Mechanisms of drug combinations: interaction and network perspectives

Jia Jia*, Feng Zhu*, Xiaohua Ma*[‡], Zhiwei W. Cao[‡], Yixue X. Li[‡] and Yu Zong Chen^{*‡}

Abstract | Understanding the molecular mechanisms underlying synergistic, potentiative and antagonistic effects of drug combinations could facilitate the discovery of novel efficacious combinations and multi-targeted agents. In this article, we describe an extensive investigation of the published literature on drug combinations for which the combination effect has been evaluated by rigorous analysis methods and for which relevant molecular interaction profiles of the drugs involved are available. Analysis of the 117 drug combinations identified reveals general and specific modes of action, and highlights the potential value of molecular interaction profiles in the discovery of novel multicomponent therapies.

In recent years, drug discovery efforts have primarily focused on identifying agents that modulate preselected individual targets1-3. Although new drugs have continuously been discovered, there is a growing productivity gap, despite major spending on research and development and advances in technology development⁴. This problem arises partly because agents directed at an individual target frequently show limited efficacies and poor safety and resistance profiles, which are often due to factors such as network robustness⁵⁻⁷, redundancy⁸, crosstalk⁹⁻¹¹, compensatory and neutralizing actions^{12,13}, and anti-target and counter-target activities14. With such issues in mind, systems-oriented drug design has been increasingly emphasized as a potentially more productive strategy¹⁵⁻¹⁸. This approach to drug design has been supported by clinical successes with multicomponent therapies and multi-targeted agents¹⁹⁻²², and efforts have been directed at the discovery of new multicomponent therapies7,15-17,22-24.

Knowledge of the molecular mechanisms of existing multicomponent therapies can provide clues to aid the discovery of new drug combinations and multi-targeted agents, and some key characteristics of the modes of these therapies have been outlined^{14,17,22,23}. The multiple targets can reside in the same or different pathways and tissues, and their modulation can produce more-than-additive (synergistic) effects triggered by actions converging at a specific pathway site. In addition, effects could be due to negative regulation of network compensatory and neutralizing responses, drug resistance sources, and antitarget and counter-target activities. However, specific mechanisms of action have only been fully elucidated for a few of the explored drug combinations^{17,25–30}.

Extensive investigations of the molecular basis of drug actions and responses have yielded a substantial amount of information on experimentally determined drug-mediated molecular interaction (MI) profiles and regulatory activities of many drugs and compounds^{1,2,31-36}. The MI profile of a drug describes its interactions with individual biomolecules, pathways or processes attributable to its pharmacodynamic, toxicological, pharmacokinetic, and combination effects. Apart from using MI profiles for guiding the development of target discovery technologies³⁷⁻⁴³, they might also be explored for gaining further insights into general modes of action of multicomponent therapies and the mechanisms of specific drug combinations. Such a task may be accomplished by analysing the relevant MI profiles from the perspective of coordinated interactions and network regulations10-12.

In this article, we describe how this possibility was evaluated by comprehensively investigating literaturereported synergistic and other types of drug combinations in which the combination effect has been evaluated by rigorous drug-combination analysis methods and for which relevant MI profiles of the drugs involved are available. Additonal sets of popular drug combinations were also studied. Moreover, pathway analysis was conducted for three of the studied drug combinations. It is cautioned that although connections can be made from literature-described MI profiles to examine why a drug combination may have a particular type of effect, many of these interconnections are likely to be more complicated than those summarized in this article, and their activities are highly dynamic⁴⁴⁻⁴⁶. In addition, the activation and level of activity of these connections may be influenced

* Bioinformatics and Drug Design Group, Department of Pharmacy, Department of Biological Science, Center for Computational Science and Engineering, National University of Singapore, Singapore 117543. *Shanghai Center for Bioinformation Technology, Shanghai 201203, China. Correspondence to Y.Z.C. e-mail: phacyz@nus.edu.sg doi:10.1038/nrd2683

Table 1 Examples of pharmacodynamically synergistic drug combinations due to anti-counteractive actions*					
Drug A (MoA) [‡]	Drug B (MoA) [‡]	Reported synergism	Method	Possible mechanism of synergism in anti-counteractive actions	
Different targets of the same	e pathway				
Oxaliplatin (DNA adduct, preferably binds to major groove of GG, AG and TACT sites, complex conformation different from that of cisplatin ¹⁴⁴ , causes DNA strand break and non-DNA initiated apoptosis ¹⁴⁵)	Irinotecan (DNA TOP1 inhibitor, increases EGFR phosphorylation in Lovo and WiDR cells ¹⁴⁶)	Synergistic anticancer effect in AZ-521 and NUGC-4 cells, additive effect in MKN-45 cells ¹⁴⁷	Median drug effect analysis	 Effect of oxaliplatin's DNA adduct formation¹⁴⁴ may be partially reduced by certain mutant DNA TOP1 acting on DNA adduct to generate different topoisomers¹⁴⁸ Irinotecan inhibition of DNA TOP1 partially offsets this counteractive activity¹⁴⁶ 	
DL-Cycloserine (bacterial cell-wall synthesis inhibitor ¹⁴⁹)	Epigallocatechin gallate (disrupts integrity of bacterial cell wall via direct binding to peptidoglycan ¹⁴⁹)	Synergistic effect on bacterial cell wall ¹⁴⁹	Fractional inhibitory concentration index	 Cell-wall alteration may induce counteractive cell-wall synthesis to restore cell-wall integrity¹⁵⁰ DL-Cycloserine inhibition of cell-wall synthesis hinders restoration, thereby enhancing epigallocatechin gallate's cell-wall disruption activity 	
Different targets of related p	pathways				
Paclitaxel (stabilizes microtubules via α -tubulin acetylation ⁷⁹ , distorts mitosis to trigger apoptosis ¹⁵¹ , induces p53 and CDK inhibitors ¹⁵² , activates CASP10, 8, 6 and 3, leading to apoptosis ¹⁵³ , activates ERK ¹⁵⁴ and CDK2 ¹⁵⁵ , activates p53 and p38 MAPK ¹⁵⁶)	NU6140 (CDK inhibitor, downregulates anti-apoptotic protein survivin ¹⁵⁷)	Synergistic apoptotic response ¹⁵⁷	Median drug effect analysis	 Use of both drugs promotes complementary apoptosis activities via triple actions of survivin downregulation by NU6140¹⁵⁷, microtubule stabilization⁷⁹ and CASP activation¹⁵³ by paclitaxel Paclitaxel's promotion of apoptosis may be partially offset by its counteractive pro-growth activation of ERK¹⁵⁴ and CDK2¹⁵⁵, which may be partially reduced by NU6140's inhibition of CDK¹⁵⁷ 	
Different targets of crosstall	king pathways				
Gefitinib (EGFR tyrosine kinase inhibitor, induces CDK inhibitors p27 and p21, decreases MMP2 and MMP9 enzyme activity ¹⁵⁸)	Taxane (disrupts microtubules by binding to β -tubulin ¹⁵⁹ , induces tumour suppressor gene p53 and CDK inhibitors p21, downregulates BCL-2, leading to apoptosis ¹⁵²)	Strong synergistic effect in breast cancer MCF7/ ADR cells ¹⁶⁰	Combination index	 Taxane produces anticancer effect by inducing apoptosis¹⁵² and microtubule disruption¹⁵⁹ Crosstalk between EGFR and HIF1α pathways increases resistance to apoptosis by upregulating survivin⁹ Gefitinib produces anticancer effect via EGFR tyrosine kinase inhibition, which offsets the counteractive EGFR–hypoxia crosstalk in resisting taxane's pro-apoptosis activity 	
Different targets in the same	e pathway that crosstalk v	ia another pathway			
Gefitinib (EGFR tyrosine kinase inhibitor, induces CDK inhibitors p27 and p21, decreases MMP2 and MMP9 enzyme activity ¹⁵⁸)	PD98059 (MEK inhibitor ¹⁶¹)	Synergistic antitumour effect in breast cancer MDA-361 and MB-361 cells ¹⁰⁸	Combination index, isobolographic analysis	 An autocrine growth loop crucial for tumour growth is formed in the EGFR–Ras–Raf–MEK–ERK network such that activated MEK activates ERK, which upregulates EGFR ligands, thereby promoting the autocrine growth loop¹⁶² This loop produces counteractive activity against gefitinib or PD98059 by reducing the effect of MEK or EGFR tyrosine kinase inhibition Simultaneous use of both drugs helps disrupt this autocrine growth loop, thereby enhancing each other's effect 	
Same target (different sites)					
AZT (HIV-1 RT inhibitor ¹⁶³)	Non-nucleoside HIV-1 RT inhibitor ¹⁶⁴	Antiviral synergism ¹⁶⁵	Isobolographic analysis, Yonetani– Theorell plot	 AZT resistance is partly due to phosphorolytical removal of the AZT-terminated primer¹⁶⁶ NNRTI inhibits RT-catalysed phosphorolysis, thereby reducing AZT resistance¹⁶⁵ 	
				d its molecular mechanism has been revealed.	

*In these examples, synergy has been determined by well-established synergy/additive analysis methods and its molecular mechanism has been revealed. [‡]MoA, mechanisms of action related to synergy. AZT, azidothymidine; BCL-2, B-cell lymphoma protein 2; CASP, caspase; CDK, cyclin-dependent kinase; EGFR, epidermal growth factor receptor; ERK, extracellular-regulated kinase; HIF1α, hypoxia-inducible factor 1α; MAPK, mitogen-activated protein kinase; MEK, MAPK/ERK kinase; MMP, matrix metalloproteinase; NNRTI, non-nucleoside RT inhibitor; RT, reverse transcriptase; TOP, topoisomerase.

Table 2 Examples of pharmacodynamically synergistic drug combinations due to complementary actions*						
Drug A (MoA) [‡]	Drug B (MoA) [‡]	Reported synergism	Method	Possible mechanism of synergism in promoting complementary actions		
Different targets of related	d pathways that regulate the sa	me process				
Aplidin (induces apoptosis ¹⁶⁷ , activates JNK, EGFR, Src and p38 MAPK ¹⁶⁸ , inhibits VEGF release and secretion ¹⁶⁹)	Cytarabine (DNA binder ⁹⁹ , inhibits synthesome- associated DNA POLα activity ¹⁷⁰ , inhibits RNA synthesis and DNA repair ¹⁷¹)	Aplidin synergizes with cytarabine in exhibiting anticancer activities in leukaemia and lymphoma models <i>in vitro</i> and <i>in vivo</i> ¹³⁵	Chou–Talalay combination index (Calcusyn; Biosoft)	 Both drugs complement each other's activity by inducing apoptosis via the two major apoptotic cascades Aplidin activates and clusters death receptors of Fas ligand¹⁶⁷, which subsequently activates the receptor-mediated extrinsic cascade¹⁷² Cytarabine increases cellular stress and reduces survival protein MCL1, which subsequently activates CASPs and apoptosis¹⁷¹, and triggers the mitochondrial intrinsic cascade¹⁷² 		
Different targets of the sam	me pathway that regulate the s	ame target				
Paclitaxel (stabilizes microtubules via α -tubulin acetylation ⁷⁹ , distorts mitosis to trigger apoptosis ¹⁵¹ , and induces p53 and CDK inhibitors ¹⁵²)	Tubacin (inhibits HDAC6 and microtubule-associated α-tubulin deacetylase activity ¹⁷³)	Synergistically enhances tubulin acetylation ⁷⁸	Combination index (Calcusyn)	• Both drugs complement each other's microtubule stabilization effects through enhanced acetylation activity of α -tubulin by paclitaxel ⁷⁹ , and reduced deacetylation activity of α -tubulin deacetylase by tubacin ¹⁷³		
Gefitinib (EGFR tyrosine kinase inhibitor, induces CDK inhibitors p27 and p21, decreases MMP2 and MMP9 activity ¹⁵⁸)	ST1926 (activates MAPKs p38 and JNK, releases cytochrome c, activates CASP proteolytic cascade ¹⁷⁴)	Synergistic modulation of survival signalling pathways ¹⁷⁵	Combination Index	 Gefitinib's inhibition of EGFR is complemented by ST1926's activation of p38 MAPK¹⁷⁴ that subsequently mediates internalization of EGFR¹⁷⁶, and by ST1926's activation of CASP proteolytic cascade¹⁷⁴ 		
Different targets of related	d pathways					
Sildenafil (PDE5 inhibitor ¹⁷⁷)	lloprost (prostacyclin receptor agonist ¹⁷⁸ , activates PLC ¹⁷⁹ , promoting VEGF-induced skin vasorelaxation ¹⁸⁰ , self-regulates ECAMs ¹⁸¹)	Synergistic action to cause strong pulmonary vasodilatation ¹⁸²	Dose–effect curve surpassed that of individual drug alone combined	 Sildenafil produces vasodilation activity by PDE5 inhibition¹⁷⁷; iloprost produces vasodilation activity by agonizing the prostacyclin receptor¹⁷⁸ and by activating PLC¹⁷⁹, which promotes VEGF-induced skin vasorelaxation¹⁸⁰ Targeting of multiple vasodilation regulation pathways — nitric oxide/cyclic GMP¹⁸³, Maxi-K channel-mediated relaxation¹⁸⁴, and PLC¹⁷⁹ — contribute to the synergistic actions 		
Different target subtypes of	of related pathways					
Dexmedetomidine (a _{zA} receptor agonist ¹⁸⁵)	ST-91 (agonist of α_2 receptor of other subtypes ¹⁸⁶)	Synergistic antinociceptive action ^{25,187}	lsobolographic analysis	 ST-91 produces antinociceptive effect via supraspinal receptors and at both spinal and brainstem levels of the acoustic startle response pathway¹⁸⁶ that regulate pain⁷⁴ Dexmedetomidine promotes antinociceptive effect via an endogenous sleep-promoting pathway¹⁸⁵ that sustains reduction in spike activity of spinoreticular tract neurons⁷³ 		
Same target						
Mycophenolate mofetil (IMPDH inhibitor, drug metabolite mycophenolic acid binds to the site of NAD cofactor ⁷⁷)	Mizoribine (IMPDH, drug metabolite mizoribine monophosphate binds to the enzyme in transition state having a new conformation ¹⁸⁸)	Mild synergistic suppression of T and B cell proliferation ¹⁸⁹	Median drug effect analysis, combination index	• Simultaneous inhibition of enzyme reactant-state and transition state have the advantage of covering more conformational space for the inhibitors to better compete with natural substrates for the binding sites		
Paclitaxel (stabilizes microtubules via α -tubulin acetylation ⁷⁹ , distorts mitosis to trigger apoptosis ¹⁵¹ , induces p53 and CDK inhibitors ¹⁵²)	Discodermolide (stabilizes microtubule dynamics enhancing microtubule polymer mass ¹⁹⁰ , resulting in aberrant mitosis that triggers apoptosis ¹⁵¹ , induces p53 and CDK inhibitors ¹⁵² , retains antiproliferative activity against carcinoma cells resistant to paclitaxel due to β -tubulin mutations ¹⁹¹)	Antiproliferative synergy ¹⁹²	Combination index	 Binding sites of both drugs overlap, certain mutations resistant to one drug are ineffective against the other, thus covering a more diverse range of mutant types^{15,20,193} One drug binds and induces a conformational change in tubulin, increasing the binding affinity of the other^{15,194} These drugs may differentially bind to or affect tubulin subtypes, microtubule architectures or microtubule regulators, thereby covering a more diverse range of microtubule dynamics^{15,194–196} 		

Table 2 | Examples of pharmacodynamically synergistic drug combinations due to complementary actions*

*In these examples, synergy has been determined by well-established synergy/additive analysis methods and its molecular mechanism has been revealed. ‡MoA, mechanisms of action related to synergy. CASP, caspase; CDK, cyclin-dependent kinase; ECAM, endothelial cell adhesion molecule; EGFR, epidermal growth factor receptor; HDAC6, histone deacetylase 6; IMPDH, inosine monophosphate dehydrogenase; MAPK, mitogen-activated protein kinase; MCL1, myeloid cell leukemia sequence 1; MMP, matrix metalloproteinase; PDE5, phosphodiesterase 5; PLC, phospholipase C; POLa, polymerase a; VEGF, vascular endothelial growth factor.

Combination target relationship	Drug A (MoA) [‡]	Drug B (MoA) [‡]	Reported synergism	Method	Possible mechanism of synergism in promoting facilitating actions
Different targets of related pathways	Ampicillin (blocks PBP2A and thus bacterial cell-wall synthesis ¹⁹⁷)	Daptomycin (disrupts bacterial membrane structure ¹⁹⁸)	Significant antibacterial synergy ²⁷	Checkerboard method, fractional inhibitory concentration	 Most PBPs are associated with membrane¹⁹⁹ Membrane disruption by daptomycin¹⁹⁸ probably hinders the functions of PBPs and further exposes them to ampicillin binding
Different targets of related pathways that regulate the same target	Candesartan- cilexetil (angiotensin AT, receptor antagonist ²⁰⁰)	Ramipril (ACE inhibitor ²⁰¹ , reduces angiotensin II formation ²⁰²)	Synergistically reduces systolic BP ²⁰³	Dose–response curve shifted 6.6-fold leftwards compared with hypothetical additive curve	 Candesartan-cilexetil reduces systolic BP by antagonizing AT₁ receptor²⁰⁰ Ramipril reduces systolic BP by inhibiting ACE²⁰¹ Ramipril inhibits AT₁ receptor agonist formation²⁰² thereby facilitating the action of candesartan-cilexetil by reducing AT₁ agonist-antagonist competition

Table 3 | Examples of pharmacodynamically synergistic drug combinations due to facilitating actions*

*In these examples, synergy has been determined by well-established synergy/additive analysis methods and its molecular mechanism has been revealed. [‡]MoA, mechanisms of action related to synergy. ACE, angiotensin-converting enzyme; BP, blood pressure; PBP, penicillin binding protein.

by genetic variations⁴⁷, environmental factors⁴⁸, host behaviour⁴⁹ and drug scheduling⁵⁰. Therefore, the use of these connections should be more appropriately viewed as a start to a more comprehensive analysis. include checkerboard, combination index, fractional effect analysis, isobolographic analysis, interaction index, median drug effect analysis, and response surface approaches⁵¹⁻⁵⁹.

Types of drug combinations

When two drugs produce the same broad therapeutic effect, their combination produces the same effect of various magnitudes compared with the summed effects of the individual drugs. A combination is pharmacodynamically synergistic, additive or antagonistic if the effect is greater than, equal to, or less than the summed effects of the partner drugs⁵¹. Drug combinations may also produce pharmacokinetically potentiative or reductive effects such that the therapeutic activity of one drug is enhanced or reduced by another drug via regulation of its absorption, distribution, metabolism and excretion (ADME)⁵¹. A further type of drug combination is a coalistic combination, in which all of the drugs involved are inactive individually but are active in combination⁵²⁻⁵⁵.

Synergistic and potentiative drug combinations have been explored to achieve one or more favourable outcomes: enhanced efficacy; decreased dosage at equal or increased level of efficacy; reduced or delayed development of drug resistance; and simultaneous enhancement of therapeutic actions and reduction of unwanted actions (efficacy synergism plus toxicity antagonism)^{17,22,51}. The mechanisms underlying these activities can be better understood by studying the mechanistically contrasting additive, antagonistic and reductive drug combinations. Several rigorous drug-combination analysis methods have been developed and extensively used for analysing combinations from experimental data^{15,22,51}. These

Literature drug combinations and MI profiles

We searched Pubmed⁶⁰ to select literature-reported drug combinations that had been evaluated by rigorous combination analysis methods and for which relevant MI profiles were retrievable from Pubmed. Combinations of the keywords "drug combination", "drug interaction", "multi-drug", "additive", "antagonism", "antagonistic", "infra-additive", "potentiated", "potentiative", "potentiation", "reductive", "supra_additive", "synergism", "synergistic", and "synergy" were used to search publications since 1999. Coalistic drug combinations were not evaluated because few of them are described in the literature. This is partly due to the focus on combinations of drugs that include at least one active drug; indeed, a Medline search using "coalistic" and "coalism" returns only one abstract. In addition, a significantly higher percentage of the studies published before 1999 are based on non-rigorous drugcombination methods. It has been suggested that analysis without using a rigorous method may easily lead to errors in assessing synergism with respect to such effects as enhancement and potentiation⁵¹. Therefore, to maintain the level of reliability of our assessment without substantially losing statistical significance, we focused on studies published since 1999, which constitute approximately 50% of all abstract entries selected by using our search method.

We collected 315, 88 and 62 abstract entries describing pharmacodynamically synergistic, additive, and antagonistic combinations, respectively, and 56 and 33 abstract

Table 4 Examples of pharmacodynamically additive drug combinations*							
Drug A (MoA) [‡]	Drug B (MoA) [‡]	Reported additive effect	Method	Possible mechanism of additive effect			
Equivalent of overlapping actions							
Diazoxide (ATP-sensitive K ⁺ channel opener ²⁰⁴ , enhances ATPase activity of channel regulatory subunits ²⁰⁵)	Dibutyryl-cGMP (activates ATP-sensitive K ⁺ channel ²⁰⁴ , activated channel ^{206,207})	Additive antinociceptive effect ²⁰⁴	Analysis of variance synergism and dose–effect data analysis	 Diazoxide enhances ATPase activity of channel regulatory subunits of sulphonylurea receptors²⁰⁵ Dibutyryl-cGMP activates channel via a cGMP-dependent protein kinase^{206,207} 			
Propofol (interacts with GABA _A receptor ²⁰⁹)	Sevoflurane (interacts with GABA _A receptor ²¹⁰)	Additive action in producing consciousness and movement to skin incision during general anaesthesia ²¹¹	Dixon up-down method	 Propofol binds to TM3 segment of the β2 GABA_A subunit²⁰⁹ Sevoflurane binds to Ser270 of the α1 GABA_A subunit²¹⁰ As agonist binding site is located between α1 and β2 subunits²¹², both drugs probably hinder agonist activity, thereby producing mutually substitutable actions 			
Ampicillin (blocks PBP2A and thus bacterial cell-wall synthesis ¹⁹⁷)	Imipenem (inhibits PBP1A, 1B, 2, 4 and 5 and thus bacterial cell-wall synthesis ²¹³)	Additive antibacterial effect ²⁷	Checkerboard method, fractional inhibitory concentration	 Both act at the same active site of PBP2A²¹⁴ but at relatively high MICs of ≥32 μg per ml¹⁹⁷ The relatively high MICs make it less likely for both drugs to saturate target sites, thereby maintaining additive antibacterial effect 			
Artemisinin (interferes with parasite transport proteins PfATP6, disrupts parasite mitochondrial function, modulates host immune function ²¹⁵)	Curcumin (generates ROS and downregulates PfGCN5 HAT activity, producing cytotoxicity for malaria parasites ²¹⁶)	Additive antimalarial activities ²¹⁷	Fractional inhibitory concentrations	 Artemisinin blocks calcium transport to ER²¹⁵ Curcumin induces DNA damage and histone hypoacetylation²¹⁶ They act at different sites in non-interfering manner 			
Doxorubicin (DNA intercalator ⁹⁴ , prefers AT regions ⁹⁴)	Trabectedin (forms covalent guanine adduct at specific sites in DNA minor groove ⁹⁵ , interacts with DNA repair system)	Additive anticancer effect ⁹³	lsobolographic analysis	 Both bind to DNA in non-interfering manner; one prefers AT regions⁹⁴, the other alkylated guanines⁹⁵ Recent progress in designing dual platinum-intercalator conjugates⁹⁶ suggests that it is possible for both drugs to act without hindering each other's binding mode 			
Independent actions at dosages significantly lower than MICs, complementary actions at higher dosages							
Azithromycin (hinders bacterial protein synthesis by binding to 50S component of 70S ribosomal subunit ²¹⁸)	Imipenem (inhibits PBP1A, 1B, 2, 4 and 5 and thus bacterial cell-wall synthesis) ²¹³	Additive antibacterial effect ²¹⁹	Checkerboard method, fractional inhibitory concentration	 Azithromycin hinders bacterial protein synthesis²¹⁸ at MIC of 0.12 µg per ml²²⁰ Imipenem blocks bacterial cell-wall formation²¹⁷ at MICs of ≥32 µg per ml¹⁹⁷ At dosages significantly lower than MICs for both drugs, azithromycin's reduction of PBPs²¹³ may be insufficient for imipenem to saturate these proteins, allowing its unhindered inhibition of these proteins²¹³, thereby these actions proceed in a non-interfering manner 			
	Drug A (MoA)* pping actions Diazoxide (ATP-sensitive K* channel opener ²⁰⁴ , enhances ATPase activity of channel regulatory subunits ²⁰⁵) Propofol (interacts with GABA _A receptor ²⁰⁹) Ampicillin (blocks PBP2A and thus bacterial cell-wall synthesis ¹⁹⁷) Artemisinin (interferes with parasite transport proteins PfATP6, disrupts parasite mitochondrial function, modulates host immune function ²¹⁵) Doxorubicin (DNA intercalator ³⁴ , prefers AT regions ⁹⁴) at dosages significantly loc 50S component of 70S ribosomal subunit ²¹⁸)	Drug A (MoA) [‡] Drug B (MoA) [‡] ping actions Diazoxide (ATP-sensitive K* channel opener™, enhances ATPase activity of channel regulatory subunits™) Dibutyryl-cGMP (activates ATP-sensitive K* channel™, activated channel™, prefers AT region™, activated activity, producing cytotoxicity for malaria parasites™) Doxorubicin (DNA intercalator™, prefers AT region™) Curcumin (informs covalent guanitor system) At dosages significantly lower than MICs, complex and thus bacterial protein system) Imipenem (inhibits PBP1A, 18, 2, 4 and 5 and thus bacterial soft with DNA repair system)	Drug A (MoA)*Drug B (MoA)*Reported additive effectpping actionsDiazoxide (ATP-sensitive K "channel opener"*, activates ATP-sensitive K" channel?*, activated channel?*, activated consciousness and movement to skin incision during general anesthesia?**Additive action in producing consciousness and movement to skin incision during general and thus bacterial cell-wall synthesis***)Additive antibacterial effect?**Artemisinin (interferes with parasite transport proteins PIATP6, disrupts parasite function?**Curcumin (generates ROS and downregulates PGCNS HAT activity, producing cotoxicity for malaria parasites?***Additive anticancer effect***Doxorubicin (DNA intercalator**, prefersTrabectedin (forms covalent guanine adduct at specific sites in DNA minor groove**, interacts with DNA repair system)Additive anticancer effect***at dosages significantly lower than MICs, complement (inhibits bacterial protein synthesis by binding to 50S component of 70S ribosomal subunit***)PBPIA, 1B, 2, 4 and antibacterial	Drug A (MoA)*Drug B (MoA)*Reported additive effectMethodpliag actionsDibutyryl-cGMP (activates AFP-sensitive K' channel*M, activated channel*M, activated cell-wall synthesis****Additive action in producing consciousness and movement to skin incision during general anaesthesia****Dixon up-down methodAmpicillin (blocks PBP2A and cell-wall synthesis*****Imipenem (inhibits and thus bacterial cell-wall synthesis*****Additive antibacterial cell-wall synthesis*****Checkerboard method, fractional inhibitory concentrationArtemisinin (interferes disrupt parasite mitochondrial function, modulates host immune intochondrial function, malaria parasites***********************************			

*In these examples, additive action has been determined by well-established synergy/additive analysis methods and its molecular mechanism has been revealed. *MoA, mechanisms of action related to additive effect. GABA_A, γ -aminobutyric acid A; ER, endoplasmic reticulum; HAT, histone acetyltransferase; PBP, penicillin binding protein; MIC, minimum inhibitory concentration; PfATP6, sarcoendoplasmic reticulum Ca²⁺ ATPase (SERCA) orthologue of *Plasmodium falciparum*; PfGCN5, *P. falciparum* GCN5 homologue; ROS, reactive oxygen species; TM3, transmembrane 3.

lable 5 Examples of pharmacodynamically antagonistic drug combinations"						
Combination target relationship	Drug A (MoA)‡	Drug B (MoA) [‡]	Reported antagonistic effect	Method	Possible mechanism of antagonism of interfering actions	
Different targets of related pathways that regulate the same target	Amphotericin B (forms ion channels in fungal membranes ²²¹)	Ravuconazole (inhibits biosynthesis of ergosterol, a component of fungal cell membranes ²²²)	Antagonism in experimental invasive pulmonary aspergillosis ^{223,224}	Loewe additivity- based drug- interaction model	 Amphotericin B can form ion channels more easily in the presence of ergosterol²²¹ Ravuconazole inhibition of ergosterol synthesis²²² can therefore reduce the activity of amphotericin B in forming ion channels²²¹ 	
Same target	Aminophylline (adenosine receptor antagonist, phospho- diesterase inhibitor, releases intracellular calcium ⁹⁷)	Theophylline (releases intracellular calcium, adenosine receptor antagonist, phospho- diesterase inhibitor ⁹⁷)	Antagonism of inhibitory adenosine autoreceptors and release of intracellular calcium ⁹⁷	Quantal release measurement	 Adenosine receptor antagonist binding may be associated with non-unique binding site conformations⁹⁸ Aminophylline binding may lock the receptor into a unique conformation that hinders theophylline binding, thereby producing an antagonistic effect 	

Table 5 | Examples of pharmacodynamically antagonistic drug combinations*

*In these examples, antagonism has been determined by established methods and its molecular mechanism has been revealed. The antagonism of the listed drug combinations is due to interfering actions of the partner drugs in each combination. [‡]MoA, mechanisms of action related to antagonism.

entries describing pharmacokinetically potentiative and reductive combinations, respectively. We then removed 158, 53, 32, 15 and 18 of these entries, respectively, that are redundant (for example, the same combination or the same paper selected by different keyword combinations); ambiguous (for example, synergistic in one report or condition, additive in another report or condition); and involving more than two drugs so as to focus on simpler cases. We further removed 45, 12, 1, 1 and 2 papers, respectively, that described studies using nonrigorous drug-combination methods. For the remaining 217 papers, we searched additional literature for experimentally determined MI profiles related to the mechanism of the claimed combination effects. Our analysis showed that the available literature-reported MI profiles are insufficient or irrelevant to substantiate the claimed combination effects in 110 (59 synergistic, 11 additive, 17 antagonistic, 20 potentiative and 3 reductive combinations) of the 218 remaining papers.

This led to the identification of 107 combinations that can be substantiated by available literature-reported MI profiles. These comprise 53, 12 and 12 sets of pharmacodynamically synergistic, additive and antagonistic combinations, and 20 and 10 sets of pharmacokinetically potentiative and reductive combinations, respectively. Data are summarized in Supplementary information S1 (table), <u>S2</u> (table), <u>S3</u> (table), <u>S4</u> (table), <u>S5</u> (table), <u>S6</u> (table) and S7 (table), together with literature-reported mechanisms related to their therapeutic and combination effects. The statistical significance of our assessment can be roughly estimated as follows: for the 110 combination sets not yet substantiated by the available MI profiles, it is reasonable to assume that a high percentage of them may eventually be substantiated by additional experimental findings. If one further assumes that the reported combination effects that are substantiated by MI profiles are at least partly true, then the estimated ratio of truly and falsely reported combinations should be substantially larger than 107 out of 110. Hence, there seems to be a statistically significant number of combinations and sufficient percentages of true claims for supporting a fair assessment of general combination types and mechanisms of drug combinations from the information collected by our search methods.

Examples of our evaluated drug combinations are shown in TABLES 1-7. Many of the MI profiles directly point to a specific biomolecule as the inhibiting, activating or regulating target. So, it is possible to determine the combination effects based on the expected therapeutic and pharmacokinetic consequences of these interactions. Although the molecular target is not exactly specified, some of the profiles identify a specific pathway or process as a target, and provide the pharmacodynamic or pharmacokinetic consequence of the interaction. For instance, in literature reports, arsenic trioxide produces anticancer activity by generating reactive oxygen species, which is partially counteracted by its activation of the AKT survival pathway⁶¹. The anticancer agent 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) produces its effects by inhibiting the nuclear factor-κB (NF-κB), AP-1 (also known as JUN) and phosphatidylinositol 3-kinase (PI3K)-AKT pathways61. Therefore, when used in combination, 17-AAG abrogates arsenic trioxide's counteractive activation of AKT survival pathway⁶¹.

Pharmacodynamically synergistic combinations

We identified three groups of pharmacodynamically synergistic combinations among the 53 synergistic drug combinations. In the first group (21 combinations), anti-counteractive actions of the drugs involved

lable 6 Examples of pharmacokinetically potentiative drug combinations*						
Drug A (therapeutic or toxic effects and MoA)	Drug B (MoA related to potentiative effect)	Reported potentiative effect	Possible mechanism of potentiative actions			
AZT (anti-HIV; HIV-1 reverse transcriptase inhibitor)	1,8-Cineole (forms hydrogen bonds with lipid head groups of stratum corneum lipids ²²⁵)	Enhances skin permeation of AZT ²²⁶	Enables drug transport across skin possibly by disrupting absorption barrier via binding to lipid head groups			
Cerivastatin (cho- lesterol-lowering; HMG-CoA reductase inhibitor)	Gemfibrozil (inhibits CYP2C8-mediated metabolism of statins, inhibits OATP2-mediated uptake of cerivastatin ²²⁷)	Increases plasma concentration of statins by inhibiting their metabolism and uptake ^{227–229}	Enhances level of drug in plasma by metabolism reduction and uptake inhibition			
Doxorubicin (anticancer by DNA intercalation; converted to doxorubicinol by NADPH-dependent aldo/keto or carbonyl reductases ²³⁰ , produces cardiotoxicity by mediating transition from reversible to irreversible damage)	Paclitaxel (stimulates enzymatic activity of NADPH-dependent aldo/keto or carbonyl reductases ²³⁰)	Enhances cardiotoxicity by increasing metabolism of doxorubicin into toxic metabolite ²³⁰	Enhanced metabolism of drug into toxic metabolite			
	Drug A (therapeutic or toxic effects and MoA)AZT (anti-HIV; HIV-1 reverse transcriptase inhibitor)Cerivastatin (cho- lesterol-lowering; HMG-CoA reductase inhibitor)Doxorubicin (anticancer by DNA intercalation; converted to doxorubicinol by NADPH-dependent aldo/keto or carbonyl reductases230, produces cardiotoxicity by mediating transition from reversible to	Drug A (therapeutic or toxic effects and MoA)Drug B (MoA related to potentiative effect)AZT (anti-HIV; HIV-1 reverse transcriptase inhibitor)1.8-Cineole (forms hydrogen bonds with lipid head groups of stratum corneum lipids ²²⁵)Cerivastatin (cho- lesterol-lowering; HMG-CoA reductase inhibitor)Gemfibrozil (inhibits CYP2C8-mediated metabolism of statins, inhibits OATP2-mediated uptake of cerivastatin ²²⁷)Doxorubicin (anticancer by DNA intercalation; converted to doxorubicinol by NADPH-dependent aldo/keto or carbonyl reductases ²³⁰ , produces cardiotoxicity by mediating transition from reversible toPaclitaxel (stimulates enzymatic activity of NADPH-dependent aldo/keto or carbonyl reductases ²³⁰)	Drug A (therapeutic or toxic effects and MoA)Drug B (MoA related to potentiative effect)Reported potentiative effectAZT (anti-HIV; HIV-1 reverse transcriptase inhibitor)1,8-Cineole (forms hydrogen bonds with lipid head groups of stratum corneum lipids ²²⁵)Enhances skin permeation of AZT ²²⁶ Cerivastatin (cho- lesterol-lowering; HMG-CoA reductase inhibitor)Gemfibrozil (inhibits CYP2C8-mediated metabolism of statins, inhibits OATP2-mediated uptake of cerivastatin ²²⁷)Increases plasma concentration of statins by inhibiting their metabolism and uptake ²²⁷⁻²²⁹ Doxorubicin (anticancer by DNA intercalation; converted to doxorubicinol by 			

Table 6 | Examples of pharmacokinetically potentiative drug combinations*

*In these examples, potentiative effect has been determined by established methods and its molecular mechanism has been revealed. AZT, azidothymidine; CYP2C8, cytochrome P450 2C8; HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA; MoA, mechanism of action; OATP2, organic anion transporter 2 (also known as SLCO1B1).

reduce the network's counteractive activities against a drug's therapeutic effect. In the second group (26 combinations), complementary actions positively regulate a target or process by interactions with multiple target/pathway sites, different target subtypes and states, and competing mechanisms¹⁵. The third group (six combinations) involves facilitating actions: secondary actions of one drug that enhance the activity or level of another drug. The therapeutic and synergistic mechanisms of the combinations in these three groups are summarized in Supplementary information S1 (table), S2 (table) and S3 (table), with selected examples given in TABLE 1, TABLE 2 and TABLE 3, respectively.

Anti-counteractive actions. Anti-counteractive actions may arise from interactions with an anti-target or counter-target¹⁴, and from negative modulations of a network's robustness⁵⁻⁷, crosstalk⁹⁻¹¹, and compensatory and neutralizing actions^{12,13}. These anti-counteractive synergistic combinations act on different targets of related pathways (eight combinations); different targets of crosstalking pathways (four combinations); different targets of the same pathway that crosstalk to each other via another pathway (one combination) or regulate the same (five combinations) or different targets (two combinations); and different sites of the same target (one combination).

An example of actions on different targets is provided by the anticancer combination of cisplatin and topotecan⁶²⁻⁶⁴. Cisplatin binds to the major groove of GG, AG and TACT sites in DNA⁶⁵, which is bypassed by the network's counteractive activity of mutagenic translesional bypass replication across cisplatin–DNA adducts⁶⁶. Topotecan inhibits topoisomerase I, interacts with DNA and stabilizes covalent topoisomerase–DNA complexes to block DNA replication forks⁶⁷. The last function reduces the counteractive effect against cisplatin, therefore resulting in synergism.

An example of actions on the same target is the anticancer combination of cisplatin and trabectedin⁶⁸. Trabectedin interacts with DNA and DNA repair systems in a different manner to that of cisplatin⁶⁸ via covalent binding to the 2-amino group of the central guanine of selected DNA pyrimidine-G-G and purine-G-C triplets⁶⁹. This induces the formation of unusual DNA replication intermediates that strongly inhibit DNA replication⁷⁰ and subsequently reduces the counteractive effect against cisplatin.

Complementary actions. Complementary actions primarily involve positive regulation of a target or process by targeting multiple points of a pathway^{71,72} and its crosstalk pathways⁷¹⁻⁷⁵; interacting with multiple sites^{65,76}, states⁷⁷, conformations¹⁵, and mutant forms¹⁵ of the target; collectively modulating target activity and expression²⁸; and simultaneously enhancing the positive and reducing the negative effects of the target^{78,79}. These combinations act on different targets of related pathways that regulate the same targets (eight combinations) or the same target/process (five combinations); different targets of related pathways that regulate different targets (six combinations); different targets of the same pathway that

т

Iable 7 Examples of pharmacokinetically reductive drug combinations*						
	Biochemical class of reductive effect	Drug A (therapeutic or toxic effects and MoA)	Drug B (MoA related to reductive effect)	Reported reductive effect	Possible mechanism of reductive actions	
	Drug transport and permeation	Amphotericin B (antileishmanial, forms aggregate with miltefosine ²³¹)	Miltefosine (antileishmanial, forms aggregate with amphotericin B ²³¹)	Reduces miltefosine- induced paracellular permeability enhancement in Caco-2 cell monolayers, inhibits uptake of both drugs, decreases transepithelial transport of both drugs ²³²	Reduces drug permeability and transport	
	Drug distribution and localization	Cisplatin (DNA inter- and intra- strand adduct, preferably binds to the major groove of GG, AG and TACT sites ⁶⁵ thereby inhibiting DNA polymerization and induces DNA damage to trigger apoptosis ¹²⁰)	Procainamide hydrochloride (forms cisplatin– procainamide complex ²³³)	Reduces cisplatin-induced hepatotoxicity via formation of less toxic platinum complex, leading to inactivation of cisplatin or its highly toxic metabolites and to a different subcellular distribution of platinum ²³³	Reduces level of toxic drug by formation of less toxic complex and rearrangement of its subcellular distribution	
	Drug metabolism	Warfarin (anticoagulant and antithrombotic, affects coagulation proteins that act sequentially to produce thrombin, metabolized by CYP3A4 ²³⁴)	Quinidine (stimulates CYP3A4-mediated metabolism of warfarin ²³⁵)	Reduces anticoagulant effect of warfarin by stimulating its metabolism ²³⁵	Enhances metabolism of active drug into inactive metabolite	

Table 7 Examples of pharmacokinetically reductive drug combinations	able 7	Examples of	pharmacokinetically	v reductive drug	combinations'
---	--------	-------------	---------------------	------------------	---------------

*In these examples, reductive effect has been determined by established methods and its molecular mechanism has been revealed. CYP3A4, cytochrome P450 3A4; MoA, mechanism of action.

regulate the same target (two combinations); different target subtypes in related pathways (one combination); and the same target at different sites (two combinations), overlapping sites (one combination), and different states (one combination).

An example of actions on different targets is the celecoxib and emodin combination, which synergistically represses the growth of certain cancer cells⁸⁰. Celecoxib is a cyclooxygenase 2 (COX2) inhibitor, which suppresses cancer growth by inactivating protein kinase AKT to stop its suppression of apoptosis⁸¹. Emodin suppresses cancer growth by inhibiting tyrosine kinases⁸² and down-regulating AKT via inhibition of PI3K pathway to reduce AKT suppression of apoptosis⁸³. Emodin complements celecoxib's inactivation of AKT⁸¹ to reduce its suppression of apoptosis.

Facilitating actions. Facilitating actions can be illustrated by two examples. The first is the gentamicin and vancomycin combination, which produces synergistic antibacterial action against penicillin-resistant bacterial strains⁸⁴. Gentamicin targets the bacterial ribosome, causes misreading of the genetic code and inhibits translocation to disrupt protein synthesis⁸⁵. Vancomycin inhibits bacterial cell-wall peptidoglycan synthesis⁸⁶, selectively inhibits ribonucleic acid synthesis and alters permeability of the cell membrane⁸⁷. The alteration in cell-membrane permeability by vancomycin enhances gentamicin penetration into bacterial cells, thereby increasing its bioavailability. The second example is the BQ-123 and enalapril combination, which produces synergistic endotheliumdependent vasodilation enhancement⁸⁸. BQ-123 is an endothelin A (ET_A) receptor antagonist that mediates vasodilation⁸⁹. Enalapril upregulates the ET_B receptor and inhibits angiotensin-converting enzyme, leading to vasodilation^{90,91}. BQ-123 antagonism of the ET_A receptor⁸⁹ displaces endogenous ET1 from the ET_A receptor on to the upregulated ET_B receptor to enhance its activity by effectively increasing ET_B agonist concentration⁸⁸.

Pharmacodynamically additive combinations

Investigation of additive and antagonistic combinations provides contrasting perspectives for facilitating the study of synergistic combinations. Additive combinations (see Supplementary information S4 (table), with selected examples in TABLE 4) result from equivalent or overlapping actions (nine combinations) and independent actions (four combinations) of the drugs involved.

Equivalent and overlapping actions involve interactions with different targets of the same pathways that equivalently regulate the same target (seven combinations), or interactions that directly or indirectly affect the same site of the same target (two combinations). For example, retinoic acid and trichostatin A additively inhibit cell proliferation by overlapping actions of upregulation of retinoic acid receptor β and reactivation of its mRNA expression⁹².

Independent actions involve interactions with different targets of unrelated pathways (three combinations),

Table 8 Assessment of clinically widely used drug combinations (part 1)*							
Suggested combination type	Drug A (MoA) [‡]	Drug B (MoA) [‡]	Reported combination effect (method)	Possible mechanism of combination actions			
Different targets of unrelated pathways							
Potentiative combination by enhancing drug distribution or localization	Amoxicillin (inhibits bacterial cell-wall synthesis ²³⁶ , destroyed by β -lactamase ²³⁷)	Clavulanate (β-lactamase inhibitor ¹¹⁷)	Antibacterial synergy ¹⁰³ (comparison of inhibitory activity)	 Clavulanate maintains level of amoxicillin at bacterial cell wall by inhibiting its degradation enzyme β-lactamase¹¹⁷, thereby potentiating the antibacterial activity of amoxicillin 			
Different targets of	related pathways that regulate t	he same target					
Synergistic combination due to facilitating actions	$\begin{array}{l} Salmeterol~(\beta_2\text{-}adrenoceptor\\ agonist^{238}~that~activates\\ T-cell~subtypes^{186},~promotes\\ apoptosis~via~adrenoreceptor-and cAMP-independent,\\ Ca^{2+}-dependent~mechanism^{239} \end{array}$	$\begin{array}{l} Fluticasone \\ (glucocorticoid \\ receptor binder^{240} that \\ induces apoptosis^{241}, \\ upregulates \\ \beta_2 - adrenoceptor^{112}) \end{array}$	Synergistic <i>in vitro</i> T-cell activation and apoptosis induction in asthma ¹¹⁰ (comparison of activity and protein levels)	• Salmeterol's agonistic activity on the β_2 -adrenoceptor ²³⁸ is facilitated by fluticasone's upregulation of the β_2 - adrenoceptor ¹¹² , leading to synergistic T-cell activation and apoptosis induction			
Different targets of	the same pathway (upstream – d	ownstream relationship)					
Redundant combination in targeting upstream and downstream targets of the same single-route pathway	Sulphamethoxazole (DHPS inhibitor ¹¹⁸ , metabolite covalently haptenates human serum proteins ²⁴²)	Trimethoprim (DHFR inhibitor ¹¹⁹)	No synergy detected against <i>E. coli</i> ¹¹¹ and <i>S. somaliensis</i> strains ¹⁰⁴ , therapeutic effect due to sulphamethoxazole alone, clinical use of combination discontinued and converted to single drug ¹⁰⁴ (chequerboard)	 Both drugs target the same single-route folate metabolism pathway Sulphamethoxazole targets the upstream DHPS¹¹⁸ and trimethoprim targets the downstream DHFR¹¹⁹ Redundant combination if sulphamethoxazole effectively inhibits DHPS Trimethoprim inhibition of DHFR serves as a backup when sulphamethoxazole becomes less effective 			
Different targets of	related pathways						
Unclear	Rifampicin (bacterial DNA-dependent RNA polymerase inhibitor ²⁴³)	Fusidic acid (interferes with bacterial protein synthesis by inhibiting the translocation of peptide elongation factor G from the ribosome ²⁴⁴)	Synergistic effect against S. somaliensis strains in vitro ¹⁰⁴ (chequerboard)	 Mechanism unclear A report suggests that transcribing activity of DNA-dependent RNA polymerase from <i>E. coli</i> is inhibited <i>in vitro</i> by addition of preparations of elongation factor T purified to homogeneity²⁴⁵ 			
Synergistic combination due to facilitating action	Erythromycin (binds to bacterial 70S ribosomal complex to inhibit bacterial protein synthesis ¹¹⁴)	Penicillin (binds to DD-transpeptidase that links peptidoglycan, which weakens bacterial cell wall ²⁴⁶)	Combination inhibits 80% of the S. somaliensis strains both synergically and additively ¹⁰⁴ (chequerboard)	 Weakening of bacterial cell wall by penicillin, which enhances erythromycin penetration into bacterial cells, thereby enhancing its bioavailability¹¹⁴ 			
Potentiative combination by enhancing drug distribution or localization	$\begin{array}{l} Ergotamine (5-HT_{1B}/5-HT_{1D} \\ receptor agonist^{247}, \\ agonist of presynaptic \\ dopamine receptors and \\ \alpha_2^{-adrenoceptors, postsynaptic \\ \alpha_1 and \alpha_2^{-adrenoceptors, and \\ antagonist of the postsynaptic \\ \alpha_1^{-adrenoceptors^{248}} \end{array}$	Caffeine (adenosine receptor antagonist ²⁴⁹ that increases dopamine and GABAergic activities ²⁵⁰ , cAMP-PDE inhibitor ²⁵¹)	Symptomatic treatment of chronic vascular headache by the combination ¹⁰⁵ (comparison of activity)	 Caffeine increases water solubility of ergotamine to enhance its absorption¹²², producing potentiative effect Possible synergy may occur at dopamine receptor, which requires further investigation 			
Additive combination due to equivalent action	Niacin (niacin receptor HM74A agonist that inhibits hepatocyte DGAT and triglyceride synthesis leading to increased intracellular ApoB degradation ²⁵²)	Simvastatin (HMG-CoA reductase inhibitor ¹²³)	Combination reduces LDL and VLDL, and increases HDL cholesterol ¹⁰⁶ (comparison of activity and protein levels)	 Niacin reduces secretion of VLDL and LDL cholesterol²⁵² Simvastatin reduces synthesis of LDL cholesterol and triglycerides, and increased HDL-cholesterol¹²³ Both drugs equivalently reduce the level of LDL cholesterol 			

*These combinations, which were not collected by our literature search procedure, have primarily been studied by less rigorous combination analysis methods and the relevant studies have been published before 1999. [‡]MoA, mechanisms of action related to combination effect. 5-HT, 5-hydroxytryptamine (serotonin); ApoB, apolipoprotein B; COX, cyclooxygenase; DGAT, diacylglycerol acyltransferase; DHFR, dihydrofolate reductase; DHPS, dihydropteroate synthase; *E. coli, Escherichia coli*; GABA, γ-aminobutyric acid; HDL, high density lipoprotein; HM74A, G protein-coupled receptor HM74a (also known as GPR109A) HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA; LDL, low density lipoprotein; PDE, phosphodiesterase; *S. somaliensis*, *Streptomyces somaliensis*; TYMS, thymidylate synthase; VLDL, very-low density lipoprotein.

Table 8 Assessment of clinically widely used drug combinations (part 2)*							
Suggested combination type	Drug A (MoA) [‡]	Drug B (MoA) [‡]	Reported combination effect (method)	Possible mechanism of combination actions			
Same target (differer	nt binding sites)						
Synergistic combination due to complementary action	Cisplatin (DNA inter- and intra-strand adduct, preferably binds to the major groove of GG, AG and TACT sites ⁶⁵ thereby inhibiting DNA polymerization and induces DNA damage to trigger apoptosis ¹²⁰)	Cyclophosphamide (metabolite forms DNA adduct at phosphoester ¹²¹ and at G N-7 positions ²⁵³ , thereby inhibiting DNA polymerization and induces DNA damage to trigger apoptosis ²⁰⁸)	Combination produces response rates of 60–80% in patients with small-cell lung cancer ¹⁰⁷ (comparison of activity)	 Cisplatin and cyclophosphamide form DNA adducts at different sites^{120,121}, possibly at mutually compatible binding conformation because of the small size of the drugs The two drugs thereby complement each other's actions on DNA 			
Same target	Same target						
Synergistic combination due to facilitating action	Methotrexate (DHFR inhibitor ¹³⁴)	Fluorouracil (anticancer, metabolite inhibits TYMS that stops DNA synthesis ²⁵⁴ , stabilizes and activates p53 by blocking MDM2 feedback inhibition through ribosomal proteins ²⁵⁵)	Synergism in inhibiting viability of L1210 murine tumour cells ¹¹³ (comparison of activity)	 Apart from methotrexate's anticancer DHFR inhibitory activity¹³⁴, methotrexate metabolite forms reversible ternary complexes with fluorouracil on one site of TYMS to enhance its binding to the enzyme¹¹³ Fluorouracil's anticancer TYMS inhibitory activity is therefore enhanced 			
Synergistic combination due to complementary action	Diclofenac (non-selective COX inihibitor ¹¹⁵ , COX1 inhibition increases formation of kynurenic acid in brain to produce analgesic effect ¹¹⁵)	Paracetamol (metabolite agonizes cannabinoid receptors to produce analgesic effect ^{212,256} , selective COX2 variant inhibitor ²⁵⁷)	Synergy in treatment of acute pain in humans ¹⁰⁹ (isobolographic analysis)	• Apart from its analgesic action via cannabinoid receptors ^{212,256} , paracetamol reduces active oxidized form of COX to resting form ¹¹⁶ to complement diclofenac's analgesic action of COX1 inhibition ¹¹⁵			

*These combinations, which were not collected by our literature search procedure, have primarily been studied by less rigorous combination analysis methods and the relevant studies have been published before 1999. [‡]MoA, mechanisms of action related to combination effect. 5-HT, 5-hydroxytryptamine (serotonin); ApoB, apolipoprotein B; COX, cyclooxygenase; DGAT, diacylglycerol acyltransferase; DHFR, dihydrofolate reductase; DHPS, dihydropteroate synthase; *E. coli, Escherichia coli*; GABA, γ -aminobutyric acid; HDL, high density lipoprotein; HM74A, G protein-coupled receptor HM74a (also known as GPR109A) HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA; LDL, low density lipoprotein; PDE, phosphodiesterase; *S. somaliensis, Streptomyces somaliensis*; TYMS, thymidylate synthase; VLDL, very-low density lipoprotein.

> or different sites of the same target (one combination). For instance, doxorubicin and trabectedin produce an additive anticancer effect via equivalent action of DNA intercalation and covalent guanine adduct formation at specific sites in the DNA minor groove⁹³. Both drugs bind to DNA in a non-interfering manner; doxorubicin prefers AT regions⁹⁴, whereas trabectedin alkylates guanines⁹⁵. Recent progress in designing dual platinumintercalator conjugates⁹⁶ suggests that it is possible for both drugs to act without hindering the binding mode of each other.

Pharmacodynamically antagonistic combinations

Antagonistic drug combinations (see Supplementary information S5 (table), with selected examples in TABLE 5) involve interfering actions at the same target (two combinations), or different targets of related pathways that regulate the same target (two combinations). One possible mechanism for antagonistic drug combination against the same target is mutual interference at the same site, which can be illustrated by the aminophylline and theophylline combination⁹⁷. Both aminophylline and theophylline are adenosine receptor antagonists and phosphodiesterase inhibitors, and are involved in the release of intracellular calcium⁹⁷. Adenosine receptor antagonist binding may be associated with non-unique binding site conformations⁹⁸. Therefore, aminophylline or theophylline binding probably locks the receptor into a unique conformation that hinders theophylline or aminophylline binding, leading to antagonism. Similarly, inhibitor–activator, antagonist–agonist, blocker–substrate, and other mutually interfering pairs of drugs that bind to the same site may also produce antagonism.

One mechanism for antagonistic drug combination against different targets of related pathways is counteractive actions that hinder the normal actions of the partner drug, which can be illustrated by the cytarabine and 17-AAG combination⁹⁹. Cytarabine is a DNA binder⁹⁹ and 17-AAG is a heat-shock protein antagonist that abrogates the AKT survival pathway^{61,100}. 17-AAG antagonizes the cytotoxic activity of cytarabine, which is partly due to the induction of G1 cell-cycle arrest, which subsequently prevents the incorporation of cytarabine into cellular DNA⁹⁹.

Pharmacokinetically potentiative combinations

Potentiative drug combinations (see Supplementary information S6 (table), with selected examples in TABLE 6) involve positive modulation of drug transport or permeation (seven combinations), distribution or localization (eight combinations), and metabolism (three combinations). Potentiative modulation of drug transport or permeation enhances drug absorption via disruption of transport barrier, delay of barrier recovery, or inhibition

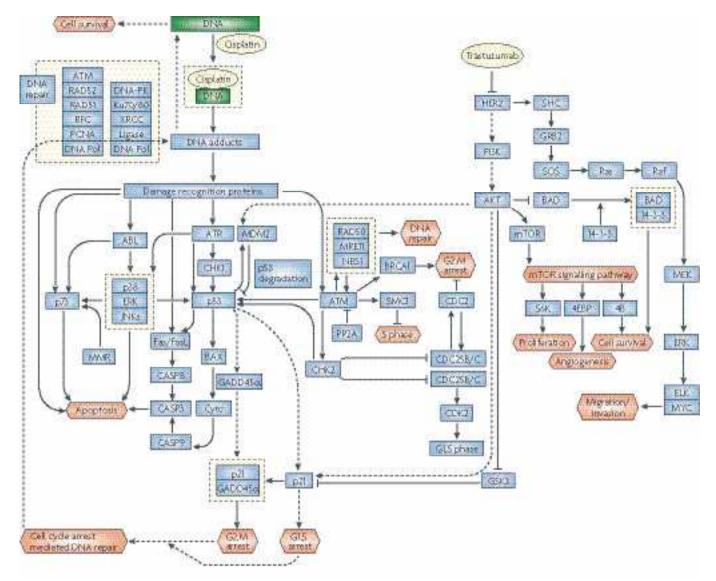


Figure 1 | Pathways affected by the cisplatin and trastuzumab combination. Cisplatin forms adducts with DNA that inhibit DNA polymerization and induce DNA damage to trigger apoptosis¹²⁰ (via p53–BCL-2-associated X protein (BAX), p53–Fas, p38– Jun N-terminal kinase (JNK), and p73 pathways). Trastuzumab is an anti-HER2 (also known as ERBB2) antibody that inhibits HER2-mediated proliferation, angiogenesis, survival and migration¹³⁰ (via phosphatidylinositol 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) and Ras- extracellular signal-regulated kinase (ERK) pathways). Induction of DNA damage and apoptosis by cisplatin may be attenuated by DNA repair systems in certain cell types¹²⁰ (via p53–p21 pathways). This counteractive DNA repair action may be reduced by the anti-HER2 activity of trastuzumab, which suppresses the DNA repair pathway¹³¹ and inhibits the PI3K-AKT pathway¹³² to enhance apoptosis¹³³. The corresponding pathways (dashed lines) involve the inhibition of HER2–PI3K–AKT-mediated activation of p21, which reduces the activity of p21 in facilitating checkpoint kinase 1 (CHK1)-p53-p21 and CHK1-p53-growth arrest and DNA-damage-inducible, alpha (GADD45 α)-p21 mediated induction of cell-cycle arrest that is important for ataxia telangiectasia mutated (ATM)-mediated DNA repair. Reduction of AKT activity by trastuzumab's inhibition of HER2 also lowers the activity of p53 binding protein homologue (MDM2) in facilitating p53 degradation, which enhances p21 activation to counterbalance the reduced AKT activation of p21. We were unable to identify another counterbalancing pathway, and it is unclear to what extent the MDM2-mediated counterbalance pathway affects the overall state of p21 activation. 4EBP, eukaryotic initiation factor 4E (eIF4E)-binding protein; ATR, ataxia telangiectasia and Rad3 related; BAD, BCL-2-associated agonist of cell death; BRCA1, breast cancer 1, early onset; CASP, caspase; CDC2, cell division cycle 2, G1 to S and G2 to M; CDC25, cell division cycle 25 homologue; CDK2, cyclin-dependent kinase 2; Cyt c, cytochrome c; DNA PK, DNA protein kinase; DNA Pol, DNA polymerase; FasL, Fas ligand; GRB2, growth factor receptor-bound protein 2; GSK3, glycogen synthase kinase 3; KU70, also known as XRCC6; KU80, also known as XRCC5; MEK, mitogen-activated protein kinase/ERK kinase; MMR, mismatch repair; NBS1, Nijmegen breakage syndrome 1; PCNA, proliferating cell nuclear antigen; PP2A, protein phosphatase 2A; RFC, replication factor C; S6K, S6 kinase (also known as RPS6KB1); SHC, Src homology 2 domain containing; SMC1, structural maintenance of chromosomes 1A; XRCC, X-ray-repair-cross-complementing.

of drug efflux. Potentiative modulation of drug distribution or localization increases drug concentration in plasma or a specific tissue by blocking drug uptake and inhibiting metabolic processes that convert drugs into excretable forms. Potentiative metabolism modulation stimulates the metabolism of drugs into active forms, or inhibits the metabolism of drugs into inactive forms.

Typical potentiative effects can be illustrated by two examples. One is the enhanced absorption of antithrombotic low-molecular-weight heparin (LMWH) by chitosan¹⁰¹. LMWH is an antithrombin binder that inhibits activated coagulation factors. Chitosan reversibly interacts with components of tight junctions to widen paracellular routes, which increases the permeability of LMWH across mucosal epithelia and therefore enhances its absorption. The second example is 2'-deoxyinosine enhancement of antitumour activity of 5-fluorouracil in human colorectal cell lines and colon tumour xenografts¹⁰². 5-Fluorouracil is metabolized by thymidine phosphorylase and other enzymes into a metabolite that stabilizes p53 due to RNA-directed effects. 2'-Deoxyinosine enhances thymidine phosphorylase activity and thus the metabolism of 5-fluorouracil into its active metabolite.

Pharmacokinetically reductive combinations

Seven reductive drug combinations were identified, which involve negative modulation of drug transport or permeation (two combinations), distribution or localization (one combination), and metabolism (four combinations), respectively (see Supplementary information S7 (table), with selected examples in TABLE 7). Reductive modulation of drug transport or permeation typically blocks drug absorption or promotion of firstpass elimination by actions such as drug-drug aggregation to reduce the permeability and inhibition of drug transport into plasma or target site. Reductive modulation of drug distribution/localization decreases the drug concentration in plasma or a specific tissue, which typically involves stimulation of metabolic processes for converting drugs into excretable forms and inhibition of metabolic processes for increasing drug concentration. Drug activity can also be reduced by metabolism modulation to convert drugs into inactive forms.

Further assessment of popular drug combinations

Several drug combinations have been extensively used for clinical applications for many years¹⁰³⁻¹⁰⁹. For some of these classical drug combinations, the studies of their combination effects have been primarily conducted and published before 1999, and are frequently based on non-rigorous combination analysis methods. Therefore, some of these classical combinations were not selected by our search procedure. Nonetheless, their popular use is a strong indication of their possible beneficial combination effects in comparison with those of individual drugs, and so it is of interest to assess the effects and mechanisms of these classical drug combinations.

We identified ten sets of classical drug combinations that were missed by our search procedure and contain no drug of abuse or withdrawn drug. TABLE 8 summarizes literature-described modes of actions of individual drugs, suggested combination type and possible mechanism of these combinations. The ten combinations include five synergistic^{103,104,109,110,113}, one dual synergistic/addi-tive¹⁰⁴, and one non-synergistic^{104,111} combinations. The clinical use of the non-synergistic combination has been replaced by single-drug therapy¹⁰⁴. For the remaining three combinations, we were unable to find a literature report indicating their possible types of combination. It is also noted that four of the ten combinations have been studied by rigorous drug combination analysis methods.

Literature-described MI profiles seem to provide some clues to the possible mechanisms for nine of the ten combinations. The synergistic salmeterol and fluticasone, methotrexate and fluorouracil, and erythromycin and penicillin combinations probably involve facilitating actions¹¹²⁻¹¹⁴. The diclofenac and paracetamol synergism may arise from complementary action^{115,116}, and amoxicillin and clavulanate synergism possibly stems from potentiative enhancement of drug distribution¹¹⁷. We were unable to find information for assessing the reported synergism of the rifampicin and fusidic acid combination¹⁰⁴. The reported non-synergistic sulphamethoxazole and trimethoprim combination seems to involve redundant actions in targeting upstream and downstream targets of a single-route pathway, with the downstream drug acting as a second line of defence^{118,119}. For the three combinations without reported types of combination actions, the cisplatin and cyclophosphamide combination probably produces synergistically complementary action^{120,121}; caffeine in the ergotamine and caffeine combination may involve the potentiation of ergotamine's action by enhancing its distribution¹²²; and the niacin and simvastatin combination possibly produces an additive effect due to their equivalent actions123.

Pathway analysis

Pathway analysis is an effective approach for a more comprehensive assessment of drug combination effects¹²⁴, as well as other drug activities and responses^{125,126}. Advances in systems biology and other areas of biomedical and pharmaceutical research have enabled the integration of biomolecular network information, individual MI profiles, 'omics' data, and disease information for drug validation and for understanding the mechanism of drug actions¹²⁷⁻¹²⁹. It is therefore of interest to explore pathway analysis approaches for further study of some of the drug combinations evaluated by MI profiling.

FIGURE 1 shows the related pathways of the cisplatin and trastuzumab combination (see Supplementary information S1 (table)), and describes potential mechanisms underlying the effects of the combination^{120,130–133}. In addition to protein–protein, protein–substrate and protein–nucleic acid interactions, pathway analysis also needs to take into consideration drug metabolism, transport, drug–drug interactions and complex formation. This can be illustrated by comparative analysis of the anticancer combination of methotrexate and fluorouracil^{113,134}, and the antibacterial combination of sulphamethoxazole and trimethoprim^{118,119} (TABLE 8), which

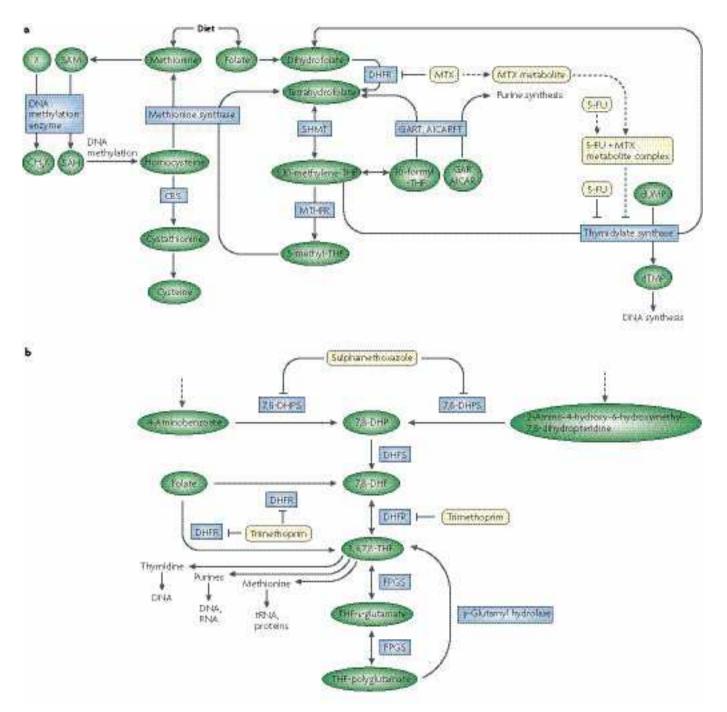


Figure 2 | **Constrasting effects of drug combinations on folate metabolism pathways.** The human folate metabolism pathway affected by the combination of methotrexate (MTX) and fluorouracil (5-FU) is shown in panel (**a**), and the *Escherichia coli* folate metabolism pathway affected by the sulphamethoxazole and trimethoprim drug combination is shown in panel (**b**). Although both combinations target upstream and downstream targets in a single pathway leading to DNA synthesis (assuming that synthesis of 7,8-dihydropteroate is essential for bacterial growth), only the sulphamethoxazole and trimethoprim combination shows the expected redundant effect such that effective inhibition of 7,8-dihydropteroate synthase (7,8-DHPS) by sulphamethoxazole renders trimethoprim inhibition of dihydrofolate reductase (DHFR) unnecessary for reducing DNA synthesis^{118,119}. The unexpected MTX–5-FU synergism arises because the MTX metabolite forms reversible ternary complexes with 5-FU on one site of thymidylate synthase to enhance its binding to the enzyme^{113,134} (dashed line in part **a**), which synergistically facilitates the anticancer thymidylate synthase inhibitory activity of 5-FU. AICARFT, 5-amino-imidazole-4-carboxamide ribonucleotide transformylase; CBS, cystathionine β -synthase; GART, glycinamide ribonucleotide transformylase; MTHFR, methylene tetrahydrofolate reductase; SAH, S-adenosyl homocysteine; SAM, S-adenosyl methionine; SHMT, serine hydroxymethyl transferase; THF, tetrahydrofolate.

target human and bacterial folate metabolism pathways, respectively, but produce contrasting combination effects. The pathways affected by these two combinations are shown in FIG. 2a and FIG. 2b, respectively.

Perspectives

Analysis of the selected drug combinations suggests that knowledge of MI profiles of individual drugs, network crosstalk and regulation, and modes of actions of drug combinations are useful starting points for investigating the effects of drug combinations. For the analysed cases of synergistic, potentiative, additive, antagonistic and reductive combinations, and probably many others, the literature-described MI profiles of the drugs involved seem to offer useful clues to the mechanism of combination actions from the perspectives of coordinated molecular interactions and network regulation. Clues to other aspects of pharmacodynamic, toxicological and pharmacokinetic effects may also be obtained from the relevant MI profiles.

Discovery of efficacious drug combinations may be facilitated by targeting key efficacy and toxicity regulating nodes of positive^{72,74} and negative regulations^{7,9-11}, anti-targets and counter-targets¹⁴, compensatory and neutralizing actions^{12,13}, and transporter-mediated and enzyme-mediated pharmacokinetic activities¹⁰¹. Both the discovery and the analysis of drug combinations can be facilitated by the collective use of different approaches and methods. For instance, signs of MI profiles as well as genes, pathways affected by or responsive to drug combinations¹³⁵ and individual drugs¹³⁶⁻¹³⁸ may be detected from gene-expression or proteomics profiles by using unsupervised hierarchical clustering and supervised machine learning methods^{135,136,139,140}. These, combined with knowledge of the characteristics and activities of targets³ and proteins involved in ADME and toxicology³⁶, enable the prediction of responses and markers^{136–138}, unknown therapeutic actions¹³⁹, targets and characteristics^{139,141,142}, efficacy143, toxicological effects139, and resistance profiles140 of drug combinations and individual drugs.

- Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).
 Imming, P., Sinning, C. & Mever, A. Drugs, their
- Imming, P., Sinning, C. & Meyer, A. Drugs, their targets and the nature and number of drug targets. *Nature Rev. Drug Discov.* 5, 821–834 (2007).
- Zheng, C. J. *et al.* Therapeutic targets: progress of their exploration and investigation of their characteristics. *Pharmacol. Rev.* 58, 259–279 (2006).
- Ashburn, T. T. & Thor, K. B. Drug repositioning: identifying and developing new uses for existing drugs. *Nature Rev. Drug Discov.* 3, 673–683 (2004)
- Ocampo, M. T. *et al.* Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity. *Mol. Cell. Biol.* 22, 6111–6121 (2002).
- Papp, B. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. *Nature* 429, 661–664 (2004).
- Smalley, K. S. *et al.* Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. *Mol. Cancer Ther.* 5, 1136–1144 (2006).

An example of the need to target multiple pathways.

- Pilpel, Y., Sudarsanam, P. & Church, G. M. Identifying regulatory networks by combinatorial analysis of promoter elements. *Nature Genet.* 29, 153–159 (2001).
- Peng, X. H. *et al.* Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. *J. Biol. Chem.* 281, 25903–25914 (2006).
- Muller, R. Crosstalk of oncogenic and prostanoid signaling pathways. J. Cancer Res. Clin. Oncol. 130, 429–444 (2004).
- Massarweh, S. & Schiff, R. Resistance to endocrine therapy in breast cancer: exploiting estrogen receptor/ growth factor signaling crosstalk. *Endocr. Relat. Cancer* 13 (Suppl. 1), 515–524 (2006).
- Sergina, N. V. *et al.* Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. *Nature* 445, 437–441 (2007).
 An example of compensatory activities against drug targeting.
- Kassouf, W. *et al.* Uncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of Gefitinib in bladder cancer cells. *Cancer Res.* 65, 10524–10535 (2005).
- Christopher M., Overall & Kleifeld, O. Validating matrix metalloproteinases as drug targets and antitargets for cancer therapy. *Nature Rev. Cancer* 6, 227–239 (2006).
 An any investigation of a class of targets axhibiting.

An overview of a class of targets exhibiting antitarget activities.

- Keith, C. T., Borisy, A. A. & Stockwell, B. R. Multicomponent therapeutics for networked systems. *Nature Rev. Drug Discov.* 4, 71–78 (2005). An overview of the issues in discovering drug combinations.
- Csermely, P., Agoston, V. & Pongor, S. The efficiency of multi-target drugs: the network approach might help drug design. *Trends Pharmacol. Sci.* 26, 178–182 (2005).

An overview of the issues in discovering multi-target drugs.

- Kitano, H. A robustness-based approach to systemsoriented drug design. *Nature Rev. Drug Discov.* 6, 202–210 (2007).
- Kamb, A., Wee, S. & Lengauer, C. Why is cancer drug discovery so difficult? *Nature Rev. Drug Discov.* 6, 115–120 (2007).
 An overview of multiple factors affecting anticancer
- An overview of multiple factors affecting anticance therapeutics. 19. Nelson, H. S. Advair: combination treatment with
- Nelson, H. S. Advair: combination treatment with fluticasone propionate/salmeterol in the treatment of asthma. J. Allergy Clin. Immunol. 107, 398–416 (2001).
- Gupta, E. K. & Ito, M. K. Lovastatin and extendedrelease niacin combination product: the first drug combination for the management of hyperlipidemia. *Heart Dis.* 4, 124–137 (2002).
- Larder, B. A., Kemp, S. D. & Harrigan, P. R. Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. *Science* 269, 696–699 (1995).
- An earlier investigation of a possible mechanism of enhancing the efficacy of a drug combination.
- Zimmermann, G. R., Lehar, J. & Keith, C. T. Multi-target therapeutics: when the whole is greater than the sum of the parts. *Drug Discov. Today* 12, 34–42 (2007).
- Dancey, J. E. & Chen, H. X. Strategies for optimizing combinations of molecularly targeted anticancer agents. *Nature Rev. Drug Discov.* 5, 649–659 (2006). An overview of strategies for optimizing anticancer drug combinations.
- Silver, L. L. Multi-targeting by monotherapeutic antibacterials. *Nature Rev. Drug Discov.* 6, 41–55 (2007).
- 25. Graham, B. A., Hammond, D. L. & Proudfit, H. K. Synergistic interactions between two α_2 -adrenoceptor agonists, dexmedetomidine and ST-91, in two substrains of Sprague-Dawley rats. *Pain* **85**, 135–143 (2000).
- 26. Kisliuk, R. L. Synergistic interactions among antifolates. *Pharmacol. Ther.* **85**, 183–190 (2000).
- Rand, K. H. & Houck, H. Daptomycin synergy with rifampicin and ampicillin against vancomycin-resistant enterococci. J. Antimicrob. Chemother. 53, 530–532 (2004).

- Dryselius, R., Nekhotiaeva, N. & Good, L. Antimicrobial synergy between mRNA- and proteinlevel inhibitors. *J. Antimicrob. Chemother.* 56, 97–103 (2005).
- Azrak, R. G. *et al.* The mechanism of methylselencysteine and docetaxel synergistic activity in prostate cancer cells. *Mol. Cancer Ther.* 5, 2540–2548 (2006).
- Bell, A. Antimalarial drug synergism and antagonism: mechanistic and clinical significance. *FEMS Microbiol. Lett.* 253, 171–184 (2005).
- 31. Robertson, J. G. Mechanistic basis of enzyme-targeted drugs. *Biochemistry* **44**, 5561–5571 (2005).
- Zybarth, G. & Kley, N. Investigating the molecular basis of drug action and response: chemocentric genomics and proteomics. *Curr. Drug Targets* 7, 387–395 (2006).
- Wishart, D. S. *et al.* DrugBank: a comprehensive resource for *in silico* drug discovery and exploration. *Nucleic Acids Res.* 34, D668–D672 (2006).
- Yao, L. X., Wu, Z. C., Ji, Z. L., Chen, Y. Z. & Chen, X. Internet resources related to drug action and human response: a review. *Appl. Bioinformatics* 5, 131–139 (2006).
- Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. *Nucleic Acids Res.* 35, D198–D201 (2007).
- Ji, Z. L. *et al.* Internet resources for proteins associated with drug therapeutic effects, adverse reactions and ADME. *Drug Discov. Today* 8, 526–529 (2003).
- Chen, Y. Z. & Zhi, D. G. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. *Proteins* 43, 217–226 (2001).

A demonstration that molecular modelling methods can be explored for *in silico* search for multiple targets of individual small-molecule drugs.

- Paul, N., Kellenberger, E., Bret, G., Muller, P. & Rognan, D. Recovering the true targets of specific ligands by virtual screening of the protein data bank. *Proteins* 54, 671–680 (2004).
- Cleves, A. E. & Jain, A. N. Robust ligand-based modeling of the biological targets of known drugs. *J. Med. Chem.* 49, 2921–2938 (2006).
- Armour, C. D. & Lum, P. Y. From drug to protein: using yeast genetics for high-throughput target discovery. *Curr. Opin. Chem. Biol.* 9, 20–24 (2005).
- Nettles, J. H. *et al.* Bridging chemical and biological space: "target fishing" using 2D and 3D molecular descriptors. *J. Med. Chem.* 49, 6802–6810 (2006).
- Han, L. Y. et al. Support vector machines approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. Drug Discov. Today 12, 304–313 (2007).

- Chen, X., Fang, Y., Yao, L., Chen, Y. & Xu, H. Does drug-target have a likeness? *Methods Inf. Med.* 46, 360–366 (2007).
- Kumar, N., Afeyan, R., Kim, H. D. & Lauffenburger, D. A. Multi-pathway model enables prediction of kinase inhibitor cross-talk effects on migration of Her2-overexpressing mammary epithelial cells. *Mol. Pharmacol.* **73**, 1668–1678 (2008).
 A demonstration that collective measurement of target, off-target and crosstalk sites can better
- predict therapeutic efficacies.
 45. Xiong, H. & Choe, Y. Dynamical pathway analysis. BMC Syst. Biol. 2, 9 (2008).
- Sivachenko, A., Kalinin, A. & Yuryev, A. Pathway analysis for design of promiscuous drugs and selective drug mixtures. *Curr. Drug Discov. Technol.* 3, 269–277 (2006).
- Kim, H. S. & Fay, J. C. Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds. *Proc. Natl Acad. Sci.* USA 104, 19387–19391 (2007).
- Carvalho-Netto, E. F., Markham, C., Blanchard, D. C., Nunes-de-Souza, R. L. & Blanchard, R. J. Physical environment modulates the behavioral responses induced by chemical stimulation of dorsal periaqueductal gray in mice. *Pharmacol. Biochem. Behav.* 85, 140–147 (2006).
- Yang, H. *et al.* Nutrient-sensitive mitochondrial NAD⁺ levels dictate cell survival. *Cell* **130**, 1095–1107 (2007).
- 50. Tabernero, J. *et al.* Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a Phase I tumor pharmacodynamic study in patients with advanced solid tumors. *J. Clin. Oncol.* **26**, 1603–1610 (2008).
- 51 Chou, T. C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. *Pharmacol. Rev.* 58, 621–681 (2006). An overview of the methods for analysing and studying the effects of drug combinations.
- Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. *Pharmacol. Rev.* 47, 331–385 (1995).
- Dolara, P., Salvadori, M., Capobianco, T. & Torricelli, F. Sister-chromatid exchanges in human lymphocytes induced by dimethoate, omethoate, deltamethrin, benomyl and their mixture. *Mutat. Res.* 283, 113–118 (1992).
- Johnson, M. D., MacDougall, C., Ostrosky-Zeichner, L., Perfect, J. R. & Rex, J. H. Combination antifungal therapy. *Antimicrob. Agents Chemother.* 48, 693–715 (2004).
- Peterson, J. J. & Novick, S. J. Nonlinear blending: a useful general concept for the assessment of combination drug synergy. J. Recept. Signal. Transduct. Res. 27, 125–146 (2007).
- Tallarida, R. J. Interactions between drugs and occupied receptors. *Pharmacol. Ther.* **113**, 197–209 (2007).
- Jonker, D. M., Visser, S. A., van der Graaf, P. H., Voskuyl, R. A. & Danhof, M. Towards a mechanismbased analysis of pharmacodynamic drug–drug interactions *in vivo. Pharmacol. Ther.* **106**, 1–18 (2005).
- Peters, G. J. *et al.* Basis for effective combination cancer chemotherapy with antimetabolites. *Pharmacol. Ther.* 87, 227–253 (2000).
- Pharmacol. Ther. 87, 227–253 (2000).
 59. Barrera, N. P., Morales, B., Torres, S. & Villalon, M. Principles: mechanisms and modeling of synergism in cellular responses. *Trends Pharmacol. Sci.* 26, 526–532 (2005).
- Wheeler, D. L. *et al.* Database resources of the National Center for Biotechnology Information: update. *Nucleic Acids Res.* 32, D35–D40 (2004).
- Kawakami, H. *et al.* Inhibition of heat shock protein-90 modulates multiple functions required for survival of human T-cell leukemia virus type I-infected T-cell lines and adult T-cell leukemia cells. *Int. J. Cancer* 120, 1811–1820 (2007).
- Lin, X., Kim, H. K. & Howell, S. B. The role of DNA mismatch repair in cisplatin mutagenicity. *J. Inorg. Biochem.* **77**, 89–93 (1999).
- 63. Rhee, I. *et al.* DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. *Nature* **416**, 552–556 (2002).
- van Waardenburg, R. C. *et al.* Platinated DNA adducts enhance poisoning of DNA topoisomerase I by camptothecin. *J. Biol. Chem.* **279**, 54502–54509 (2004).

- Grimaldi, K. A., McAdam, S. R., Souhami, R. L. & Hartley, J. A. DNA damage by anti-cancer agents resolved at the nucleotide level of a single copy gene: evidence for a novel binding site for cisplatin in cells. *Nucleic Acids Res.* 22, 2311–2317 (1994).
- Bassett, E. *et al.* Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta *in vitro. Biochemistry* 42, 14197–14206 (2003).
 Koster, D. A., Palle, K., Bot., E. S., Bjornsti, M. A. &
- Koster, D. A., Palle, K., Bot., E. S., Bjornsti, M. A. & Dekker, N. H. Antitumour drugs impede DNA uncoiling but reprint and the second second
- by topoisomerase I. *Nature* 448, 213–217 (2007).
 68. D'Incalci, M. *et al.* The combination of yondelis and cisplatin is synergistic against human tumor xenografts. *Eur. J. Cancer* 39, 1920–1926 (2003).
- Marco, E. & Gago, F. DNA structural similarity in the 2:1 complexes of the antitumor drugs trabectedin (Yondelis) and chromomycin A3 with an oligonucleotide sequence containing two adjacent TGG binding sites on opposing strands. *Mol. Pharmacol.* 68, 1559–1567 (2005).
- Dziegielewska, B., Kowalski, D. & Beerman, T. A. SV40 DNA replication inhibition by the monofunctional DNA alkylator Et743. *Biochemistry* 43, 14228–14237 (2004).
- Dai, Z., Liu, S., Marcucci, G. & Sadee, W. 5-Aza-2'deoxycytidine and depsipeptide synergistically induce expression of BIK (BCL2-interacting killer). *Biochem. Biophys. Res. Commun.* 351, 455–461 (2006).
- Georgakis, G. V., Li, Y., Rassidakis, G. Z., Medeiros, L. J. & Younes, A. The HSP90 inhibitor 17-AAG synergizes with doxorubicin and U0126 in anaplastic large cell lymphoma irrespective of ALK expression. *Exp. Hematol.* 34, 1670–1679 (2006).
- Soja, P. J., Pang, W., Taepavarapruk, N. & McErlane, S. A. Spontaneous spike activity of spinoreticular tract neurons during sleep and wakefulness. *Sleep* 24, 18–25 (2001).
- Staud, R. Evidence of involvement of central neural mechanisms in generating fibromyalgia pain. *Curr. Rheumatol. Rep.* 4, 299–305 (2002)
- Curr. Rheumatol. Rep. 4, 299–305 (2002).
 Tham, S. M., Angus, J. A., Tudor, E. M. & Wright, C. E. Synergistic and additive interactions of the cannabinoid agonist CP55, 940 with μ opioid receptor and a₂-adrenoceptor agonists in acute pain models in mice. Br. J. Pharmacol. 144, 875–884 (2005).
- Malonga, H., Neault, J. F., Diamantoglou, S. & Tajmir-Riahi, H. A. Taxol anticancer activity and DNA binding. *Mini Rev. Med. Chem.* 5, 307–311 (2005).
- Sintchak, M. D. *et al.* Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. *Cell* 85, 921–930 (1996).
- Marcus, A. I. *et al.* The synergistic combination of the farnesyl transferase inhibitor lonafarnib and paclitaxel enhances tubulin acetylation and requires a functional tubulin deacetylase. *Cancer Res.* 65, 3883–3893 (2005).
- Piperno, G., LeDizet, M. & Chang, X. J. Microtubules containing acetylated α-tubulin in mammalian cells in culture. J. Cell Biol. 104, 289–302 (1987).
- Lai, G. H., Zhang, Z. & Sirica, A. E. Celecoxib acts in a cyclooxygenase-2-independent manner and in synergy with emodin to suppress rat cholangiocarcinoma growth *in vitro* through a mechanism involving enhanced Akt inactivation and increased activation of caspases-9 and -3. *Mol. Cancer Ther.* 2, 265–271 (2003).
- Alloza, I., Baxter, A., Chen, Q., Matthiesen, R. & Vandenbroeck, K. Celecoxib inhibits interleukin-12 αβ and β2 folding and secretion by a novel COX2independent mechanism involving chaperones of the endoplasmic reticulum. *Mol. Pharmacol.* 69, 1579–1587 (2006).
- Jayasuriya, H., Koonchanok, N. M., Geahlen, R. L., McLaughlin, J. L. & Chang, C. J. Emodin, a protein tyrosine kinase inhibitor from *Polygonum cuspidatum*. *J. Nat. Prod.* 55, 696–698 (1992).
- Olsen, B. B., Bjorling-Poulsen, M. & Guerra, B. Emodin negatively affects the phosphoinositide 3-kinase/AKT signalling pathway: a study on its mechanism of action. *Int. J. Biochem. Cell Biol.* 39, 227–237 (2007).
- Cottagnoud, P., Cottagnoud, M. & Tauber, M. G. Vancomycin acts synergistically with gentamicin against penicillin-resistant pneumococci by increasing the intracellular penetration of gentamicin. *Antimicrob. Agents Chemother.* 47, 144–147 (2003).
- Yoshizawa, S., Fourmy, D. & Puglisi, J. D. Structural origins of gentamicin antibiotic action. *EMBO J.* 17, 6437–6448 (1998).

- Cegelski, L. *et al.* Rotational-echo double resonance characterization of the effects of vancomycin on cell wall synthesis in *Staphylococcus aureus*. *Biochemistry* 41, 13053–13058 (2002).
- Watanakunakorn, C. Mode of action and *in-vitro* activity of vancomycin. J. Antimicrob. Chemother, 14 (Suppl. D), 7–18 (1984).
- Goddard, J. et al. Endothelin A receptor antagonism and angiotensin-converting enzyme inhibition are synergistic via an endothelin B receptor-mediated and nitric oxide-dependent mechanism. J. Am. Soc. Nephrol. 15, 2601–2610 (2004).
- Verhaar, M. C. *et al.* Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. *Circulation* **97**, 752–756 (1998).
- Moridaira, K. *et al.* ACE inhibition increases expression of the ET₆ receptor in kidneys of mice with unilateral obstruction. *Am. J. Physiol. Renal Physiol.* 284, F209–F217 (2003).
- Pollock, D. M., Keith, T. L. & Highsmith, R. F. Endothelin receptors and calcium signaling. *FASEB J.* 9, 1196–1204 (1995).
- Touma, S. E. *et al.* Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. *Clin. Cancer Res.* 11, 3558–3566 (2005).
- Meco, D. *et al.* Effective combination of ET-743 and doxorubicin in sarcoma: preclinical studies. *Cancer Chemother. Pharmacol.* 52, 131–138 (2003).
- Kellogg, G. E., Scarsdale, J. N. & Fornari, F. A. Jr. Identification and hydropathic characterization of structural features affecting sequence specificity for doxorubicin intercalation into DNA double-stranded polynucleotides. *Nucleic Acids Res.* 26, 4721–4732 (1998).
- Żewail-Foote, M. *et al.* The inefficiency of incisions of ecteinascidin 743-DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent. *Chem. Biol.* 8, 1033–1049 (2001).
- Baruah, H., Barry, C. G. & Bierbach, U. Platinumintercalator conjugates: from DNA-targeted cisplatin derivatives to adenine binding complexes as potential modulators of gene regulation. *Curr. Top. Med. Chem.* 4, 1537–1549 (2004).
- Nickels, T. J. *et al.* Effect of theophylline and aminophylline on transmitter release at the mammalian neuromuscular junction is not mediated by cAMP. *Clin. Exp. Pharmacol. Physiol.* 33, 465–470 (2006).
- Barrington, W. W., Jacobson, K. A. & Stiles, G. L. Demonstration of distinct agonist and antagonist conformations of the A1 adenosine receptor. J. Biol. Chem. 264, 13157–13164 (1989).
- Pelicano, H. et al. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C. Leukemia 20, 610–619 (2006).
- 100. Yao, Q., Weigel, B. & Kersey, J. Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. *Clin. Cancer Res.* 13, 1591–1600 (2007).
- Thanou, M., Verhoef, J. C. & Junginger, H. E. Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev. 52, 117–126 (2001).
- Ciccolini, J. et al. Enhanced antitumor activity of 5-fluorouracil in combination with 2'-deoxyinosine in human colorectal cell lines and human colon tumor xenografts. *Clin. Cancer Res.* 6, 1529–1535 (2000).
- 103. Matsuura, M., Nakazawa, H., Hashimoto, T. & Mitsuhashi, S. Combined antibacterial activity of amoxicillin with clavulanic acid against ampicillinresistant strains. *Antimicrob. Agents Chemother.* **17**, 908–911 (1980).
- 104. Nasher, M. A. & Hay, R. J. Synergy of antibiotics against Streptomyces somaliensis isolates in vitro. J. Antimicrob. Chemother. 41, 281–284 (1998).
- 105. Cohen, S. G. & Criep, L. H. Observations on the symptomatic treatment of chronic vascular headache with cafergone (ergotamine tartrate and caffeine). *N. Enal. J. Med.* 241, 896–900 (1949).
- N. Engl. J. Med. 241, 896–900 (1949).
 106. Stein, E. A. *et al.* Efficacy and tolerability of low-dose simvastatin and niacin, alone and in combination, in patients with combined hyperlipidemia: a prospective trial. *J. Cardiovasc. Pharmacol. Ther.* 1, 107–116 (1996).

- Loehrer, P. J., Sr., Einhorn, L. H. & Greco, F. A. Cisplatin plus etoposide in small cell lung cancer. Semin. Oncol. 15, 2–8 (1988).
- Semin. Oncol. 15, 2–8 (1988).
 108. Normanno, N. et al. The MEK/MAPK pathway is involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J. Cell. Physiol. 207, 420–427 (2006).
- 109. Fletcher, D., Benoist, J. M., Gautron, M. & Guilbaud, G. Isobolographic analysis of interactions between intravenous morphine, propacetamol, and diclofenac in carrageenin-injected rats. *Anesthesiology* 87, 317–326 (1997).
- Pace, E. *et al.* Synergistic effects of fluticasone propionate and salmeterol on *in vitro* T-cell activation and apoptosis in asthma. *J. Allergy Clin. Immunol.* 114, 1216–1223 (2004).
- Greenwood, D. & O'Grady, F. Activity and interaction of trimethoprim and sulphamethoxazole against *Escherichia coli. J. Clin. Pathol.* 29, 162–166 (1976).
- Barnes, P. J. Scientific rationale for inhaled combination therapy with long-acting β₂-agonists and corticosteroids. *Eur. Respir. J.* **19**, 182–191 (2002).
- 113. Fernandes, D. J. & Bertino, J. R. 5-fluorouracil-methotrexate synergy: enhancement of 5-fluorodeoxyridylate binding to thymidylate synthase by dihydropteroylpolyglutamates. *Proc. Natl Acad. Sci. USA* **77**, 5663–5667 (1980).
- 114. Dinos, G. P., Connell, S. R., Nierhaus, K. H. & Kalpaxis, D. L. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their *in vitro* interaction with a bacterial ribosomal complex active in peptide bond formation. *Mol. Pharmacol.* **63**, 617–623 (2003).
- 115. Schwieler, L., Erhardt, S., Erhardt, C. & Engberg, G. Prostaglandin-mediated control of rat brain kynurenic acid synthesis — opposite actions by COX-1 and COX-2 isoforms. *J. Neural Transm.* **112**, 863–872 (2005).
- 116. Ouellet, M. & Percival, M. D. Mechanism of acetaminophen inhibition of cyclooxygenase isoforms. *Arch. Biochem. Biophys.* 387, 273–280 (2001).
- 117. Brogden, R. N. *et al.* Amoxycillin/clavulanic acid: a review of its antibacterial activity, pharmacokinetics and therapeutic use. *Drugs* 22, 337–362 (1981).
- Voeller, D. et al. Interaction of Pneumocystis carinii dihydropteroate synthase with sulfonamides and diaminodiphenyl sulfone (dapsone). J. Infect. Dis. 169, 456–459 (1994).
- Brumfitt, W. & Hamilton-Miller, J. M. Reassessment of the rationale for the combinations of sulphonamides with diaminopyrimidines. *J. Chemother.* 5, 465–469 (1993).
- Siddik, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. *Oncogene* 22, 7265–7279 (2003).
- 121. Maccubbin, A. E., Caballes, L., Riordan, J. M., Huang, D. H. & Curtoo, H. L. A cyclophosphamide/ DNA phosphoester adduct formed *in vitro* and *in vivo Cancer Res.* 51, 886–892 (1991).
- 122. Anderson, J. R., Drehsen, G. & Pitman, I. H. Effect of caffeine on ergotamine absorption from rat small intestine. J. Pharm. Sci. 70, 651–657 (1981).
- Plosker, G. L. & McTavish, D. Simvastatin. A reappraisal of its pharmacology and therapeutic efficacy in hypercholesterolaemia. *Drugs* 50, 334–363 (1995).
- 124. Ganter, B. & Giroux, C. N. Emerging applications of network and pathway analysis in drug discovery and development. *Curr. Opin. Drug Discov. Devel.* 11, 86–94 (2008).
- Eckstein, N. *et al.* Epidermal growth factor receptor pathway analysis identifies amphiregulin as a key factor for cisplatin resistance of human breast cancer cells. *J. Biol. Chem.* **283**, 739–750 (2008).
 Ganter, B., Zidek, N., Hewitt, P. R., Muller, D. &
- 126. Ganter, B., Zidek, N., Hewitt, P. R., Muller, D. & Vladimirova, A. Pathway analysis tools and toxicogenomics reference databases for risk assessment. *Pharmacogenomics* **9**, 35–54 (2008).
- 127. Apic, G., Ignjatovic, T., Boyer, S. & Russell, R. B. Illuminating drug discovery with biological pathways. *FEBS Lett.* **579**, 1872–1877 (2005).
- Davidov, E., Holland, J., Marple, E. & Naylor, S. Advancing drug discovery through systems biology. *Drug Discov. Today* 8, 175–183 (2003).
- Huang, S. Rational drug discovery: what can we learn from regulatory networks? *Drug Discov. Today* 7, S163–S169 (2002).
- 130. Nahta, R. & Esteva, F. J. Trastuzumab: triumphs and tribulations. *Oncogene* **26**, 3637–3643 (2007).

- 131. Pietras, R. J., Pegram, M. D., Finn, R. S., Maneval, D. A. & Slamon, D. J. Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNAreactive drugs. *Oncogene* 17, 2235–2249 (1998).
- 132. Le, X. F. et al. Genes affecting the cell cycle, growth, maintenance, and drug sensitivity are preferentially regulated by anti-HER2 antibody through phosphatidylinositol 3-kinase–AKT signaling. J. Biol. Chem. 280, 2092–2104 (2005).
- 133. Lee, S. *et al.* Enhanced sensitization to taxol-induced apoptosis by herceptin pretreatment in ErbB2overexpressing breast cancer cells. *Cancer Res.* 62, 5703–5710 (2002).
- Haller, D. G. Trimetrexate: experience with solid tumors. *Semin. Oncol.* 24, (Suppl. 18), S18–S76 (1997).
- 135. Humeniuk, R. et al. Aplidin synergizes with cytosine arabinoside: functional relevance of mitochondria in Aplidin-induced cytotoxicity. *Leukemia* 21, 2399–2405 (2007).
- 136. Bild, A. H. *et al.* Oncogenic pathway signatures in human cancers as a guide to targeted therapies. *Nature* 439, 353–357 (2006).
 A demonstration that pathway gene expression signatures can be identified for analysing multiple pathway deregulation by diseases and their regulation by drugs.
- Cheok, M. H. & Evans, W. E. Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. *Nature Rev. Cancer* 6, 117–129 (2006).
- Lee, J. K. *et al.* A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. *Proc. Natl Acad. Sci. USA* **104**, 13086–13091 (2007).
- 139. Gerhold, D. L., Jensen, R. V. & Gullans, S. R. Better therapeutics through microarrays. *Nature Genet.* 32, 547–551 (2002).
- 140. Rickardson, L. *et al.* Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles. *Br. J. Cancer* **93**, 483–492 (2005).
- 141. den Boer, M. L. & Pieters, R. Microarray-based identification of new targets for specific therapies in pediatric leukemia. *Curr. Drug Targets.* 8, 761–764 (2007).
- 142. Wirth, G. J., Schandelmaier, K., Smith, V., Burger, A. M. & Fiebig, H. H. Microarrays of 41 human tumor cell lines for the characterization of new molecular targets: expression patterns of cathepsin B and the transferrin receptor. *Oncology* **71**, 86–94 (2006).
- 143. Andre, F., Mazouni, C., Hortobagyi, G. N. & Pusztai, L. DNA arrays as predictors of efficacy of adjuvant/ neoadjuvant chemotherapy in breast cancer patients: current data and issues on study design. *Biochim. Biophys. Acta* **1766**, 197–204 (2006).
- 144. Chaney, S. G. *et al.* Protein interactions with platinum-DNA adducts: from structure to function. *J. Inorg. Biochem.* **98**, 1551–1559 (2004).
- 145. Faivre, S., Chan, D., Salinas, R., Woynarowska, B. & Woynarowski, J. M. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. *Biochem. Pharmacol.* **66**, 225–237 (2003).
- 146. Koizumi, F. *et al.* Synergistic interaction between the EGFR tyrosine kinase inhibitor geftinib ("Iressa") and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. *Int. J. Cancer* **108**, 464–472 (2004).
- 147. Tanaka, R. *et al.* Synergistic interaction between oxaliplatin and SN-38 in human gastric cancer cell lines *in vitro*. Oncol. Rep. 14, 683–688 (2005).
- 148. Kobayashi, S. *et al.* Singly-linked catenation and knotting of cisplatin-DNA adduct by DNA topoisomerase I. *Nucleic Acids Symp. Ser.* 29, 137–138 (1993).
- 149. Zhao, W. H., Hu, Z. Q., Okubo, S., Hara, Y. & Shimamura, T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant *Staphylococcus aureus*. *Antimicrob. Agents Chemother.* **45**, 1737–1742 (2001).
- Bickle, M., Delley, P. A., Schmidt, A. & Hall, M. N. Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. *EMBO J.* **17**, 2235–2245 (1998).
- 151. Abal, M., Andreu, J. M. & Barasoain, I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. *Curr. Cancer Drug Targets.* **3**, 193–203 (2003).

- 152. Ganansia-Leymarie, V., Bischoff, P., Bergerat, J. P. & Holl, V. Signal transduction pathways of taxanesinduced apoptosis. *Curr. Med. Chem. Anticancer Agents* **3**, 291–306 (2003).
- 153. Park, S. J. *et al.* Taxol induces caspase-10-dependent apoptosis. *J. Biol. Chem.* **279**, 51057–51067 (2004).
 156. Observation of the second seco
- 154. Okano, J., Nagahara, T., Matsumoto, K. & Murawaki, Y. The growth inhibition of liver cancer cells by paclitaxel and the involvement of extracellular signal-regulated kinase and apoptosis. Oncol. Rep. 17, 1195–1200 (2007).
- 155. Zhang, W., Lee, J. C., Kumar, S. & Gowen, M. ERK pathway mediates the activation of Cdk2 in IGF-1-induced proliferation of human osteosarcoma MG-63 cells. J. Bone Miner. Res. 14, 528–535 (1999).
- 156. Bacus, S. S. et al. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20, 147–155 (2001).
- 157. Pennati, M. et al. Potentiation of pacifixael-induced apoptosis by the novel cyclin-dependent kinase inhibitor NU6140: a possible role for survivin downregulation. Mol. Cancer Ther. 4, 1328–1337 (2005).
- 158. Lee, E. J., Whang, J. H., Jeon, N. K. & Kim, J. The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 (Iressa) suppresses proliferation and invasion of human oral squamous carcinoma cells via p53 independent and MMP, uPAR dependent mechanism. *Ann. NY Acad. Sci.* **1095**, 113–128 (2007).
- 159. Fanucchi, M. & Khuri, F. R. Taxanes in the treatment of non-small cell lung cancer. *Treat. Respir. Med.* 5, 181–191 (2006).
- 160. Takabatake, D. *et al.* Tumor inhibitory effect of gefitinib (ZD1839, Iressa) and taxane combination therapy in EGFR-overexpressing breast cancer cell lines (MCF7/ADR, MDA-MB-231). *Int. J. Cancer* **120**, 181–188 (2007).
- 161. Funakoshi, M., Tago, K., Sonoda, Y., Tominaga, S. & Kasahara, T. A MEK inhibitor, PD98059 enhances IL-1-induced NF-κB activation by the enhanced and sustained degradation of IkappaBalpha. *Biochem. Biophys. Res. Commun.* 285, 248–254 (2001).
- 162. Roberts, P. J. & Der, C. J. Targeting the Raf–MEK– ERK mitogen-activated protein kinase cascade for the treatment of cancer. *Oncogene* 26, 3291–3310 (2007).
- 163. De Clercq, E. HIV-1-specific RT inhibitors: highly selective inhibitors of human immunodeficiency virus type 1 that are specifically targeted at the viral reverse transcriptase. *Med. Res. Rev.* 13, 229–258 (1993).
- 164. Fattorusso, C. *et al.* Specific targeting highly conserved residues in the HIV-1 reverse transcriptase primer grip region. Design, synthesis, and biological evaluation of novel, potent, and broad spectrum NNRTIs with antiviral activity. *J. Med. Chem.* **48**, 7153–7165 (2005).
- 165. Cruchaga, C., Odriozola, L., Andreola, M., Tarrago-Litvak, L. & Martinez-Irujo, J. J. Inhibition of phosphorolysis catalyzed by HIV-1 reverse transcriptase is responsible for the synergy found in combinations of 3'-azido-3'-deoxythymidine with nonnucleoside inhibitors. *Biochemistry* 44, 3535–3546 (2005).
- 166. Rigourd, M., Ehresmann, C., Parniak, M. A., Ehresmann, B. & Marquet, R. Primer unblocking and rescue of DNA synthesis by azidothymidine (AZT)resistant HIV-1 reverse transcriptase: comparison between initiation and elongation of reverse transcription and between (–) and (+) strand DNA synthesis. J. Biol. Chem. 277, 18611–18618 (2002).
- 167. Gajate, C. & Mollinedo, F. Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J. Biol. Chem. 280, 11641–11647 (2005).
- 168. Cuadrado, A., Gonzalez, L., Suarez, Y., Martinez, T. & Munoz, A. JNK activation is critical for Aplidin-induced apoptosis. *Oncogene* 23, 4673–4680 (2004).
- 169. Biscardi, M. et al. VEGF inhibition and cytotoxic effect of aplidin in leukemia cell lines and cells from acute myeloid leukemia. Ann. Oncol. 16, 1667–1674 (2005).
- 170. Abdel-Aziz, W., Jiang, H. Y., Hickey, R. J. & Malkas, L. H. Ara-C affects formation of cancer cell DNA synthesome replication intermediates. *Cancer Chemother. Pharmacol.* 45, 312–319 (2000).
- 171. de Vries, J. F., Falkenburg, J. H., Willemze, R. & Barge, R. M. The mechanisms of Ara-C-induced apoptosis of resting B-chronic lymphocytic leukemia cells. *Haematologica* **91**, 912–919 (2006).

- 172. Hajra, K. M. & Liu, J. R. Apoptosome dysfunction in human cancer. *Apoptosis* **9**, 691–704 (2004).
- 173. Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. & Schreiber, S. L. Domain-selective smallmolecule inhibitor of histone deacetylase 6 (HDAC6)mediated tubulin deacetylation. *Proc. Natl Acad. Sci.* USA 100, 4389–4394 (2003).
- 174. Di Francesco, A. M. *et al.* The novel atypical retinoid ST1926 is active in ATRA resistant neuroblastoma cells acting by a different mechanism. *Biochem. Pharmacol.* **73**, 643–655 (2007).
- 175. Zanchi, C., Zuco, V., Lanzi, C., Supino, R. & Zunino, F. Modulation of survival signaling pathways and persistence of the genotoxic stress as a basis for the synergistic interaction between the atypical retinoid ST1926 and the epidermal growth factor receptor inhibitor ZD1839. *Cancer Res.* 65, 2364–2372 (2005).
- 176. Żwang, Y. & Yarden, Y. p38 MAP kinase mediates stress-induced internalization of ECFR: implications for cancer chemotherapy. *EMBO J.* 25, 4195–4206 (2006).
- 177. Reffelmann, T. & Kloner, R. A. Cardiovascular effects of phosphodiesterase 5 inhibitors. *Curr. Pharm. Des.* 12, 3485–3494 (2006).
- 178. Walch, L. *et al.* Prostanoid receptors involved in the relaxation of human pulmonary vessels. *Br. J. Pharmacol.* **126**, 859–866 (1999).
- 179. Parkinson, P. A., Parfenova, H. & Leffler, C. W. Phospholipase C activation by prostacyclin receptor agonist in crebral microvascular smooth muscle cells. *Proc. Soc. Exp. Biol. Med.* 223, 53–58 (2000).
- Ashrafpour, H. *et al.* Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. *Am. J. Physiol. Heart Circ. Physiol.* **286**, H946–H954 (2004).
- Della Bella, S. *et al.* Novel mode of action of iloprost: *in vitro* down-regulation of endothelial cell adhesion molecules. *Prostaglandins* 65, 73–83 (2001).
- 182. Ghofrani, H. A. *et al.* Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. *Ann. Intern. Med.* **136**, 515–522 (2002).
- 183. Mullershausen, F., Lange, A., Mergia, E., Friebe, A. & Koesling, D. Desensitization of NO/cGMP signaling in smooth muscle: blood vessels versus airways. *Mol. Pharmacol.* **69**, 1969–1974 (2006).
- 184. Yamaki, F. et al. MaxiK channel-mediated relaxation of guinea-pig aorta following stimulation of IP receptor with beraprost via cyclic AMP-dependent and -independent mechanisms. Naunyn Schmiedebergs Arch. Pharmacol. 364, 538–550 (2001).
- 185. Nelson, L. E. et al. The α₂-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. *Anesthesiology* **98**, 428–436 (2003).
- 186. Davis, M. *et al.* Spinal vs. supraspinal sites of action of the α₂-adrenergic agonists clonidine and ST91 on the acoustic startle reflex. *Pharmacol. Biochem. Behav.* **33**, 233–240 (1989).
- Philipp, M., Brede, M. & Hein, L. Physiological significance of α₂-adrenergic receptor subtype diversity: one receptor is not enough. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **283**, R287–R295 (2002).
 Gan, L. *et al.* The immunosuppressive agent
- 188. Gan, L. et al. The immunosuppressive agent mizoribine monophosphate forms a transition state analogue complex with inosine monophosphate dehydrogenase. *Biochemistry* 42, 857–863 (2003).
- 189. Shimmura, H., Tanabe, K., Habiro, K., Abe, R. & Toma, H. Combination effect of mycophenolate mofetil with mizoribine on cell proliferation assays and in a mouse heart transplantation model. *Transplantation* 82, 175–179 (2006).
- 190. Jordan, M. A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. *Curr. Med. Chem. Anticancer Agents* 2, 1–17 (2002)
- 191. Madiraju, C. *et al.* Tubulin assembly, taxoid site binding, and cellular effects of the microtubulestabilizing agent dictyostatin. *Biochemistry* 44, 15053–15063 (2005).
- 15053–15063 (2005).
 Honore, S. et al. Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. *Cancer Res.* 64, 4957–4964 (2004).
- 193. Black, D. M. The development of combination drugs for atherosclerosis. *Curr. Atheroscler. Rep.* 5, 29–32 (2003).
- 194. Mondimore, F. M., Fuller, G. A. & DePaulo, J. R. Jr. Drug combinations for mania. J. Clin. Psychiatry 64 (Suppl. 5), 25–31 (2003).

- 195. Curatolo, M. & Sveticic, G. Drug combinations in pain treatment: a review of the published evidence and a method for finding the optimal combination. *Best Pract. Res. Clin. Anaesthesiol.* **16**, 507–519 (2002).
- Leewe, S. The problem of synergism and antagonism of combined drugs. *Arzneimittelforschung* 3, 285–290 (1953).
- 197. Guignard, B., Entenza, J. M. & Moreillon, P. Betalactams against methicillin-resistant *Staphylococcus aureus. Curr. Opin. Pharmacol.* 5, 479–489 (2005).
- 198. Braga, P. C., Ricci, D. & Dal Sasso, M. Daptomycin morphostructural damage in *Bacillus cereus* visualized by atomic force microscopy. *J. Chemother.* 14, 336–341 (2002).
- 199. Paul, T. R. et al. Localization of penicillin-binding proteins to the splitting system of Staphylococcus aureus septa by using a mercury-penicillin V derivative. J. Bacteriol. 177, 3631–3640 (1995).
- Nishikawa, K. Angiotensin AT, receptor antagonism and protection against cardiovascular end-organ damage. J. Hum. Hypertens. **12**, 301–309 (1998).
 Rokoss, M. J. & Teo, K. K. Ramipril in the treatment
- 201. Rokoss, M. J. & Teo, K. K. Ramipril in the treatment of vascular diseases. *Expert Opin. Pharmacother.* 6, 1911–1919 (2005).
- Carlsson, L. & Abrahamsson, T. Ramiprilat attenuates the local release of noradrenaline in the ischemic myocardium. *Eur. J. Pharmacol.* 166, 157–164 (1989).
- Raasch, W., Johren, O., Schwartz, S., Gieselberg, A. & Dominiak, P. Combined blockade of AT,-receptors and ACE synergistically potentiates antihypertensive effects in SHR. J. Hypertens. 22, 611–618 (2004).
 Alves, D. P. et al. Additive antinociceptive effect of the
- 204. Alves, D. P. et al. Additive antinociceptive effect of the combination of diazoxide, an activator of ATP-sensitive K⁺ channels, and sodium nitroprusside and dibutyrylcGMP. Eur. J. Pharmacol. 489, 59–65 (2004).
- 205. Russ, U., Lange, U., Loffler-Walz, C., Hambrock, A. & Quast, U. Binding and effect of K ATP channel openers in the absence of Mg²⁺. Br. J. Pharmacol. 139, 368–380 (2003).
- 206. Soares, A. C. & Duarte, I. D. Dibutyryl-cyclic GMP induces peripheral antinociception via activation of ATP-sensitive K⁺ channels in the rat PGE2-induced hyperalgesic paw. Br. J. Pharmacol. **134**, 127–131 (2001).
- Deka, D. K. & Brading, A. F. Nitric oxide activates glibenclamide-sensitive K⁺ channels in urinary bladder myocytes through a c-GMP-dependent mechanism. *Eur. J. Pharmacol.* **492**, 13–19 (2004).
- Alves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. *Biochem. Pharmacol.* **68**, 549–561 (2004).
- Campagna-Slater, V. & Weaver, D. F. Anaesthetic binding sites for etomidate and propofol on a GABA_A receptor model. *Neurosci. Lett.* **418**, 28–33 (2007).
- Nishikawa, K. & Harrison, N. L. The actions of sevoflurane and desflurane on the γ-aminobutyric acid receptor type A: effects of TM2 mutations in the alpha and beta subunits. *Anesthesiology* **99**, 678–684 (2003).
- Harris, R. S., Lazar, O., Johansen, J. W. & Sebel, P. S. Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. *Anesthesiology* **104**, 1170–1175 (2006).
- Sigel, E. Mapping of the benzodiazepine recognition site on GABA_A receptors. *Curr. Top. Med. Chem.* 2, 833–839 (2002).
- Ono, S., Muratani, T. & Matsumoto, T. Mechanisms of resistance to imipenem and ampicillin in *Enterococus faecalis. Antimicrob. Agents Chemother.* 49, 2954–2958 (2005).
- 214. Fuda, C., Suvorov, M., Vakulenko, S. B. & Mobashery, S. The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant *Staphylococcus aureus*. *J. Biol. Chem.* **279**, 40802–40806 (2004).
- 215. Krishna, S., Woodrow, C. J., Staines, H. M., Haynes, R. K. & Mercereau-Puijalon, O. Re-evaluation of how artemisinins work in light of emerging evidence of *in vitro* resistance. *Trends Mol. Med.* **12**, 200–205 (2006).
- Cui, L., Miao, J. & Cui, L. Cytotoxic effect of curcumin on malaria parasite *Plasmodium falciparum*: inhibition of histone acetylation and generation of reactive oxygen species. *Antimicrob. Agents Chemother.* 51, 488–494 (2007).
- Nandakumar, D. N., Nagaraj, V. A., Vathsala, P. G., Rangarajan, P. & Padmanaban, G. Curcumin–artemisinin combination therapy for malaria. *Antimicrob. Agents Chemother.* 50, 1859–1860 (2006).

- Drew, R. H. & Gallis, H. A. Azithromycin spectrum of activity, pharmacokinetics, and clinical applications. *Pharmacotherapy* 12, 161–173 (1992).
- Fernandez-Cuenca, F., Martinez-Martinez, L., Pascual, A. & Perea, E. J. *In vitro* activity of azithromycin in combination with amikacin, ceftazidime, ciprofloxacin or imipenem against clinical isolates of *Acinobacter baumannii*. *Chemotherapy* 49, 24–26 (2003).
- 220. Furuya, R. *et al. In vitro* synergistic effects of double combinations of β-lactams and azithromycin against clinical isolates of *Neisseria gonorrhoeae*. J. Infect. Chemother. **12**, 172–176 (2006).
- 221. Huang, W. *et al.* Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterolcontaining supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy. *Biophys. J.* **83**, 3245–3255 (2002).
- 222. Walsh, T. J. et al. New targets and delivery systems for antifungal therapy. *Med. Mycol.* **38** (Suppl. 1), 335–347 (2000).
- Meletiadis, J. et al. Triazole-polyene antagonism in experimental invasive pulmonary aspergillosis: in vitro and in vivo correlation. J. Infect. Dis. 194, 1008–1018 (2006).
- 1008–1018 (2006).
 224. Carrillo-Munoz, A. J., Giusiano, G., Ezkurra, P. A. & Quindos, G. Antifungal agents: mode of action in yeast cells. *Rev. Esp. Quimioter.* 19, 130–139 (2006).
- 225. Narishetty, S. T. & Panchagnula, R. Effect of L-menthol and 1,8-cineole on phase behavior and molecular organization of 5C lipids and skin permeation of zidovudine. J. Control. Release **102**, 59–70 (2005).
- Narishetty, S. T. & Panchagnula, R. Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. *J. Control. Release* **95**, 367–379 (2004).
- 227. Shitara, Y., Hirano, M., Sato, H. & Sugiyama, Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/ OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J. Pharmacol. Exp. Ther. **311**, 228–236 (2004).
- Fujino, H. *et al.* Studies on the interaction between fibrates and statins using human hepatic microsomes. *Arzneimittelforschung* 53, 701–707 (2003).
- Prueksaritanont, T. *et al.* Effects of fibrates on metabolism of statins in human hepatocytes. *Drug Metab. Dispos.* **30**, 1280–1287 (2002).
- Minotti, G. *et al.* Paclitaxel and docetaxel enhance the metabolism of doxorubicin to toxic species in human myocardium. *Clin. Cancer Res.* 7, 1511–1515 (2001).
- 231. Meneź, C., Legrand, P., Rosilio, V., Lesieur, S. & Barratt, G. Physicochemical characterization of molecular assemblies of miltefosine and amphotericin B. *Mol. Pharm.* 4, 281–288 (2007).
- Menez, C. et al. Interaction between miltefosine and amphotericin B: consequences for their activities towards intestinal epithelial cells and *Leishmania donovani* promastigotes *in vitro*. *Antimicrob. Agents Chemother.* 50, 3793–3800 (2006).
- Zicca, A. *et al.* Reduction of cisplatin hepatotoxicity by procainamide hydrochloride in rats. *Eur. J. Pharmacol.* 442, 265–272 (2002).
- 234. Kaminsky, L. S. & Zhang, Z. Y. Human P450 metabolism of warfarin. *Pharmacol. Ther.* **73**, 67–74 (1997).
- Ngui, J. S. *et al. In vitro* stimulation of warfarin metabolism by quinidine: increases in the formation of 4'- and 10-hydroxywarfarin. *Drug Metab. Dispos.* 29, 877–886 (2001).
- Rolinson, G. N. Effect of β-lactam antibiotics on bacterial cell growth rate. *J. Gen. Microbiol.* **120**, 317–323 (1980).
- Cole, M. Biochemistry and action of clavulanic acid. Scott. Med. J. 27, S10–S16 (1982).
- Nials, A. T., Sumner, M. J., Johnson, M. & Coleman, R. A. Investigations into factors determining the duration of action of the β₂-adrenoceptor agonist, salmeterol. *Br. J. Pharmacol.* **108**, 507–515 (1993).
- Mamani-Matsuda, M. *et al.* Long-acting β₂-adrenergic formoterol and salmeterol induce the apoptosis of B-chronic lymphocytic leukaemia cells. *Br. J. Haematol.* **124**, 141–150 (2004).
- Meltzer, E. O. The pharmacological basis for the treatment of perennial allergic rhinitis and non-allergic rhinitis with topical corticosteroids. *Allergy* 52, 33–40 (1997).

- 241. Zhang, X., Moilanen, E. & Kankaanranta, H. Enhancement of human eosinophil apoptosis by fluticasone propionate, budesonide, and beclomethasone. *Eur. J. Pharmacol.* **406**, 325–332 (2000).
- Meekins, C. V., Sullivan, T. J. & Gruchalla, R. S. Immunochemical analysis of sulfonamide drug allergy: identification of sulfamethoxazole-substituted human serum proteins. J. Allergy Clin. Immunol. 94, 1017–1024 (1994).
- 243. Lowe, P. A. & Malcolm, A. D. Rifampicin binding as a probe for subunit interactions in Escherchia coli RNA polymerase. *Biochim. Biophys. Acta* 454, 129–137 (1976).
- 244. Lee-Huang, S., Lee, H. & Ochoa, S. Inhibition of polypeptide chain initiation in *Escherichia coli* by elongation factor G. *Proc. Natl Acad. Sci. USA* **71**, 2928–2931 (1974).
- 245. Biebricher, C. K. & Druminski, M. Inhibition of RNA polymerase activity by the *Escherichia coli* protein biosynthesis elongation factor Ts. *Proc. Natl Acad. Sci. USA* **77**, 866–869 (1980).
- 246. Rojo, F., Ayala, J. A., De Pedro, M. A. & Vazquez, D. Analysis of the different molecular forms of penicillinbinding protein 1B in *Escherichia coli* ponB mutants lysogenized with specialized transducing lambda (ponB⁺) bacteriophages. *Eur. J. Biochem.* **144**, 571–576 (1984).

- 247. Villalon, C. M. *et al.* Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT_{IB1D} receptors and α_2 -adrenoceptors. *Br. J. Pharmacol.* **126**, 585–594 (1999).
- Badia, A., Moron, A., Cuffi, L. & Vila, E. Effects of ergotamine on cardiovascular catecholamine receptors in the pithed rat. *Gen. Pharmacol.* **19**, 475–481 (1988).
 Boulenger, J. P., Patel, J. & Marangos, P. J.
- 249. Boulenger, J. P., Patel, J. & Marangos, P. J. Effects of caffeine and theophylline on adenosine and benzodiazepine receptors in human brain. *Neurosci. Lett.* **30**, 161–166 (1982).
- Mukhopadhyay, S. & Poddar, M. K. Caffeine-induced locomotor activity: possible involvement of GABAergic-dopaminergic-adenosinergic interaction. *Neurochem. Res.* 20, 39–44 (1995).
- 251. Levin, R. M., Greenberg, S. H. & Wein., A. J. Quantitative analysis of the effects of caffeine on sperm motility and cyclic adenosine 3',5'-monophosphate (AMP) phosphodiesterase. *Fertil. Steril.* **36**, 798–802 (1981).
- Ganji, S. H., Kamanna, V. S. & Kashyap, M. L. Niacin and cholesterol: role in cardiovascular disease (review). J. Nutr. Biochem. 14, 298–305 (2003).
- Mehta, J. R., Przybylski, M. & Ludlum, D. B. Alkylation of guanosine and deoxyguanosine by phosphoramide mustard. *Cancer Res.* 40, 4183–4186 (1980).

- 254. Pinedo, H. M. & Peters, G. F. Fluorouracil: biochemistry and pharmacology. J. Clin. Oncol. 6, 1653–1664 (1988).
- Sun, X. X., Dai, M. S. & Lu, H. 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J. Biol. Chem. 282, 8052–8059 (2007).
- Bertolini, A. *et al.* Paracetamol: new vistas of an old drug. *CNS Drug Rev.* **12**, 250–275 (2006).
 Hinz, B., Cheremina, O. & Brune, K. Acetaminophen
- 257. Hinz, B., Cheremina, O. & Brune, K. Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. *FASEB J.* 22, 383–390 (2008).

Acknowledgements

We acknowledge the support from Academic Research Funds Singapore (R-148-000-081-112); National Natural Science Foundation of China (30772651, 30500107); Ministry of Science and Technology China (2006AA022400, 2006AA02Z317, 2004CB720103); and Science and Technology Commission of Shanghai Municipality (06PJ14072).

 SUPPLEMENTARY INFORMATION

 See online article:
 \$1 (table) | \$2 (table) | \$3 (table) | \$3 (table) | \$4 (table) | \$5 (table) | \$6 (table) | \$7 (table) | \$7 (table)

ALL LINKS ARE ACTIVE IN THE ONLINE PDF

CORRIGENDUM

Mechanisms of drug combinations: interaction and network perspectives

Jia Jia, Feng Zhu, Xiaohua Ma, Zhiwei W. Cao, Yixue X. Li & Yu Zong Chen

Nature Reviews Drug Discovery 8, 111–128 (2009) | doi:10.1038/nrd2683

There are two errors in the author names: Zhiwei W. Cao should be Zhiwei Cao and Yixue X. Li should be Yixue Li.