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In the current study, computational models for hPXR activators and hPXR non-activators were developed
using support vector machine (SVM), k-nearest neighbor (k-NN), and artificial neural networks (ANN) algo-
rithms. 73 molecular descriptors used for hPXR activator and hPXR non-activator prediction were selected
from a pool of 548 descriptors by using a multi-step hybrid feature selection method combining Fischer's
score and Monte Carlo simulated annealing method. The y-scrambling method was used to test if there is a
chance correlation in the developed SVM model. In the meantime, five-fold cross validation of these machine
learning methods results in the prediction accuracies of 87.2–92.5% for hPXR activators and 73.8–87.8% for
hPXR non-activators, and the prediction accuracies for external test set are 93.8–95.8% for hPXR activators
and 86.7–92.8% for hPXR non-activators. Our study suggested that the tested machine learning methods are
potentially useful for hPXR activators identification.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The human pregnane X receptor (hPXR) is a transcriptional regula-
tor of a large number of genes involved in xenobiotic metabolism and
excretion. The hPXR activators include a wide range of prescriptions
and herbal drugs such as paclitaxel, troglitazone, rifampicin, ritonavir,
and clotrimazole, which can be involved in clinically relevant drug–
drug interactions [1]. In addition to xenobiotics, PXR is also activated
by pregnanes, androstanes, bile acids, hormones, dietary vitamins,
and a wide array of endogenous molecules recently reviewed [2].

The PXR ligand-binding domain (LBD) consists of 12α-helices that
fold to form a hydrophobic pocket and a short region of β-strands. The
pocket is lined with 28 amino acid residues, 10 hydrophobic, four
polar, and four charged [3–7]. The potential for molecules to bind to
numerous locations in the LBD complicates the reliable prediction of
PXR activators (Y) and non-activators (N) by using structure-based
drug design methods alone. Computational models, such as ligand
based pharmacophores [8–11], quantitative structure–activity rela-
tionships (QSAR) [12–14], machine learning methods [14,15], and
homology modeling with molecular dynamics [16] (for identifying
protein–corepressor interactions), were frequently used to predict
ng@scu.edu.cn (Z. Li).
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PXR ligand binding [2]. These methods focused on diverse structural
types of agonists and in one case used structural analogs [2], which
may have assessed specific binding locations within the LBD like ste-
roidal compounds. A likely consensus emerged that different chemical
types of PXR agonists (such as imidazole, steroidal, and other
chemicals with structural diversity) tend to fit to multiple hydropho-
bic features and at least one hydrogen bond acceptor (in some cases
an additional hydrogen bond donor feature) [2]. PXR agonist QSAR
or pharmacophore models are highly dependent on the promiscuous
nature of the molecules in the training dataset, and the prediction re-
sults of models generated by different training datasets may overlap
with each other [2]. Moreover, the published QSAR models rarely uti-
lize a large external test set to validate their predictive nature or assess
their applicability domain [17–19]. In other words, it is unclear how
structural similarity between training and testing data would affect
the prediction accuracy, especially for structurally promiscuous pro-
tein as PXR. Currently, many EC50 data of PXR agonists were reported
as greater or less than a certain value without illustrating their exact
activity value, which makes it difficult to construct quantitative
QSAR models for hPXR. In the meantime, machine learning methods
(MLMs), such as support vector machine (SVM), k-nearest neighbors
(k-NN), and probabilistic neural network (PNN), were applied to iden-
tify PXR activators [14]. Binary classification data of 98 hPXR activators
and 79 non-activators were used [14] to construct MLM models, and
the prediction results ranged from 80.8% to 85.0% of hPXR activators
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and 67.7% to 73.6% of hPXR non-activators (in the training set). For 15
known hPXR activators in external test set, the prediction accuracies
are between 53.3% and 66.7% across all three machine learning
methods, with SVM performing the best [14]. Khandelwal et al. [15]
have compared recursive partitioning (RP), random forest (RF), and
SVM machine learning methods for building hPXR models derived
with VolSurf three-dimensional (3D) descriptors. The predictive abil-
ity of the classification and docking models was further evaluated by
using a novel large external test set containing 145 hPXR activators
and non-activators, which aims at prioritizing molecules for in vitro
testing.

The purpose of this work is to develop a new hPXR activator pre-
diction model based on a more diverse training dataset using various
machine learning methods.

One important step in developing machine learning hPXR activa-
tor prediction model is to compute and select appropriate molecular
descriptors. A single or a standard set of descriptor according to expe-
rience may reflect adducting features to some extent, but cannot
guarantee a full capture of the whole properties. In other words,
there is no pre-knowledge on descriptors that are most relevant to
hPXR activator prediction, so a priori feature selection is not feasible.
In this work, we calculated molecular descriptors as many as possible
and select the appropriate ones by using feature selection algorithms
(FSAs).

There are two major classes of FSAs: classifier independent and
classifier dependent. A classifier independent approach is a filter
method [20–22] as outlined in Fig. 1a, which is computationally effi-
cient. The filter method attempts to identify relevant features by
selecting a feature subset using a preprocessing step independent of
Fig. 1. Comparison of feature selection method (a) filter method, (b) wrapper method
and (c) hybrid method.
the learning algorithm, which is less useful for redundant features
and data with strongly correlated features. Classifier dependent FSA
is also called wrapper approach [23–26] as shown in Fig. 1b, which
uses a specific learning algorithm, such as decision trees and support
vector machines, to evaluate the feature subset based on their contri-
bution to the performance of the learner. The wrapper approach has
the advantage of selecting features suitable to the specific learner,
and hence generally results in higher learning performance than filter
method. In the wrapper approach, the selections of subset of features
are imbedded in the classifier, such as recursive feature elimination
(RFE) [27], genetic algorithm (GA) [28] and simulated annealing
method (SA) [29]. Compared with the filter method, the wrapper ap-
proach is much more computationally expensive, but is able to pro-
duce better results. A detailed introduction to the wrapper approach
can be found in ref. [30].

In this study, to overcome the computational cost of wrapper ap-
proach and the low accuracy of filter method, a multi-step hybrid
FSA combining F-score and Monte Carlo simulated annealing (F-MC-
SA), as shown in Fig. 1c, was used to select most relevant descriptors
for hPXR activator prediction. Different from other ranking algorithms
like information based method, the F-score filter approach is capable
of calculating continuous features, without discretizing them. More-
over, Monte Carlo simulated annealing, a wrapper approach, is very
efficient for searching global minimum. In the meantime, several
hPXR activator prediction machine learning models were developed
in combination with our hybrid feature selection method. The perfor-
mance of the developed models was further evaluated by different
approaches: y-scrambling, five cross-validations and an external test
dataset.

2. Materials and methods

2.1. Datasets

A diverse set of 362 hPXR and hPXR non-activator compounds
(Supporting Information Table S1) is collected from literatures
[14,15,31,32]. The term half maximal effective concentration (EC50)
refers to the concentration of a drug, antibody or toxicant which
induces a response halfway between the baseline and maximum after
some specified exposure time. It is commonly used as a measure of
drug's potency. In accordance with the work of Khandelwal [15],
EC50=100 μM is used as the threshold of classifying the compounds as
hPXR activators or hPXR non-activators: compounds with EC50b100 μM
are considered as hPXR activators and compounds with EC50≥100 μM
are considered as the hPXR non-activators. Overall, a total of 222 hPXR
activators and 140 hPXR non-activators were used to develop and test
machine learning models.

The SMILES string for each molecule was downloaded from
PubChem (http://pubchem.ncbi.nlm.nih.gov/) and ChemSpider (http://
www.chemspider.com/), or sketched using ChemDraw. Then, eachmole-
cule is drawn and optimized by using theMM+ force field implemented
in HyperChem7.0 [33] software.

2.2. Measurement of structural diversity of compounds

The diversity of a dataset can be assessed by using diversity index
(DI), which is average value of the dissimilarity between all pairs of
molecules in the dataset [34].

DI ¼

PN
i¼1

PN
j¼1;i≠j

diss i; jð Þ

N N−1ð Þ ð1Þ

where N is the number of compounds in the data set, and diss(i, j) is a
measure of the dissimilarity between objects i and j. Dissimilarity is a
complementary measure of similarity, so that if a measure of similarity
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between two objects is defined between 0 and 1, its dissimilarity is sim-
ply defined as (1-similarity), accordingly, we have:

DI ¼ 1−

PN
i¼1

PN
j¼1;i≠j

sim i; jð Þ

N N−1ð Þ ð2Þ

where sim(i, j) is a measure of the similarity between compounds i and
j, and N is the number of compounds in the data set.

One of the most widely used measure of similarity is the Tanimoto
coefficient for continuous variables [35,36], defined as follows:

s i; jð Þ ¼

Pl
d¼1

xdixdj

Pl
d¼1

xdið Þ2 þ Pl
d¼1

xdj
� �2− Pl

d¼1
xdixdj

ð3Þ

where l is the number of descriptors computed for the molecules in the
data set, i and j represent attributes, xdi and xdj are the values of dth at-
tribute in objects i and j, respectively. The Tanimoto coefficient ranges
from −0.333 to +1.0, (continuous). s(i, j)=1 when xdi=xdj(d=1,2,
…,n) and s i; jð Þ ¼ − 1

3 when xdi=−xdj(d=1,2,…,n). Therefore, in this
study, the Tanimoto coefficient is normalized to between 0 and 1 before
substituted to Eq. (2) by the following procedure:

sim i; jð Þ ¼ s i; jð Þ þ 0:333
1:333

ð4Þ

where s(i, j) is the Tanimoto coefficient and sim(i, j) is the normalized
Tanimoto coefficient. Now, DI is within the range from 0 to 1, and the
structural diversity of a dataset increases with increasing DI value.
When DI=1, compounds in the dataset have a zero-valued similarity,
that is, the dataset is sufficiently diverse for the given molecular de-
scriptors. When DI=0, all compounds have identical molecular de-
scriptors. Obviously, the closer the DI value is to 1, the more diverse
the dataset investigated is. In this study, the DI of 362 hPXR agonists
equals to 0.765, which indicates that the investigated compounds are
structurally diverse.

2.3. Construction of training and testing sets

In total, 362 hPXR activators and hPXR non-activators were divid-
ed into training set (279 compounds) and external test set (83 com-
pounds) using Kennard–Store (KS) method. It is found that the KS
method outperforms the other methods [37], because the samples
chosen by the KS method can span the largest chemical space, so
the prediction for most of the compounds in the test set will be inter-
polation and fall into the applicability domain of the chemical space
covered by the training set and the model can have best prediction
ability for unknown compounds. The training set is used in the
model building and model optimization by five-fold cross-validation
method: the 172 hPXR activators and 107 hPXR non-activators in
the original training set were randomly divided into 5 subsets of ap-
proximately equal size. Four of the subsets were combined and used
as the training set, and the remaining subset was used as the testing
set. This process was repeated 5 times such that every subset is
used as the testing set once. An additional set of 83 compounds, in-
cluding 48 hPXR activators and 35 hPXR non-activators, was used as
the external test set for validating the prediction systems.

2.4. Molecular descriptor calculation

Geometry optimization of each molecule was performed using the
MM+ force field of HyperChem7 [33] before computing themolecular
descriptors. Molecular descriptors have been routinely used for quan-
titative description of the structural and physicochemical properties of
molecules in the development of various QSAR models [38–41]. We
used 548 1D and 2D descriptors (see Supplementary Table S2) by
the web based software Model [42], which include 72 fingerprint de-
scriptors [38], 30 constitutional descriptors [38], 92molecular connec-
tivity andmolecular shape descriptors [38,43], 108 electro-topological
state descriptors [31,44], 60 BCUT molecular descriptors [31,45] and
186 autocorrelation descriptors [31,46].

2.5. Feature selection method

Obviously, not all of the molecular descriptors are relevant to dis-
criminate hPXR activators from hPXR non-activators. Elimination of
the redundant descriptors can improve the prediction accuracy, and fa-
cilitate the interpretation of themodel by focusing on themost relevant
descriptors. In this study, a hybrid feature selection method is used to
find the optimal subset of features with the following procedures:

1) Preprocessing: Firstly, any descriptor that has an identical value
for more than 90% of the samples is removed. Secondly, any de-
scriptor with the relative standard deviation of less than 0.05 is re-
moved. Finally, one of any two descriptors with the absolute value
of Pearson correlation coefficient above 0.9 is removed.

2) F-score ranking and backward selecting: The descriptors left after
preprocessing are ranked in decreasing order of F-score. F-score is
a simple technique which measures the discrimination of two sets
of real numbers. Given training vectors xk, k=1,…, n, if the num-
ber of positive and negative samples are n+ and n−, respectively,
then, the F-score of the ith feature is defined as [47]:

F ið Þ ¼
xi

þð Þ−xi
� �2 þ xi

−ð Þ−xi
� �2

1
nþ−1

Pnþ
k¼1

xk;i
þð Þ−xi

þð Þ
� �2 þ 1

n−−1

Pn−
k¼1

xk;i
−ð Þ−xi

−ð Þ
� �2

ð5Þ

where xi, xi
þð Þ, and xi

−ð Þ are the average of the ith feature of the
whole, positive and negative data sets, respectively; xk, i(+) denotes
the ith feature of the kth positive sample, and xk, i

(−) denotes the
ith feature of the kth negative sample. The larger the F-score is,
the more likely this feature is more discriminative. In this work,
features are ranked in decreasing order of its importance according
to F-score and the number of relevant descriptors is chosen
through a sequential backward selection algorithm: starting with
all descriptors in the descriptor set, each time one feature with
the smallest F-score is removed from the candidate set if the per-
formance of the subset of features is improved.

3) Simulated annealing selection: molecular descriptors relevant to
the classification are further reduced by Monte Carlo simulated
annealing procedure. Simulated annealing is the simulation of a
physical process, ‘annealing’, which involves heating the system
to a high temperature and then gradually cooling it down to a pre-
set temperature (e.g., room temperature). During this process, the
possible configurations of the samples obey the Boltzmann distribu-
tion and hence the lowenergy states are themost populated at equi-
librium. The implementation of Monte Carlo simulated annealing
combined with SVM reported here is similar to that described in
ref. [48] and can be summarized as follows:

① Giving an initial σ value for the Gaussian kernel function.
② Setting the initial simulation temperature T.
③ Generating a trial solution to the underlying optimization prob-

lem; i.e., a MC-SA-SVMmodel is built based on a random selec-
tion of descriptors.

④ Calculating the value of the fitness function, which character-
izes the quality of the trial solution to the underlying problem,
i.e., the performance of the trial subset.

⑤ Perturbing the trial solution to obtain a new solution and build
a new MC-SA-SVM model for the new trial solution.
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⑥ Calculating the value of the fitness function Qnew for the new
trial solution.

⑦ Applying the optimization criteria: If QoldbQnew, the new so-
lution is accepted and used to replace the old trial solution; if
Qold>Qnew, the new solution is accepted only if the Metropolis
criterion is satisfied; i.e.

rndb
exp − Qold−Qnewð Þð Þ �T ð6Þ

where rnd is a random number uniformly distributed between
0 and 1, T is a parameter analogous to the temperature in the
Boltzmann distribution.

⑧ Lowering the simulation temperature T to a predetermined
value and return to step ③ until the termination condition is
satisfied.

⑨ Systematically adjusting the σ value and going back to step ②

until the maximal fitness function is achieved.

After these steps, an optimal subset of molecular descriptors and σ
value will be obtained and the final MC-SA-SVM model will give the
minimum generalization error.

2.6. SVM method

SVM is based on the structural risk minimization principle of the
statistical learning theory [49,50], which consistently shows outstand-
ing classification performance, is less penalized by sample redundan-
cy, and has lower risk for overfitting [51,52]. In linearly separable
case, SVM constructs a hyperplane to separate active and non-active
classes of compounds with a maximum margin for a given training
set (xi, yi) (i=1, 2, …, l), yi∈ {−1,+1}, l is the number of samples in
the training set. A compound is represented by a vector xi composed
of its molecular descriptors. The hyperplane is constructed by finding
another vector w and a parameter b that minimizes ‖w ‖

2

�2 which sat-
isfies the following conditions:

w⋅xi þ b≥þ 1 for positive classð Þ ð7Þ

w⋅xi þ b≤−1 for negative classð Þ ð8Þ

where yi is the class index of compound i, w is a vector normal to the
hyperplane, jb j

�‖w ‖ is the perpendicular distance from the hyperplane
to the origin and wk k2 is the Euclidean norm ofw. Based onw and b, a
given vector x can be classified by:

f xð Þ ¼ sgn w⋅xþ bð Þ: ð9Þ

A positive or negative f(x) value indicates that the vector x be-
longs to the active or non-active class, respectively.

In nonlinearly separable cases, which frequently occur in classify-
ing compounds of diverse structures [53–60], SVM maps the input
vectors into a higher dimensional feature space implicitly using a ker-
nel function K(xi, x). We used the Gaussian radial basis function ker-
nel, which has been extensively used and has consistently shown
better performance than other kernel functions [61–63].

K xi; xð Þ ¼ exp
− x−xik k2�

2σ2

� �
ð10Þ

where σ>0 is a parameter defining the kernel width. Linear SVM can
then applied to this feature space based on the following decision
function:

f xð Þ ¼ sgn
Xl

i

αiyiK xi; xð Þ þ b

" #
ð11Þ
where the coefficients αi and b are determined by maximizing the fol-
lowing decision Langrangian expression:

L w; b;αð Þ ¼ 1
2

wk k2−
Xl

i¼1

αi yi w⋅xi þ bð Þ−1½ � ð12Þ

under the Karush–Kuhn–Tucker (KKT) conditions [64], the derivatives
of L at the saddle point with respect to the primal variables must vanish

∂
∂b L w; b;αð Þ ¼ 0;

∂
∂w L w; b;αð Þ ¼ 0: ð13Þ

Which lead to
Pl
i¼1

αiyi ¼ 0 and w ¼ Pl
i¼1

αiyixi

By substituting Eq. (14) into Eq. (12) the primal variables can be
eliminated and the equations are converted into the Wolfe dual opti-
mization problem [65] for finding multipliers αi to maximize

Q αð Þ ¼
Xl

i¼1

αi−
1
2

Xl

i¼1

Xl

j¼1

αiαjyiyj xi⋅xj
� �

ð14Þ

subject to αi≥0, i=1,…, l and
Pl
i¼1

αiyi ¼ 0.

From the KKT complementary conditions for all support vectors xi
with αi>0:

αi yi
Xl

j

αjyiK xi; xj
� �

þ b

0
@

1
A−1

2
4

3
5 ¼ 0; i ¼ 1;…; l

one finds:

Xl

j¼1

αjyiK xi; xj
� �

þ b ¼ yi: ð15Þ

The threshold b can be computed from Eq. (15) for any support
vector. This is the so called hard margin SVM classifier. The exponent
σ value of the Gaussian kernel in Eq. (10) is optimized by maximizing
the generalization ability for the five-fold cross validation.

2.7. k-NN method

In k-NN, the Euclidean distance between an unclassified vector x
and each individual vector xi in the training set is measured [65,66].
A total of k number of vectors nearest to the unclassified vector x are
used to determine the class of that unclassified vector. The class of
the majority of k nearest neighbors is chosen as the predicted class
of the unclassified vector x. In this work, the k-NN prediction accura-
cies are estimated through five-fold cross-validation with the same
dataset and molecular descriptors selected in the SVM classification
model.

2.8. ANN method

ANN is a mathematical tool that can be used to regression and
classification, which was originally inspired by the neuron structure
in the brain. It consists of a series of nodes (the analogy of neurons)
which have multiple connections with other nodes. Our neural net-
work adopts a three-layer architecture which has an input layer con-
sisting of inputs from the molecular descriptors and a bias, a hidden
layer containing a number of hidden neurons, and an output layer
that outputs the class of a sample [67]. The error back-propagation
method using the gradient descent with momentum is used to train
the ANN model [68–70]. In this work, the optimal number of neurons
in the hidden layer is chosen by maximizing the generalization ability
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for the five-fold cross-validation. In this work, the ANN prediction ac-
curacies are estimated through five-fold cross-validation with the
same dataset and molecular descriptors selected in the SVM classifi-
cation model.

3. Evaluation of prediction performance

As in the case of all discriminative methods [71,72], the perfor-
mance of machine learning methods can be evaluated by the quantity
of true positive (TP: the number of true hPXR activators), true nega-
tive (TN: the number of true hPXR non-activators), false positive
(FP: the number of falsely classified hPXR activators), and false nega-
tive (FN: the number of falsely classified hPXR non-activators). Sensi-
tivity SE ¼ T P �TPþFNð Þ and specificity SP ¼ TN �TNþFPð Þ are the prediction
accuracy for hPXR activators and non-activators, respectively. The
overall prediction accuracy (Q) and Matthews' correlation coefficient
(C) [73] are used to measure the overall prediction performance:

Q ¼ TP þ TN
TP þ TN þ FP þ FN

ð16Þ

C ¼ TP � TN−FN � FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FNð Þ TN þ FPð Þp : ð17Þ

4. Results and discussion

4.1. Feature selection for SVM model

Table 1 gives the SVM performance evaluated by five-fold cross-
validation in each step of the feature selection processes. The number
of descriptors is promptly decreased from the initial 548 to 159 by the
first preprocessing step. By using these 159 descriptors, SVM gives an
average prediction accuracy of 89.0% for the hPXR activators, 73.9% for
the hPXR non-activators and 83.2% for the all samples. The second
ranking step then further reduce the number of descriptors to 145,
and the average prediction accuracies of the corresponding SVM
model for the hPXR activators, the hPXR non-activators and all sam-
ples are 90.7%, 80.4% and 86.7%, respectively. The results indicate
Table 1
Performance of SVM in each step of the feature selection estimated by five-fold cross-valid

Stepa

(number of
descriptors)

Optimal σb Cross-validation Prediction for hPXR

TP FN

Step 1 (159) 8.0 1 32 2
2 29 5
3 31 4
4 34 0
5 27 8
Average
SDc

Step 2 (145) 7.0 1 29 5
2 30 4
3 33 2
4 34 0
5 30 5
Average
SDc

Step 3 (73) 6.0 1 32 2
2 31 3
3 32 3
4 34 0
5 30 5
Average
SDc

a Step 1: Preprocessing; Step 2: Filter step through Fisher-score ranking and backward s
b σ: exponent of the Gaussian kernel of SVM.
c SD: standard deviation.
that the filter step slightly improves the average predictive accuracies.
To further reduce the number of descriptors, MC-SA is applied to re-
duce it to 73. The selected 73 descriptors are listed in Table 2. This
final model is named MC-SA-SVM. The average prediction accuracies
for theMC-SA-SVMmodel are 92.5%, 87.8% and 90.7% for the hPXR ac-
tivators, the hPXR non-activators and the all samples, respectively.
These results indicate that the use of MC-SA feature selection method
can further improve the predictive accuracies, and suggest that MC-SA
is useful for removing redundant descriptors and helpful for the im-
provement of computational efficiency of statistical system.

4.2. Model validation through y-scrambling

y-Scrambling was applied to exclude the possibility of chance cor-
relation, i.e., fortuitous correlation without any predictive ability. The
classification labels (true, negative) of the 318 compounds in the
training set were reordered in a randommanner. Afterward, attempts
were made to build SVM model with the scrambled activity data. A
total of 30 randomization runs were performed. The results of the
y-scrambling test are given in (Supporting Information Table S3) of
the supporting information. The average accuracies for the hPXR acti-
vators, hPXR non-activators and overall samples are 20.3–44.5%, 55.1–
63.4% and 51.4–62.6%, respectively. In all cases, the obtained random
models have much lower prediction accuracies than the model based
on the real data, indicating no obvious chance correlation in the SVM
model.

4.3. Application of the selected descriptors to other machine learning
approaches

To test whether the selected descriptors are truly relevant to the
discrimination between hPXR compounds and hPXR non-activators,
the 73 selected descriptors were used to develop ANN and k-NN pre-
diction models. The prediction accuracies of these methods and the
SVM method are given in Table 3. The prediction accuracies for
hPXR compounds, hPXR non-activators, total agents and MCC are be-
tween 87.2 and 92.5%, 73.8 and 87.8%, 82.1 and 90.7%, and 0.618 and
0.805, respectively. SVM and ANN were found to outperform k-NN.
Our study suggests that the descriptors selected by our multi-step
ation.

activators Prediction for hPXR non-activators % Q C

% SE TN FP % SP

94.1 15 6 71.4 85.5 0.689
85.3 17 4 81.0 83.6 0.657
88.6 16 5 76.2 83.9 0.654

100.0 14 8 63.6 85.7 0.718
77.1 17 5 77.3 77.2 0.534
89.0 73.9 83.2 0.650
8.7 6.7 3.5 0.070

85.3 15 6 71.4 80.0 0.573
88.2 18 3 85.7 87.3 0.733
94.3 18 3 85.7 91.1 0.808

100.0 17 5 77.3 91.1 0.821
85.7 18 4 81.8 84.2 0.670
90.7 80.4 86.7 0.721
6.3 6.1 4.7 0.103

94.1 17 4 80.9 89.1 0.767
91.2 19 2 90.5 90.9 0.810
91.4 19 2 90.5 91.1 0.812

100.0 20 2 90.9 96.4 0.927
85.7 19 3 86.4 86.0 0.711
92.5 87.8 90.7 0.805
5.2 4.2 3.8 0.079

election; and Step3: Monte Carlo simulated annealing.



Table 2
MC-SA selected 73 molecular descriptors.

Descriptor class Descriptions Na

Simple molecular
properties

Number of H-bond donor, number of 6-member non-aromatic rings, number of atoms, number of O atoms, number of S atoms,
average molecular weight (AMW), molecular weight (MW), and number of rings

8

BCUT descriptors The fifth highest eigenvalue of BCUT descriptors weighted by atomic polarizability, the third lowest eigenvalue of BCUT descriptors
weighted by atomic E-state, the fourth lowest eigenvalue of BCUT descriptors weighted by atomic E-state, the third lowest eigenvalue
of BCUT descriptors weighted by atomic mass, the third lowest eigenvalue of BCUT descriptors weighted by atomic polarizability, the
first highest eigenvalue of BCUT descriptors weighted by atomic polarizability, the fourth lowest eigenvalue of BCUT descriptors
weighted by atomic polarizability, the fifth highest eigenvalue of BCUT descriptors weighted by atomic E-state, the second highest
eigenvalue of BCUT descriptors weighted by atomic electronegativity, the second highest eigenvalue of BCUT descriptors weighted by
atomic polarizability, the third highest eigenvalue of BCUT descriptors weighted by atomic E-state, the third highest eigenvalue of
BCUT descriptors weighted by atomic polarizability, the first lowest eigenvalue of BCUT descriptors weighted by atomic mass

13

Electro-topological
state

Sum of estate of atom type ssO, sum of estate of atom type dsCH, sum of estate of atom type aasC, sum of H estate of atom type HdsCH,
sum of estate of atom type aaaC, sum of estate of atom type dO, sum of estate of atom type ssNH, sum of H estate of atom type HaaCH,
sum of estate of atom type aaCH, sum of estate of all C atoms, sum of estate of atom type ssCH2, sum of estate of all halogen atoms

12

Autocorrelation
descriptors (2D)

Moreau–Broto autocorrelation of lag9 weighted by atomic E-state indices, Moreau–Broto autocorrelation of lag0 weighted by atomic
E-state indices, Moreau–Broto autocorrelation of lag3 weighted by atomic E-state indices, Moreau–Broto autocorrelation of lag7 weighted
by atomic E-state indices, Moreau–Broto autocorrelation of lag6 weighted by atomic E-state indices, Moreau–Broto autocorrelation of
lag2 weighted by atomic E-state indices, Moran autocorrelation of lag2 weighted by atomic electronegativity, Geary autocorrelation of
lag6 weighted by atomic E-state indices, Geary autocorrelation of lag3 weighted by weighted by atomic mass, Geary autocorrelation of
lag7 weighted by atomic VDW radius, Geary autocorrelation of lag3 weighted by atomic electronegativity, Geary autocorrelation of lag3
weighted by atomic polarizability, Geary autocorrelation of lag2 weighted by atomic polarizability, Geary autocorrelation of lag2 weighted
by atomic electronegativity, Geary autocorrelation of lag2 weighted by atomic VDW, Geary autocorrelation of lag1 weighted by atomic
E-state indices, Geary autocorrelation of lag3 weighted by atomic E-state indices, Geary autocorrelation of lag1 weighted by atomic VDW
volume, Geary autocorrelation of lag9 weighted by atomic E-state indices, Geary autocorrelation of lag1 weighted by atomic mass, Geary
autocorrelation of lag2 weighted by atomic mass

21

Molecular connectivity
and shape

Mean topological charge index J2, optimized 1st connectivity index, simple topological index by Narumi, topological charge index G4,
molecular path count of length 5, gravitational topological index,1th order delta chi index, dispersion

8

Fingerprint descriptors Fingerprint for phenol (Ph-OH), fingerprint for 6-member aromatic rings, fingerprint for heterocyclic rings, fingerprint for 6-member
non-aromatic rings, fingerprint for containing rings connected by 3 non-ring edges, fingerprint for containing rings connected by 2
non-ring edges, fingerprint for secondary ammonium, fingerprint for tertiary ammonium, fingerprint for fused rings with 3 rings,
fingerprint for second alcohol, fingerprint for 5-member non-aromatic rings.

11

a The number of molecular descriptors.

276 H. Rao et al. / Chemometrics and Intelligent Laboratory Systems 118 (2012) 271–279
hybrid feature selection method in developing SVM hPXR compound
prediction model are useful for developing other machine learning
models for predicting hPXR compounds. Therefore, these selected de-
scriptors are likely relevant to the classification of hPXR compounds
from hPXR non-activators. Moreover, all the developed machine
learning models show no apparent over-fitting phenomenon, which
frequently occur in the application of wrapper methods (http://www.
scss.tcd.ie/publications/tech-reports/reports.05/TCD-CS-2005-17.pdf).

4.4. Model validation through external test set

According to Gobraikh and Tropsha [74], the only way to establish
a reliable model is by means of external validation. In the external
validation method, the data in the external testing set should not
Table 3
Performance of SVM and other machine learning methods using the selected 73 descriptor

Method Parameter Cross‐validation Prediction for hPXR act

TP FN

k-NN k=1 1 30 4
2 30 4
3 31 4
4 29 5
5 30 5
Average

ANN n=37 1 32 2
2 29 5
3 33 2
4 32 2
5 28 7
Average

SVM σ=6.0 1 32 2
2 31 3
3 32 3
4 34 0
5 30 5
Average
take part in the training, and hence it can measure the prediction abil-
ity and check the chance correlation. In this work, all of the models
are also validated using external test sets.

Before giving a prediction for a compound in the external testing
set, the applicability domain of the models should be considered in
advance. The applicability domain of QSAR is defined by the physico-
chemical, structural, or biological space knowledge on which the
training data have been developed, and for which it is applicable to
make predictions for new compounds. Ideally the model should
only be used to make predictions within that domain by interpolation
not extrapolation [75]. One of the approaches of defining the applica-
bility domain is to estimate the training set coverage in the model's
descriptor space. In mathematical terms, it means estimation of inter-
polation regions in the multivariate space of training set, because the
s.

ivators Prediction for hPXR non-activators % Q C

% SE TN FP % SP

88.2 16 5 76.2 83.6 0.651
88.2 15 6 71.4 81.8 0.610
88.6 15 6 71.4 82.1 0.614
85.3 19 3 86.4 85.7 0.707
85.7 14 8 63.6 77.2 0.510
87.2 73.8 82.1 0.618
94.1 18 3 85.7 90.9 0.806
85.3 17 4 81.0 83.6 0.657
94.3 17 4 81.0 89.3 0.769
94.1 20 2 90.9 92.9 0.850
80.0 15 7 68.2 75.4 0.482
89.6 81.4 86.4 0.713
94.1 17 4 80.9 89.1 0.767
91.2 19 2 90.5 90.9 0.810
91.4 19 2 90.5 91.1 0.812

100.0 20 2 90.9 96.4 0.927
85.7 19 3 86.4 86.0 0.711
92.5 87.8 90.7 0.805

http://www.scss.tcd.ie/publications/tech-reports/reports.05/TCD-CS-2005-17.pdf
http://www.scss.tcd.ie/publications/tech-reports/reports.05/TCD-CS-2005-17.pdf


Table 4
Comparison of prediction accuracies of different machine learning approaches by ex-
ternal testing set with the selected molecular descriptors.

Method Parameter External testing set % Q C

TP FN % SE TN FP % SP

k-NN k=1 42 6 87.5 30 5 85.7 86.7 0.730
ANN n=37 43 5 89.6 32 3 91.4 90.4 0.805
SVM σ=6.0 45 3 93.8 32 3 91.4 92.8 0.852
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interpolated prediction results aremore reliable than the extrapolated
prediction results. This approach is especially suitable to thosemodels
based on statistical mining techniques. There are four major ap-
proaches (range based, distance based, geometrical and probability
density distribution based) to estimate interpolation regions in a mul-
tivariate space [76].

In this study, to assess the application domain, i.e., the chemical
space covered by the training set of the above hold-out model, the
distance based approach is adopted. In this approach, to check if the
prediction for a new compound is in the applicability domain, the dis-
tance between the compound and the center of the training set is cal-
culated and if this distance exceeds a threshold, which is the largest
distance of a training set data point to the center of the training
data set, this compound is labeled out of the domain [77].

Since Euclidean distance has been adopted to choose the training
set points in order to make these points span the largest chemical
space, it is also employed as the distance of assessing applicability do-
main. Before the selected descriptors of the training set data are
employed, they should be scaled, centered and rotated to principal
components data. But the compoundmirtazapine in the external test-
ing set is out of the application domain.

Table 4 gives the prediction accuracies of the external testing set.
As shown in Table 4, the prediction accuracies for hPXR activators,
hPXR non-activators and overall samples range between 87.5 and
93.8%, 85.7 and 91.4%, and 86.7 and 92.8%, respectively. The C value
ranges between 0.730 and 0.852. These results indicate that the clas-
sification model is reliable.

4.5. Comparison with literature studies

Table 5 gives an overview on recent results on in silico models of
hPXR and compares them with our binary QSAR models. Considering
the size of the dataset and the structural diversity of compounds, our
results seem acceptable. The C value ranges between +1 and −1,
where a value of +1 indicates perfect prediction, −1 represents an
inverse prediction, and 0 indicates that the prediction is equivalent
to a completely random prediction. The previous best SVM reported
[15] had an external test set accuracy with a C value of 0.332 as com-
pared with 0.852 in this study. However, it should be noted that di-
rect comparisons of the results by different works may not be very
appropriate because of the use of different sets of samples, molecular
descriptors, classification methods and parameters, and methods for
validation. Nonetheless, a tentative comparison may provide some
crude estimate regarding the approximate level of accuracy of the
Table 5
Comparison of prediction accuracies with literature studies.

Study Method Training set

No. %SE %SP %Q

Chen et al. [14] SVMa 177 84.4 73.6 79.6
Khandelwal et al. [15] SVMa 177 98.98 88.61 94.3
This study SVMb 279 92.5 87.8 90.7

a 10-fold cross validation.
b 5-fold cross validation.
hPXR predictions. From Table 5, we can come to the conclusion that
the results of our SVM model are superior to that of the others. Espe-
cially, our external testing set gives the best result than the literature
results. Therefore, our SVM model is useful for predicting hPXR.

5. Conclusions

Identification of novel hPXR activators from structurally diverse
compounds is important for the discovery of drugs with desired met-
abolic and toxicological profiles. In this study, a hybrid feature selec-
tion method, which is a combination of a preprocessing step, a
filtering step through ranking of the Fisher scores and a wrapper ap-
proach step by Monte Carlo simulated annealing, is developed to se-
lect relevant descriptors from a large pool of molecular descriptors
for the prediction of the hPXR activation. The optimal subset of de-
scriptors and the optimal model parameter for SVM are obtained
based on a five-fold cross-validation. It is shown that the SVM model
using the selected descriptors has very good prediction ability, show-
ing that the hybrid feature selection method is an efficient method.
The study reveals that the five-fold cross-validation method may be
used to optimize the model parameters and select the relevant de-
scriptors to overcome the over-fitting problem and the external test
validation method by designing a representative training set may be
used to build the final classification model that has improved predic-
tion ability. We can draw a conclusion that the SVM method can be
used for high throughput virtual screening to assess hPXR activation.
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