 models),
partial least-squares (PLS, 2 models) and principal component analysis
(PCA, 1 model). Partly because of the limited availability of the activity



Fig. 8. Schematic diagram illustrating theprocessing of theprediction of compoundsof a particular property from their structure byusing amachine learningmethod— logistic partial least
squares (PLS). Feature vector (x1, x2, x3, …) is the same as that in Fig. 1.
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data, the datasets for training ML regression models are significant-
ly smaller in numbers (38–569 for each model, majority 38–246)
and thus the less structural diversity than those for trainingML clas-
sification models (53–5838 for each model, majority 100–2516).
The significantly less structural diversity makes it easier to explore
both the conventional (e.g. MLR and PLS) and more sophisticated
ML (e.g. SVR and NNR) regression methods for developing QSAR
models [80].

For better facilitating the discovery and optimization of bioactive
compounds with good ADME properties, recent efforts have been di-
rected at the more extensive exploration of ML methods with both
good predictive capability and easily interpretable rules/models for
the prediction of ADME and ADME regulatory properties. For instance,
the recursive partitioning and naive Bayesian classifiers have been de-
veloped for identifying the important structural features necessary for
classifying P-glycoprotein inhibitors and non-inhibitors [68] and for dif-
ferentiating hERG potassium channel blockers and non-blockers [69],
which are useful for facilitating the design of potent P-glycoprotein in-
hibitors and the identification of potential drug adverse reactions in-
duced by hERG potassium channel blockages. There have also been
efforts for developing more effective and robust predictive models
based on combinatorialmodeling strategies. In particular, the combined
MLmodels can be developed such thatmultipleMLmodels are fused by
a neural network platform, which have been shown to generate highly
robust predictive models with less sensitivity on the choices of the ML
models and parameters [13].

Proper representation of the structural and physicochemical fea-
tures of the compounds is a key to the development of good ML regres-
sion models [40,83]. Given the structural diversity of the compounds
associated with a specific ADME property, a significant number of
molecular descriptors are needed to comprehensively represent their
diverse structural and physicochemical properties. Indeed, the recently
developed ML classification models are based on 45–650 molecular de-
scriptors, most of which by 166–650 descriptors. Although a number of
software packages and servers are available for computing a large num-
ber of molecular descriptors [18,21,22,83,84], most of the recently de-
veloped ML classification models have been generated by using
Dragon, MOE, and MACCS likely due to their reputation and the report-
ed good performances in developing predictive models for ADME as
well as for pharmacodynamic and toxicological properties [78,85–87].



Fig. 9. Schematic diagram illustrating theprocessing of theprediction of compounds of a particular property from their structure by using a combinedmachine learning classifier approach.
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8. Application scope of the developed machine learning models

The recently and previously [79] developedML classificationmodels
broadly cover compound metabolism (by 6 different CYP enzymes)
[79], efflux (by 6 different transporters) [8] and influx (by 4 different
transporters) [8] at reasonably good predictive accuracies. The SEs, SPs
and ACs of the majority of the ML classification models are in ranges
of 74%–92%, 66%–76% and 72%–92% respectively. The SEs are close to
but the SPs are substantially lower than the SEs (~90%) and SPs
(~90%) of ML virtual screening models [88] that have been used to
discover kinase inhibitors [89]. Therefore, these ML models have
some capacity in predicting metabolism, efflux and influx properties
but need to further improve the SPs to the ~90% levels for reducing
false prediction rates. The R2 values of the majority of the recently
and previously [80] developed ML regression models are in the
range of 0.55–0.85, which is comparable to the typical R2 values of
QSAR models used for drug lead discovery and optimization studies
[90]. Therefore, the developed ML regression models are also useful
for predicting the activity levels of the ADME and ADME regulatory
properties. Other highly evaluated ADME properties covered by the
recently and previously [80,90] developed ML models are human in-
testine absorption, female genital tract penetration [71] in category
A and apparent volume of distribution [11], plasma protein binding
[17], and blood–brain barrier crossing [62] in category D, and clear-
ance [72] in category E.

WhilemanyMLmethods are capable of predicting ADME and ADME
regulatory properties at good performance levels, recent studies have
suggested useful strategies for exploring their individual and collective
capability for achieving better predictive performances. In the cases of
the limited availability of training data and the inadequate coverage of
the molecular features by the existing molecular descriptors, it is desir-
able to develop more robust predictive models that are less sensitive to
the choices of training data, parameters and descriptors. A highly useful
strategy for developing robust predictivemodels is to use a combination
ofmultipleMLmodels fused by a neural network platform [13]. Another
useful strategy is to develop ML models based on a selected set of de-
scriptors and/or parameters most relevant to the prediction of a specific
ADME or ADME regulatory property, which can be obtained by using
suchmethods as the genetic algorithmbased feature selection approach
and conjugate gradient method respectively [9]. This combinatorial
modeling approach is also useful for the prediction of the affinity/
activity levels of the ADME and ADME regulatory properties. For in-
stance, the combination of ML regression and ML classification models
outperform several individual ML methods in the prediction of the
activity of CYP2C19 inhibitors [75]. Moreover, the combination of ML
models with other predictivemodels such as pharmacophore ensemble
models also performs well in the prediction of the activity of
P-glycoprotein inhibitors [73].

9. Challenges in the exploration of machine learning methods

The performance of ML methods critically depends on the diversity
and representativeness of in the training datasets and the appropriate
representation of their structural and physicochemical properties. The
training datasets used in the most of the ML models described in
Tables 2–5 are not expected to be fully representative of the compounds
associatedwith each specific ADMEproperty. This is particularly true for
compounds not possessing a specific ADME property, which is likely an
important factor for the substantially lower SPs than SEs produced by
the recent ML classification models. There is a need to further expand



Table 2
Performance of ML classification methods for predicting compounds of various ADME properties. Abbreviations: BCRP — breast cancer resistance protein; MRP — multidrug resistance-
associated protein; ASBT— apical sodium-dependent bile acid transporter; OATP — organic anion transporting polypeptide; OCT — organic cation transporter.

ADME class Target Method (testing accuracies) Data set Descriptors Testing method Ref

D Human serum
albumin

SVM (SE 81%, SP 83%) 100 substrates, 63 non-substrates 45 Dragon descriptors Randomly divided
test set

[17]

Blood–brain
barrier

SVM (SE 85%–92%, SP 70%–79%) 246 (fu,p, Kp,brain, & Vu,brain

are available)
196 2D, 3D descriptors External test set of

marketed CNS drugs
[62]

RF (SE 85%–96%, SP 66%–81%)
E P-Glycoprotein SVM (SE 77%, SP 74%) 99 substrates, 98 non-substrates DragonX descriptors Clustering derived test set [63]

SVM (AC 65%–72%) 294 substrates, 250 non-substrates 286–650 Dragon or
136–148 MOE descriptors

5-Fold cross validation [8]
RF (AC 79%–79%)
kNN (AC 70%–77%)
SVM (SE 61%–63%, SP 56%–66%) 243 substrates, 241 non-substrates N200 checkmol molecular

fingerprints
10-Fold cross validation,
and DODM derived
test sets

[64]
kNN (SE 74%–77%, SP 59%–69%)
RF (SE 72%–74%, SP 68%–76%)
Consensus kNN, RF, and SVM
(AC 74%–78%)

294 substrates, 250 non-substrates 286–650 Dragon or
136–148 MOE descriptors

5-Fold cross validation [8]

BCRP Modified SVM GA-CG-SVM
method (AC 85%)

120 substrates, 57 non-substrates N1000 molecular
descriptors

Independent validation set [9]

LDA (SE 70.4%, SP 76%) 262 substrates and non-substrates
(human wild-type BCRP)

180 (0D–2D Dragon
descriptors

Clustering derived test set [10]

SVM (AC 72%–86%) 76 substrates, 70 non-substrates 286–650 Dragon or
136–148 MOE descriptors

5-Fold cross validation [8]
RF (AC 66%–85%)
kNN (AC 67%–85%)
Consensus kNN, RF, and
SVM (AC 73%–87%)

MRP1 SVM (AC 76%–96%) 87 substrates, 81 non-substrates
(37 assumed)

286–650 Dragon or
136–148 MOE descriptors

5-Fold cross validation [8]
RF (AC 82%–94%)
kNN (AC 84%–92%)
Consensus kNN, RF, and SVM
(AC 89%–93%)

MRP2 SVM (AC 76%–95%) 101 substrates, 87 non-substrates
RF (AC 76%–96%)
kNN (AC 78%–94%)
Consensus kNN, RF, and SVM
(AC 79%–95%)

MRP3 SVM (AC 86%–100%) 31 substrates, 31 non-substrates
(22 assumed)RF (AC 82%–100%)

kNN (AC 88%–100%)
Consensus kNN, RF, and SVM
(AC 95%–100%)

MRP4 SVM (AC 81%–94%) 46 substrates, 46 non-substrates
(25 assumed)RF (AC 67%–95%)

kNN (AC 79%–95%)
Consensus kNN, RF, and SVM
(AC 87%–97%)

ASBT SVM (AC 77%–97%) 50 substrates, 50 non-substrates
(42 assumed)RF (AC 87%–97%)

kNN (AC 85%–100%)
Consensus kNN, RF, and SVM
(AC 89%–97%)

OATP 2B1 SVM (AC 50%–81%) 30 substrates, 23 non-substrates
RF (AC 55%–87%)
kNN (AC 52%–90%)
Consensus kNN, RF, and SVM
(AC 61%–89%)

OCT1 SVM (AC 73%–96%) 39 substrates, 39 non-substrates
RF (AC 65%–94%)
kNN (AC 65%–96%)
Consensus kNN, RF, and SVM
(AC 83%–95%)

PEPT1 SVM (AC 69%–85%) 79 substrates, 79 non-substrates
RF (AC 72%–92%)
kNN (AC 70%–86%)
Consensus kNN, RF, and SVM
(AC 75%–93%)
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the training datasets incorporating newly studied compounds and by
more extensively mining the literatures and databases.

Moreover, the currently available molecular descriptors are insuffi-
cient in representing certain structural and physicochemical features,
particularly the complex structural or chemical configurations [39].
Examples of the inadequately represented features are large rigid struc-
ture combined with a short flexible hydrophilic tail, and contain multi-
rings with various hetero atoms such as nitrogen, oxygen, sulfur,
fluorine and chlorine. Therefore, there is a need to explore new molec-
ular descriptors. Several sets of newmolecular descriptors and molecu-
lar representations have emerged in recent years [91–93]. The
usefulness of these and other new descriptors for representing ADME
relevant structural and physicochemical properties needs to be evaluat-
ed and explored. Another approach is to explore appropriate combina-
tion of existing molecular descriptors for expanded representation of
certain ADME relevant structural and physicochemical properties.



Table 3
Performance ofML classificationmethods for predicting the inhibitors of drug efflux and influx transporters for regulatingmulti-drug resistance. DODMstands for D-optimal onion design
multivariate method.

Target Method
(testing accuracies)

Data set Descriptors Testing method Ref

P-Glycoprotein Binary QSAR (SE 58%,
SP 74%)

1076 inhibitors (IC50 ≤ 15 μM or
N25–30% of inhibition), 532 non-inhibitors
(IC50 N 100 μM or b10–12%
of inhibition)

46 descriptors (11 MOE 2D, 16 MACCS
fingerprints and 19 substructure fingerprints)
selected by using BestFirst search algorithm

DODM derived test set [65]

SVM (SE 97%, SP 62%)

SVM (SE 93.8%, SP
73.8%)

666 inhibitors, 609 non-inhibitors
(molecular weight N 700 are
excluded)

87 PreADMET molecular descriptors 10-Fold cross validation [67]

SVM (SE 86%–90%,
SP 47%–48%)

1280 inhibitors (IC50 ≤ 15 μM & N25–30%
of inhibition), 655 non-inhibitors
(IC50 N 100 μM & b10–12% of inhibition)

N200 checkmol molecular fingerprints 10-Fold cross validation,
and DODM derived test set

[64]

SVM (AC 88%–93%) 743 inhibitors (IC50 ≤ 10 μM), 828
non-inhibitors

286–650 Dragon or 136–148 MOE descriptors
after removing redundant and high correlation
ones

5-Fold cross validation [8]

RF (SE 99%, SP 57%) 1076 inhibitors (IC50 ≤ 15 μM or N25–30%
of inhibition), 532 non-inhibitors
(IC50 N 100 μM or b10–12% of
inhibition)

46 descriptors (11 MOE 2D, 16 MACCS
fingerprints and 19 substructure fingerprints)
selected by using BestFirst search algorithm

DODM derived test set [65]

RF (SE 84%–90%, SP
63%–65%)

1280 inhibitors (IC50 ≤ 15 μM & N25–30%
of inhibition), 655 non-inhibitors
(IC50 N 100 μM & b10–12% of
inhibition)

N200 checkmol molecular fingerprints 10-Fold cross validation,
and D DODM derived
test set

[64]

RF (AC 90%–94%) 743 inhibitors (IC50 ≤ 10 μM), 828
non-inhibitors

286–650 Dragon or 136–148 MOE descriptors
after removing redundant and high correlation
ones

5-Fold cross validation [8]

kNN (SE 64%, SP 72%) 1076 inhibitors (IC50 ≤ 15 μM or N25–30%
of inhibition), 532 non-inhibitors
(IC50 N 100 μM or b10–12% of
inhibition)

46 descriptors (11 MOE 2D, 16 MACCS
fingerprints and 19 substructure fingerprints)
selected by using BestFirst search algorithm

DODM derived test set [65]

kNN (SE 86%–90%, SP
53%–58%)

1280/655 (IC50 ≤ 15 μM & N25–30% of
inhibition as inhibitors, IC50 N 100 μM
& b10–12% of inhibition as
non-inhibitors)

N200 checkmol molecular fingerprints 10-Fold cross validation,
and DODM derived
test set

[64]

kNN (AC 88%–94%) 743 inhibitors (IC50 ≤ 10 μM), 828
non-inhibitors

286–650 Dragon or 136–148 MOE descriptors
after removing redundant and high correlation
ones

5-Fold cross validation [8]

RP (SE 83.5%, SP 67.0%) 797/476 (MDRR ratio N 5.0 as inhibitor,
b4.0 as non-inhibitor)

13 molecular descriptors, FCFP, ECFP, LCFP,
FPFP, EPFP, and LEFP fingerprints

300 external test set [68]
Naïve Bayesian
(SE 83.5%, SP 73.2%,
AC ~80%)
SVM + Docking
(SE 86.7%, SP 91.2%)

666/609 (molecular weight N 700 are
excluded)

87 PreADMET molecular descriptors 10-Fold cross validation [67]

Consensus kNN, RF
and SVM (AC 62%–78%)

743 inhibitors (IC50 ≤ 10 μM), 828
non-inhibitors

286–650 Dragon or 136–148 MOE descriptors
after removing redundant and high correlation
ones

5-Fold cross validation [8]

BCRP SVM (AC 75%–85%) 167 inhibitors (IC50 ≤ 10 μM), 215
non-inhibitors

286–650 Dragon or 136–148 MOE descriptors
after removing redundant and high
correlation ones

5-Fold cross validation [8]
RF (AC 75%–83%)
kNN (AC 71%–85%)
Consensus kNN, RF,
and SVM (AC 79%–87%)

MRP1 SVM (AC 78%–90%) 224 inhibitors (IC50 ≤ 10 μM), 194
non-inhibitorsRF (AC 83%–91%)

kNN (AC 81%–91%)
Consensus kNN, RF,
and SVM (AC 86%–94%)

MRP2 SVM (AC 78%–96%) 48 inhibitors (IC50 ≤ 10 μM), 48
non-inhibitorsRF (AC 81%–97%)

kNN (AC 73%–95%)
Consensus kNN, RF,
and SVM (AC 80%–98%)

MRP4 SVM (AC 48%–78%) 32 inhibitors (IC50 ≤ 10 μM), 32
non-inhibitorsRF (AC 52%–72%)

kNN (AC 48%–74%)
Consensus kNN, RF,
and SVM (62%–78%)

ASBT SVM (AC 80%–92%) 75 inhibitors (IC50 ≤ 10 μM), 75
non-inhibitorsRF (AC 82%–94%)

kNN (AC 82%–94%)
Consensus kNN, RF,
and SVM (AC 87%–97%)

MCT1 SVM (AC 100%) 47 inhibitors (IC50 ≤ 10 μM), 20
non-inhibitorsRF (AC 100%)

kNN (AC 100%)
Consensus kNN, RF,
and SVM (AC 100%)
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Table 3 (continued)

Target Method
(testing accuracies)

Data set Descriptors Testing method Ref

OATP 2B1 SVM (AC 66%–86%) 70 inhibitors (IC50 ≤ 100 μM), 66
non-inhibitorsRF (AC 67%–89%)

kNN (AC
70%–88%)

Consensus
kNN, RF,
and SVM
(AC
74%–86%)

OCT1 SVM (AC 76%–95%) 87 inhibitors (IC50 ≤ 100 μM), 112
non-inhibitorsRF (AC 83%–97%)

kNN (AC 81%–95%)
Consensus kNN, RF,
and SVM (AC 86%–98%)

PEPT1 SVM (AC 61%–83%) 40 inhibitors (IC50 ≤ 100 μM), 40
non-inhibitorsRF (AC 47%–77%)

kNN (AC 45%–84%)
Consensus kNN, RF,
and SVM (AC 57%–87%)

hERG RP (SE 86.9%, SP 76.3%) 806 (IC50 in 1, 5, 10, 20, 30, and
40 μM as threshold range to identify
the blockers and non-blockers

14 molecular descriptors, FCFP,
ECFP, LCFP, FPFP, EPFP, and LEFP
fingerprints

120 test molecules [69]
Naïve Bayesian
(AC 89.4% for
WOMABAT-PK,
AC 86.1% for PubChem)

66 external molecules
from WOMBAT-PK
and 1953 external
molecules from PubChem
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However, excessive use of existing descriptors, which are substantially
overlapping and redundant, may introduce noise aswell as the expand-
ed representation of ADME relevant structural and physicochemical
properties. Hence it may be more desirable to introduce new descrip-
tors for more appropriately representing these structural and physico-
chemical properties.
Table 4
Performance of ML classification methods for predicting the inhibitors of drug metabolism enz

Target Method (testing accuracies) Data SET

CYP 1A2, 2C9,
2C19, 2D6, 3A4

SVM (SE 75%–87%, SP 83%–88%) 17,143 compounds tested by H

SVM (SE 36.9%–79.4%, SP
80.2%–96.4%, AC 76.2%–84.3%)

2516–5663 inhibitors (AC50 ≤ 1
6436–9365 non-inhibitors (AC

Naïve Bayes (SE 48.5%–76.9%,
SP 60.0%–86.1%, AC
63.7%–78.2%)
kNN (SE 51.0%–84.7%, SP
64.6%–88.7%, AC 68.3%–80.7%
C4.5 DT (SE 46.2%–74.2%, SP
75.5%–88.3%, AC 70.5%–79.4%
SVM + kNN (SE SE
39.0%–80.0%, SP 80.7%–95.6%,
AC 75.1%–83.8%)
SVM + C4.5 DT
(SE 39.6%–79.2%, SP 80.
2%–95.5%, AC 75.1%–83.7%)
SVM (AC 82.5%–88.3%, AUC
0.88–0.94)

2545–5838 inhibitors (AC50 ≤ 1
inhibitors)

RF (AC 87.5%–88.6%, AUC
0.93–0.95)
kNN (AC 79.5%–80.4%, AUC
0.865–0.868)
SVM (AC 80.6%–89.5%, AUC
0.87–0.93)

17,143 compounds tested by H
(with class 1.1, 1.2, 2.1 as activ
class 4 curves as inactive)

CYP 3A4 RF (SE 76.8%, SP 86.0%) 4605 inhibitors (IC50 b 40 μM),
non-inhibitors (IC50 N 60 μM)SVM (SE 79.7%, SP 80.1%)

logistic PLS (SE 60.8%, SP 84.4%)
CYP 2D6, 3A4 SVM (SE 26.0%–39.0%, SP

74.0%–85.0%)
160–216 inhibitors, 386–442
non-inhibitors

Multiple LDA (SE 41.9%–54.7%,
SP 64.5%–68.5%)
10. Perspectives

Both classification-based and regression-based ML methods have
consistently shown promising capability in predicting a variety of
ADME and ADME regulatory properties for diverse ranges of structures
at accuracy levels comparable to those practically used in drug lead
ymes for assessing drug–drug interactions.

Descriptors Testing method Ref

TS Bioclipse molecular
signatures

Unspecified [15]

0 μM),
50 N 57 μM)

166 MACCS and 307
FP4 molecular
fingerprints

Independent set of 544–2070
inhibitors and 1052–4955 non-
inhibitors from PubChem BioAssay

[13]

0 μM as Bioclipse molecular
signatures

External set of 12,634–13,276
inhibitors and non-inhibitors

[16]

TS
e, with

264 molecular
descriptors

7-Fold cross validation [14]

12,394 379 fragmental
descriptors

External set of 8528 compounds
with experimental CYP3A6
inhibition activity

[66]

353 mold molecular
descriptors

10-Fold cross validation [70]

13C- and 15N-NMR
spectra



Table 5
Performance of ML regression methods for predicting the activity level of ADME and ADME regulatory properties.

ADME
class

Target Action on target Method (testing accuracies) Data Set Descriptors Testing method Ref

A Female genital
tract

Penetrator KNNR (R2 ~ 0.4) 38 penetrators & 20 poor-penetrators
(TPR in the 0.00–0.49 range as poor
penetrators, 0.50–1.49 as good, and
≥1.5 as excellent)

Dragon & SiRMS
descriptors

5-Fold cross
validation

[71]
RFR (R2 ~ 0.4)

D Apparent volume
of distribution

Human
VDss value

MLR (R2 0.74) 569 compounds with VDss value 89 molecular descriptors Randomly
splited

[11]
SVR (Q2 0.55)
ANN (R2 0.62, RMSE 0.32) 121 (VDss in the range of 0.1 to

21 L/kg)
7 E-Dragon descriptors 10-Fold cross

validation
[12]

MLR (R2 0.56, RMSE 0.32)
SVR (R2 0.58, RMSE 0.31)

D Blood–brain
barrier

Penetration RFR (R2 0.42–0.69 RMSE
0.32–0.59)

246 (fu,p, Kp,brain, & Vu,brain were
available)

196 2&3D molecular
descriptors

Randomly
splited

[62]

SVR (R2 0.41–0.6 RMSE
0.39–0.58)

E Intrinsic
clearance

CLint
values

Orthogonal PLS (R2 0.59, Q2

0.48)
244 (CLint in 1–1,400,000 mL/min
range, b1500 mL/min as stable)

93 Selma molecular
descriptors

7-Fold cross
validation

[72]

Principals (R2 0.43, Q2 0.35)
RFR (R2 0.96, Q2 0.48)

E Systemic clearance Human iv CL
value

MLR (R2 0.64) 525 compounds with iv CL value 89 molecular descriptors Randomly
splited

[11]

ER P-glycoprotein Inhibitor SVR (R2 0.87, RMSE 0.39) 180 compounds with activity value HypoGen
pharmacophore
ensemble

Deliberately
divided

[73]

ER P-glycoprotein Inhibitor BP-ANN (R2 0.81–0.87) 88 (40 flavones, 1 isoflavone,
22 chalcones, 5 silybins, 14 aurones,
and 6 xanthones)

118 PaDEL descriptors Randomly
splited

[74]
MLR (R2 0.69)

MR CYP 1A2, 2C8, 2C9,
2A6, 2C19, 2D6,
3A4, 17

Inhibitor PLSR (R2 0.65–0.99) 54–209 compounds with activity
value

6–15 E-DRAGON
descriptors

Unspecified [75]
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discovery and optimization, making the developed ADME and ADME
regulatory prediction models potentially useful tools for assessing
ADME properties and predicting ADME regulatory properties. In spite
of the significant efforts, the recently developed ML models only cover
a limited variety of ADME and ADME regulatory properties. There is a
need to develop the in-silico prediction tools for covering more diverse
range of ADME and ADME regulatory properties.

The application potential of these ML models is constrained by the
limited knowledge and information about the compounds associated
with certain ADME or ADME regulatory properties. Existing molecular
descriptors are not fully representative of some of the structural and
physiochemical properties. Efforts are needed to further expand the
knowledge and coverage of ADME and ADME regulatory properties
and the associated compounds, and to develop and select more appro-
priate sets of molecular descriptors for representing the structural and
physicochemical properties relevant to ADME and ADME regulatory
properties, so as to develop these ML models into useful tools for facili-
tating the in-silico assessment ADME and ADME regulatory properties.
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