
In recent years, drug discovery efforts have primarily 
focused on identifying agents that modulate preselected 
individual targets1–3. Although new drugs have continu-
ously been discovered, there is a growing productivity 
gap, despite major spending on research and develop-
ment and advances in technology development4. This 
problem arises partly because agents directed at an 
individual target frequently show limited efficacies and 
poor safety and resistance profiles, which are often due 
to factors such as network robustness5–7, redundancy8, 
crosstalk9–11, compensatory and neutralizing actions12,13, 
and anti-target and counter-target activities14. With such 
issues in mind, systems-oriented drug design has been 
increasingly emphasized as a potentially more produc-
tive strategy15–18. This approach to drug design has been 
supported by clinical successes with multicomponent 
therapies and multi-targeted agents19–22, and efforts have 
been directed at the discovery of new multicomponent 
therapies7,15–17,22–24.

Knowledge of the molecular mechanisms of existing 
multicomponent therapies can provide clues to aid the 
discovery of new drug combinations and multi-targeted 
agents, and some key characteristics of the modes of these 
therapies have been outlined14,17,22,23. The multiple targets 
can reside in the same or different pathways and tissues, 
and their modulation can produce more-than-additive 
(synergistic) effects triggered by actions converging at a 
specific pathway site. In addition, effects could be due 
to negative regulation of network compensatory and 
neutralizing responses, drug resistance sources, and anti-
target and counter-target activities. However, specific 
mechanisms of action have only been fully elucidated 
for a few of the explored drug combinations17,25–30.

Extensive investigations of the molecular basis of 
drug actions and responses have yielded a substantial 
amount of information on experimentally determined 
drug-mediated molecular interaction (MI) profiles 
and regulatory activities of many drugs and com-
pounds1,2,31–36. The MI profile of a drug describes its 
interactions with individual biomolecules, pathways or 
processes attributable to its pharmacodynamic, toxico-
logical, pharmacokinetic, and combination effects. Apart 
from using MI profiles for guiding the development of 
target discovery technologies37–43, they might also be 
explored for gaining further insights into general modes 
of action of multicomponent therapies and the mecha-
nisms of specific drug combinations. Such a task may be 
accomplished by analysing the relevant MI profiles from 
the perspective of coordinated interactions and network 
regulations10–12.

In this article, we describe how this possibility was 
evaluated by comprehensively investigating literature-
reported synergistic and other types of drug combina-
tions in which the combination effect has been evaluated 
by rigorous drug-combination analysis methods and 
for which relevant MI profiles of the drugs involved are 
available. Additonal sets of popular drug combinations 
were also studied. Moreover, pathway analysis was con-
ducted for three of the studied drug combinations. It is 
cautioned that although connections can be made from 
literature-described MI profiles to examine why a drug 
combination may have a particular type of effect, many of 
these interconnections are likely to be more complicated 
than those summarized in this article, and their activities 
are highly dynamic44–46. In addition, the activation and 
level of activity of these connections may be influenced 
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Table 1 | Examples of pharmacodynamically synergistic drug combinations due to anti-counteractive actions*

drug A (MoA)‡ drug B (MoA)‡ reported 
synergism

Method Possible mechanism of synergism  
in anti-counteractive actions

Different targets of the same pathway

Oxaliplatin (DnA adduct, 
preferably binds to major 
groove of GG, AG and  
TACT sites, complex 
conformation different 
from that of cisplatin144, 
causes DnA strand break 
and non-DnA initiated 
apoptosis145)

Irinotecan (DnA TOP1 
inhibitor, increases 
EGFR phosphorylation 
in lovo and WiDR 
cells146)

synergistic 
anticancer effect 
in AZ-521 and 
nUGC-4 cells, 
additive effect in 
MKn-45 cells147

Median drug 
effect analysis

• Effect of oxaliplatin’s DnA adduct formation144 
may be partially reduced by certain mutant 
DnA TOP1 acting on DnA adduct to generate 
different topoisomers148 

• Irinotecan inhibition of DnA TOP1 partially 
offsets this counteractive activity146

dl-Cycloserine (bacterial 
cell-wall synthesis 
inhibitor149)

Epigallocatechin gallate 
(disrupts integrity 
of bacterial cell wall 
via direct binding to 
peptidoglycan149)

synergistic effect 
on bacterial cell 
wall149

Fractional 
inhibitory 
concentration 
index

• Cell-wall alteration may induce counter active 
cell-wall synthesis to restore cell-wall 
integrity150 

• dl-Cycloserine inhibition of cell-wall synthesis 
hinders restoration, thereby enhancing 
epigallocatechin gallate’s cell-wall disruption 
activity

Different targets of related pathways

Paclitaxel (stabilizes 
microtubules via α-tubulin 
acetylation79, distorts mitosis 
to trigger apoptosis151, 
induces p53 and CDK 
inhibitors152, activates 
CAsP10, 8, 6 and 3, leading 
to apoptosis153, activates 
ERK154 and CDK2155, 
activates p53 and p38 
MAPK156)

nU6140 (CDK inhibitor, 
downregulates 
anti-apoptotic protein 
survivin157)

synergistic 
apoptotic 
response157

Median drug 
effect analysis

• Use of both drugs promotes complementary 
apoptosis activities via triple actions of 
survivin downregulation by nU6140157, 
microtubule stabilization79 and CAsP 
activation153 by paclitaxel 

• Paclitaxel’s promotion of apoptosis may 
be partially offset by its counteractive 
pro-growth activation of ERK154 and CDK2155, 
which may be partially reduced by nU6140’s 
inhibition of CDK157

Different targets of crosstalking pathways 

Gefitinib (EGFR tyrosine 
kinase inhibitor, induces 
CDK inhibitors p27 and  
p21, decreases MMP2 and 
MMP9 enzyme activity158)

Taxane (disrupts 
microtubules by 
binding to β-tubulin159, 
induces tumour 
suppressor gene p53 
and CDK inhibitors p21, 
downregulates BCl-2, 
leading to apoptosis152)

strong synergistic 
effect in breast 
cancer MCF7/
ADR cells160

Combination 
index 

• Taxane produces anticancer effect by 
inducing apoptosis152 and microtubule 
disruption159 

• Crosstalk between EGFR and HIF1α  
pathways increases resistance to apoptosis  
by upregulating survivin9 

• Gefitinib produces anticancer effect via EGFR 
tyrosine kinase inhibition, which offsets  
the counteractive EGFR–hypoxia crosstalk  
in resisting taxane’s pro-apoptosis activity

Different targets in the same pathway that crosstalk via another pathway

Gefitinib (EGFR tyrosine 
kinase inhibitor, induces 
CDK inhibitors p27 and p21, 
decreases MMP2 and MMP9 
enzyme activity158)

PD98059 (MEK 
inhibitor161)

synergistic 
antitumour effect 
in breast cancer 
MDA-361 and 
MB-361 cells108 

Combination 
index, 
isobolographic 
analysis

• An autocrine growth loop crucial for tumour 
growth is formed in the EGFR–Ras–Raf–
MEK–ERK network such that activated MEK 
activates ERK, which upregulates EGFR 
ligands, thereby promoting the autocrine 
growth loop162

• This loop produces counteractive activity 
against gefitinib or PD98059 by reducing 
the effect of MEK or EGFR tyrosine kinase 
inhibition 

• simultaneous use of both drugs helps disrupt 
this autocrine growth loop, thereby enhancing 
each other’s effect

Same target (different sites)

AZT (HIV-1 RT inhibitor163) non-nucleoside HIV-1 
RT inhibitor164

Antiviral 
synergism165

Isobolographic 
analysis, 
yonetani– 
Theorell plot

• AZT resistance is partly due to 
phosphorolytical removal of the 
AZT-terminated primer166 

• nnRTI inhibits RT-catalysed phosphorolysis, 
thereby reducing AZT resistance165

*In these examples, synergy has been determined by well-established synergy/additive analysis methods and its molecular mechanism has been revealed.  
‡MoA, mechanisms of action related to synergy. AZT, azidothymidine; BCl-2, B-cell lymphoma protein 2; CAsP, caspase; CDK, cyclin-dependent kinase;  
EGFR, epidermal growth factor receptor; ERK, extracellular-regulated kinase; HIF1α, hypoxia-inducible factor 1α; MAPK, mitogen-activated protein kinase;  
MEK, MAPK/ERK kinase; MMP, matrix metalloproteinase; nnRTI, non-nucleoside RT inhibitor; RT, reverse transcriptase; TOP, topoisomerase.

A n A ly s i s

112 | fEbruAry 2009 | voluME 8  www.nature.com/reviews/drugdisc

© 2009 Macmillan Publishers Limited. All rights reserved



Table 2 | Examples of pharmacodynamically synergistic drug combinations due to complementary actions*

drug A (MoA)‡ drug B (MoA)‡ reported 
synergism

Method Possible mechanism of synergism in 
promoting complementary actions

Different targets of related pathways that regulate the same process

Aplidin (induces 
apoptosis167,  activates 
JnK, EGFR, src and p38 
MAPK168, inhibits VEGF 
release and secretion169)

Cytarabine (DnA binder99, 
inhibits synthesome- 
associated DnA POlα 
activity170, inhibits RnA 
synthesis and DnA repair171)

Aplidin 
synergizes with 
cytarabine 
in exhibiting 
anticancer 
activities in 
leukaemia and 
lymphoma 
models in vitro 
and in vivo135

Chou–Talalay 
combination 
index 
(Calcusyn; 
Biosoft)

• Both drugs complement each other’s activity by 
inducing apoptosis via the two major apoptotic 
cascades

• Aplidin activates and clusters death receptors of 
Fas ligand167, which subsequently activates the 
receptor-mediated extrinsic cascade172

• Cytarabine increases cellular stress and reduces 
survival protein MCl1, which subsequently 
activates CAsPs and apoptosis171, and triggers 
the mitochondrial intrinsic cascade172

Different targets of the same pathway that regulate the same target

Paclitaxel (stabilizes 
microtubules via 
α-tubulin acetylation79, 
distorts mitosis to trigger 
apoptosis151, and induces 
p53 and CDK inhibitors152)

Tubacin (inhibits HDAC6 
and microtubule-associated 
α-tubulin deacetylase 
activity173)

synergistically 
enhances 
tubulin 
acetylation78

Combination 
index 
(Calcusyn)

• Both drugs complement each other’s 
microtubule stabilization effects through 
enhanced acetylation activity of α-tubulin by 
paclitaxel79, and reduced deacetylation activity 
of α-tubulin deacetylase by tubacin173

Gefitinib (EGFR tyrosine 
kinase inhibitor, induces 
CDK inhibitors p27 and 
p21, decreases MMP2 and 
MMP9 activity158)

sT1926 (activates MAPKs p38 
and JnK, releases cytochrome 
c, activates CAsP proteolytic 
cascade174)

synergistic 
modulation 
of survival 
signalling 
pathways175

Combination 
Index

• Gefitinib’s inhibition of EGFR is complemented 
by sT1926’s activation of  p38 MAPK174 that 
subsequently mediates internalization of 
EGFR176, and by sT1926’s activation of CAsP 
proteolytic cascade174

Different targets of related pathways

sildenafil (PDE5 
inhibitor177)

Iloprost (prostacyclin 
receptor agonist178, 
activates PlC179, 
promoting VEGF-induced 
skin vasorelaxation180, 
self-regulates ECAMs181)

synergistic 
action to 
cause strong 
pulmonary 
vasodilatation182

Dose–effect 
curve 
surpassed that 
of individual 
drug alone 
combined

• sildenafil produces vasodilation activity by PDE5 
inhibition177 ; iloprost produces vasodilation 
activity by agonizing the prostacyclin receptor178 
and by activating PlC179, which promotes 
VEGF-induced skin vasorelaxation180  

• Targeting of multiple vasodilation regulation 
pathways  — nitric oxide/cyclic GMP183, Maxi-K 
channel-mediated relaxation184, and PlC179 — 
contribute to the synergistic actions

Different target subtypes of related pathways

Dexmedetomidine (α
2A

 
receptor agonist185)

sT-91 (agonist of α
2
 receptor 

of other subtypes186)
synergistic 
antinociceptive 
action25,187

Isobolographic 
analysis

• sT-91 produces antinociceptive effect via 
supraspinal receptors and at both spinal and 
brainstem levels of the acoustic startle response 
pathway186 that regulate pain74 

• Dexmedetomidine promotes antinociceptive 
effect via an endogenous sleep-promoting 
pathway185 that sustains reduction in spike 
activity of spinoreticular tract neurons73

Same target

Mycophenolate mofetil 
(IMPDH inhibitor, drug 
metabolite mycophenolic 
acid binds to the site of 
nAD cofactor77)

Mizoribine (IMPDH, drug 
metabolite mizoribine 
monophosphate binds to 
the enzyme in transition 
state having a new 
conformation188)

Mild synergistic 
suppression 
of T and B cell 
proliferation189

Median drug 
effect analysis, 
combination 
index

• simultaneous inhibition of enzyme 
reactant-state and transition state have the 
advantage of covering more conformational 
space for the inhibitors to better compete with 
natural substrates for the binding sites

Paclitaxel (stabilizes 
microtubules via 
α-tubulin acetylation79, 
distorts mitosis to trigger 
apoptosis151, induces p53 
and CDK inhibitors152)

Discodermolide (stabilizes 
microtubule dynamics 
enhancing microtubule 
polymer mass190, resulting in 
aberrant mitosis that triggers 
apoptosis151, induces p53 
and CDK inhibitors152, retains 
antiproliferative activity 
against carcinoma cells 
resistant to paclitaxel due  
to β-tubulin mutations191)

Antiproliferative 
synergy192

Combination 
index

• Binding sites of both drugs overlap, certain 
mutations resistant to one drug are ineffective 
against the other, thus covering a more diverse 
range of mutant types15,20,193 

• One drug binds and induces a conformational 
change in tubulin, increasing the binding affinity 
of the other15,194 

• These drugs may differentially bind to or affect  
tubulin subtypes, microtubule architectures or 
microtubule regulators, thereby covering a more 
diverse range of microtubule dynamics15,194–196

*In these examples, synergy has been determined by well-established synergy/additive analysis methods and its molecular mechanism has been revealed. ‡MoA, 
mechanisms of action related to synergy. CAsP, caspase; CDK, cyclin-dependent kinase; ECAM, endothelial cell adhesion molecule; EGFR, epidermal growth factor 
receptor; HDAC6, histone deacetylase 6; IMPDH, inosine monophosphate dehydrogenase; MAPK, mitogen-activated protein kinase; MCl1, myeloid cell leukemia 
sequence 1; MMP, matrix metalloproteinase; PDE5, phosphodiesterase 5; PlC, phospholipase C; POlα, polymerase α; VEGF, vascular endothelial growth factor.
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by genetic variations47, environmental factors48, host 
behaviour49 and drug scheduling50. Therefore, the use of 
these connections should be more appropriately viewed 
as a start to a more comprehensive analysis.

Types of drug combinations
When two drugs produce the same broad therapeutic 
effect, their combination produces the same effect of 
various magnitudes compared with the summed effects 
of the individual drugs. A combination is pharmaco-
dynamically synergistic, additive or antagonistic if the 
effect is greater than, equal to, or less than the summed 
effects of the partner drugs51. Drug combinations may 
also produce pharmacokinetically potentiative or 
reductive effects such that the therapeutic activity of 
one drug is enhanced or reduced by another drug via 
regulation of its absorption, distribution, metabolism 
and excretion (ADME)51. A further type of drug com-
bination is a coalistic combination, in which all of the 
drugs involved are inactive individually but are active 
in combination52–55.

Synergistic and potentiative drug combinations have 
been explored to achieve one or more favourable out-
comes: enhanced efficacy; decreased dosage at equal or 
increased level of efficacy; reduced or delayed develop-
ment of drug resistance; and simultaneous enhancement 
of therapeutic actions and reduction of unwanted actions 
(efficacy synergism plus toxicity antagonism)17,22,51. The 
mechanisms underlying these activities can be better 
understood by studying the mechanistically contrasting 
additive, antagonistic and reductive drug combinations. 
Several rigorous drug-combination analysis methods 
have been developed and extensively used for analys-
ing combinations from experimental data15,22,51. These 

include checkerboard, combination index, fractional 
effect analysis, isobolographic analysis, interaction 
index, median drug effect analysis, and response surface 
approaches51–59.

Literature drug combinations and MI profiles
We searched Pubmed60 to select literature-reported drug 
combinations that had been evaluated by rigorous com-
bination analysis methods and for which relevant MI 
profiles were retrievable from Pubmed. Combinations 
of the keywords “drug combination”, “drug interaction”, 
“multi-drug”, “additive”, “antagonism”, “antagonistic”, 
“infra-additive”, “potentiated”, “potentiative”, “potentiation”, 
“reductive”, “supra_additive”, “synergism”, “synergistic”, 
and “synergy” were used to search publications since 
1999. Coalistic drug combinations were not evaluated 
because few of them are described in the literature. This 
is partly due to the focus on combinations of drugs that 
include at least one active drug; indeed, a Medline search 
using “coalistic” and “coalism” returns only one abstract. 
In addition, a significantly higher percentage of the studies 
published before 1999 are based on non-rigorous drug-
combination methods. It has been suggested that analy-
sis without using a rigorous method may easily lead to 
errors in assessing synergism with respect to such effects 
as enhancement and potentiation51. Therefore, to main-
tain the level of reliability of our assessment without sub-
stantially losing statistical significance, we focused on 
studies published since 1999, which constitute approxi-
mately 50% of all abstract entries selected by using our 
search method.

We collected 315, 88 and 62 abstract entries describing 
pharmacodynamically synergistic, additive, and antago-
nistic combinations, respectively, and 56 and 33 abstract 

Table 3 | Examples of pharmacodynamically synergistic drug combinations due to facilitating actions*

combination 
target 
relationship

drug A 
(MoA)‡

drug B 
(MoA)‡

reported 
synergism

Method Possible mechanism of 
synergism in promoting 
facilitating actions

Different targets 
of related 
pathways

Ampicillin 
(blocks PBP2A 
and thus 
bacterial 
cell-wall 
synthesis197)

Daptomycin 
(disrupts 
bacterial 
membrane 
structure198)

significant 
antibacterial 
synergy27

Checkerboard 
method, 
fractional 
inhibitory 
concentration

• Most PBPs are associated 
with membrane199 

• Membrane disruption  
by daptomycin198 probably 
hinders the functions of 
PBPs and further exposes 
them to ampicillin binding

Different targets 
of related 
pathways that 
regulate the same 
target

Candesartan-
cilexetil 
(angiotensin 
AT

1
 receptor 

antagonist200 )

Ramipril 
(ACE 
inhibitor201, 
reduces 
angiotensin II 
formation202)

synergistically 
reduces 
systolic BP203

Dose–response 
curve shifted 
6.6-fold 
leftwards 
compared with 
hypothetical 
additive curve

• Candesartan-cilexetil 
reduces systolic BP 
by antagonizing AT

1
 

receptor200 
• Ramipril reduces systolic 

BP by inhibiting ACE201

• Ramipril inhibits AT
1
 

receptor agonist 
formation202 thereby 
facilitating the action  
of candesartan-cilexetil  
by reducing AT

1
 

agonist–antagonist 
competition

*In these examples, synergy has been determined by well-established synergy/additive analysis methods and its molecular 
mechanism has been revealed. ‡MoA, mechanisms of action related to synergy. ACE, angiotensin-converting enzyme; BP, blood 
pressure; PBP, penicillin binding protein.
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Table 4 | Examples of pharmacodynamically additive drug combinations*

combination 
target relationship

drug A (MoA)‡ drug B (MoA)‡ reported 
additive effect

Method Possible mechanism of additive 
effect

Equivalent of overlapping actions

Different targets of 
the same pathways 
that regulate the 
same target

Diazoxide (ATP-sensitive 
K+ channel opener204, 
enhances ATPase activity 
of channel regulatory 
subunits205)

Dibutyryl-cGMP 
(activates 
ATP-sensitive K+ 
channel204, activated 
channel206,207) 

Additive 
antinociceptive 
effect204

Analysis of 
variance 
synergism and 
dose–effect 
data analysis

• Diazoxide enhances ATPase 
activity of channel regulatory 
subunits of sulphonylurea 
receptors205 

• Dibutyryl-cGMP activates 
channel via a cGMP-dependent 
protein kinase206,207

same target 
(different sites with 
direct contact with 
agonist site)

Propofol (interacts with 
GABA

A
 receptor209) 

sevoflurane 
(interacts with 
GABA

A
 receptor210) 

Additive action 
in producing 
consciousness 
and movement 
to skin incision 
during general 
anaesthesia211

Dixon 
up–down 
method

• Propofol binds to TM3 segment 
of the β2 GABA

A
 subunit209 

• sevoflurane binds to ser270 of  
the α1 GABA

A
 subunit210

• As agonist binding site is 
located between α1 and β2 
subunits212, both drugs probably 
hinder agonist activity, thereby 
producing mutually substitutable 
actions

same target (same 
site)

Ampicillin (blocks PBP2A 
and thus bacterial 
cell-wall synthesis197)

Imipenem (inhibits 
PBP1A, 1B, 2, 4 and 
5 and thus bacterial 
cell-wall synthesis213)

Additive 
antibacterial 
effect27

Checkerboard 
method, 
fractional 
inhibitory 
concentration

• Both act at the same active site  
of PBP2A214 but at relatively  
high MICs of ≥32 μg per ml197 

• The relatively high MICs 
make it less likely for both 
drugs to saturate target sites, 
thereby maintaining additive 
antibacterial effect

Independent actions

Different targets of 
unrelated pathways

Artemisinin (interferes 
with parasite transport 
proteins PfATP6, 
disrupts parasite 
mitochondrial function, 
modulates host immune 
function215)

Curcumin 
(generates ROs 
and downregulates 
PfGCn5 HAT 
activity, producing 
cytotoxicity for 
malaria parasites216)

Additive 
antimalarial 
activities217

Fractional 
inhibitory 
concentrations

• Artemisinin blocks calcium 
transport to ER215 

• Curcumin induces DnA damage 
and histone hypoacetylation216 

• They act at different sites in 
non-interfering manner

same target 
(different sites)

Doxorubicin (DnA 
intercalator94, prefers  
AT regions94)

Trabectedin (forms 
covalent guanine 
adduct at specific 
sites in DnA minor 
groove95, interacts 
with DnA repair 
system)

Additive 
anticancer 
effect93

Isobolographic 
analysis

• Both bind to DnA in 
non-interfering manner; one 
prefers AT regions94, the other 
alkylated guanines95 

• Recent progress in designing 
dual platinum-intercalator 
conjugates96 suggests that it is 
possible for both drugs to act 
without hindering each other’s 
binding mode

Independent actions at dosages significantly lower than MICs, complementary actions at higher dosages

Different targets of 
unrelated pathways

Azithromycin (hinders 
bacterial protein 
synthesis by binding to 
50s component of 70s 
ribosomal subunit218)

Imipenem (inhibits 
PBP1A, 1B, 2, 4 and 
5 and thus bacterial 
cell-wall synthesis)213

Additive 
antibacterial 
effect219

Checkerboard 
method, 
fractional 
inhibitory 
concentration

• Azithromycin hinders bacterial 
protein synthesis218 at MIC of  
0.12 μg per ml220 

• Imipenem blocks bacterial 
cell-wall formation217 at MICs  
of ≥32 μg per ml197 

• At dosages significantly lower 
than MICs for both drugs, 
azithromycin’s reduction of 
PBPs213 may be insufficient  
for imipenem to saturate  
these proteins, allowing its  
unhindered inhibition of these 
proteins213, thereby these actions 
proceed in a non-interfering 
manner

*In these examples, additive action has been determined by well-established synergy/additive analysis methods and its molecular mechanism has been revealed. 
‡MoA, mechanisms of action related to additive effect. GABA

A
, γ-aminobutyric acid A; ER, endoplasmic reticulum; HAT, histone acetyltransferase; PBP, penicillin 

binding protein; MIC, minimum inhibitory concentration; PfATP6, sarcoendoplasmic reticulum Ca2+ ATPase (sERCA) orthologue of Plasmodium falciparum; PfGCn5,  
P. falciparum GCn5 homologue; ROs, reactive oxygen species; TM3, transmembrane 3. 
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entries describing pharmacokinetically potentiative and 
reductive combinations, respectively. We then removed 
158, 53, 32, 15 and 18 of these entries, respectively, that 
are redundant (for example, the same combination or 
the same paper selected by different keyword combina-
tions); ambiguous (for example, synergistic in one report 
or condition, additive in another report or condition); 
and involving more than two drugs so as to focus on 
simpler cases. We further removed 45, 12, 1, 1 and 2 
papers, respectively, that described studies using non-
rigorous drug-combination methods. for the remain-
ing 217 papers, we searched additional literature for 
experimentally determined MI profiles related to the 
mechanism of the claimed combination effects. our 
analysis showed that the available literature-reported MI 
profiles are insufficient or irrelevant to substantiate the 
claimed combination effects in 110 (59 synergistic, 11 
additive, 17 antagonistic, 20 potentiative and 3 reductive 
combinations) of the 218 remaining papers.

This led to the identification of 107 combinations 
that can be substantiated by available literature-reported 
MI profiles. These comprise 53, 12 and 12 sets of phar-
macodynamically synergistic, additive and antagonistic 
combinations, and 20 and 10 sets of pharmacokinetically 
potentiative and reductive combinations, respectively. 
Data are summarized in Supplementary information S1 
(table), S2 (table), S3 (table), S4 (table), S5 (table), S6 
(table) and S7 (table), together with literature-reported 
mechanisms related to their therapeutic and combina-
tion effects. The statistical significance of our assessment 
can be roughly estimated as follows: for the 110 com-
bination sets not yet substantiated by the available MI 
profiles, it is reasonable to assume that a high percentage 
of them may eventually be substantiated by additional 
experimental findings. If one further assumes that the 

reported combination effects that are substantiated by 
MI profiles are at least partly true, then the estimated 
ratio of truly and falsely reported combinations should 
be substantially larger than 107 out of 110. Hence, there 
seems to be a statistically significant number of com-
binations and sufficient percentages of true claims for 
supporting a fair assessment of general combination 
types and mechanisms of drug combinations from the 
information collected by our search methods.

Examples of our evaluated drug combinations are 
shown in TABLEs 1–7. Many of the MI profiles directly 
point to a specific biomolecule as the inhibiting, activating 
or regulating target. So, it is possible to determine the 
combination effects based on the expected therapeutic 
and pharmacokinetic consequences of these interactions. 
Although the molecular target is not exactly specified, 
some of the profiles identify a specific pathway or process 
as a target, and provide the pharmacodynamic or phar-
macokinetic consequence of the interaction. for instance, 
in literature reports, arsenic trioxide produces anticancer 
activity by generating reactive oxygen species, which is 
partially counteracted by its activation of the AKT sur-
vival pathway61. The anticancer agent 17-(allylamino)-
17-demethoxygeldanamycin (17-AAG) produces its 
effects by inhibiting the nuclear factor-κb (nf-κb), AP-1 
(also known as Jun) and phosphatidylinositol 3-kinase 
(PI3K)–AKT pathways61. Therefore, when used in combi-
nation, 17-AAG abrogates arsenic trioxide’s counteractive 
activation of AKT survival pathway61.

Pharmacodynamically synergistic combinations
We identified three groups of pharmacodynamically 
synergistic combinations among the 53 synergistic 
drug combinations. In the first group (21 combina-
tions), anti-counteractive actions of the drugs involved 

Table 5 | Examples of pharmacodynamically antagonistic drug combinations*

combination 
target 
relationship

drug A (MoA)‡ drug B 
(MoA)‡

reported 
antagonistic 
effect

Method Possible mechanism 
of antagonism of 
interfering actions

Different 
targets of 
related 
pathways that 
regulate the 
same target

Amphotericin 
B (forms ion 
channels 
in fungal 
membranes221)

Ravuconazole 
(inhibits 
biosynthesis 
of ergosterol, 
a component 
of fungal cell 
membranes222)

Antagonism in 
experimental 
invasive 
pulmonary 
aspergillosis223,224

loewe 
additivity- 
based drug- 
interaction 
model

• Amphotericin B can 
form ion channels more 
easily in the presence of 
ergosterol221 

• Ravuconazole inhibition 
of ergosterol synthesis222 
can therefore reduce the 
activity of amphotericin B 
in forming ion channels221

same target Aminophylline 
(adenosine 
receptor 
antagonist, 
phospho -
diesterase 
inhibitor, releases 
intracellular 
calcium97)

Theophylline 
(releases 
intracellular 
calcium, 
adenosine 
receptor 
antagonist, 
phospho -
diesterase 
inhibitor97)

Antagonism 
of inhibitory 
adenosine 
autoreceptors 
and release of 
intracellular 
calcium97

Quantal 
release 
measurement

• Adenosine receptor 
antagonist binding 
may be associated with 
non-unique binding site 
conformations98

• Aminophylline binding 
may lock the receptor into 
a unique conformation 
that hinders theophylline 
binding, thereby producing 
an antagonistic effect

*In these examples, antagonism has been determined by established methods and its molecular mechanism has been revealed. 
The antagonism of the listed drug combinations is due to interfering actions of the partner drugs in each combination. ‡MoA, 
mechanisms of action related to antagonism.
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reduce the network’s counteractive activities against a 
drug’s therapeutic effect. In the second group (26 com-
binations), complementary actions positively regulate a 
target or process by interactions with multiple target/
pathway sites, different target subtypes and states, and 
competing mechanisms15. The third group (six combi-
nations) involves facilitating actions: secondary actions 
of one drug that enhance the activity or level of another 
drug. The therapeutic and synergistic mechanisms of the 
combinations in these three groups are summarized in 
Supplementary information S1 (table), S2 (table) and S3 
(table), with selected examples given in TABLE 1, TABLE 2 
and TABLE 3, respectively.

Anti-counteractive actions. Anti-counteractive actions 
may arise from interactions with an anti-target or 
counter-target14, and from negative modulations of a 
network’s robustness5–7, crosstalk9–11, and compensatory 
and neutralizing actions12,13. These anti-counteractive 
synergistic combinations act on different targets of 
related pathways (eight combinations); different targets 
of crosstalking pathways (four combinations); different 
targets of the same pathway that crosstalk to each other 
via another pathway (one combination) or regulate the 
same (five combinations) or different targets (two com-
binations); and different sites of the same target (one 
combination).

An example of actions on different targets is pro-
vided by the anticancer combination of cisplatin and 
topotecan62–64. Cisplatin binds to the major groove of 
GG, AG and TACT sites in DnA65, which is bypassed 

by the network’s counteractive activity of mutagenic 
translesional bypass replication across cisplatin–DnA 
adducts66. Topotecan inhibits topoisomerase I, interacts 
with DnA and stabilizes covalent topoisomerase–DnA 
complexes to block DnA replication forks67. The last 
function reduces the counteractive effect against cisplatin, 
therefore resulting in synergism.

An example of actions on the same target is the 
anticancer combination of cisplatin and trabectedin68. 
Trabectedin interacts with DnA and DnA repair systems 
in a different manner to that of cisplatin68 via covalent 
binding to the 2-amino group of the central guanine 
of selected DnA pyrimidine-G-G and purine-G-C 
triplets69. This induces the formation of unusual DnA 
replication intermediates that strongly inhibit DnA 
replication70 and subsequently reduces the counteractive 
effect against cisplatin.

Complementary actions. Complementary actions pri-
marily involve positive regulation of a target or process  
by targeting multiple points of a pathway71,72 and its 
crosstalk pathways71–75; interacting with multiple 
sites65,76, states77, conformations15, and mutant forms15 
of the target; collectively modulating target activity and 
expression28; and simultaneously enhancing the positive 
and reducing the negative effects of the target78,79. These 
combinations act on different targets of related pathways 
that regulate the same targets (eight combinations) or the 
same target/process (five combinations); different targets 
of related pathways that regulate different targets (six 
combinations); different targets of the same pathway that 

Table 6 | Examples of pharmacokinetically potentiative drug combinations*

Biochemical class 
of potentiative 
effect 

drug A (therapeutic 
or toxic effects and 
MoA)

drug B (MoA 
related to 
potentiative effect)

reported 
potentiative 
effect

Possible mechanism 
of potentiative 
actions

Positive regulation 
of drug transport or 
permeation

AZT (anti-HIV; HIV-1 
reverse transcriptase 
inhibitor)

1,8-Cineole (forms 
hydrogen bonds with 
lipid head groups 
of stratum corneum 
lipids225)

Enhances skin 
permeation of 
AZT226

Enables drug 
transport across skin 
possibly by disrupting 
absorption barrier via 
binding to lipid head 
groups

Enhanced drug 
distribution or 
localization 

Cerivastatin (cho-
lesterol-lowering; 
HMG-CoA reductase 
inhibitor)

Gemfibrozil (inhibits 
CyP2C8-mediated 
metabolism of 
statins, inhibits 
OATP2-mediated 
uptake of 
cerivastatin227)

Increases plasma 
concentration of 
statins by inhibiting 
their metabolism 
and uptake227–229

Enhances level of 
drug in plasma by 
metabolism reduction 
and uptake inhibition

Enhanced drug 
metabolism 

Doxorubicin 
(anticancer by DnA 
intercalation; converted 
to doxorubicinol by 
nADPH-dependent 
aldo/keto or carbonyl 
reductases230, produces 
cardiotoxicity by 
mediating transition 
from reversible to 
irreversible damage)

Paclitaxel (stimulates 
enzymatic activity of 
nADPH-dependent 
aldo/keto or carbonyl 
reductases230)

Enhances 
cardiotoxicity 
by increasing 
metabolism of 
doxorubicin into 
toxic metabolite230

Enhanced  
metabolism of drug 
into toxic metabolite

*In these examples, potentiative effect has been determined by established methods and its molecular mechanism has been 
revealed. AZT, azidothymidine; CyP2C8, cytochrome P450 2C8; HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA; MoA, mechanism  
of action; OATP2, organic anion transporter 2 (also known as slCO1B1).
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regulate the same target (two combinations); different 
target subtypes in related pathways (one combination); 
and the same target at different sites (two combinations), 
overlapping sites (one combination), and different states 
(one combination).

An example of actions on different targets is the 
celecoxib and emodin combination, which synergistically 
represses the growth of certain cancer cells80. Celecoxib is 
a cyclooxygenase 2 (CoX2) inhibitor, which suppresses 
cancer growth by inactivating protein kinase AKT to 
stop its suppression of apoptosis81. Emodin suppresses 
cancer growth by inhibiting tyrosine kinases82 and down-
regulating AKT via inhibition of PI3K pathway to reduce 
AKT suppression of apoptosis83. Emodin complements 
celecoxib’s inactivation of AKT81 to reduce its suppression 
of apoptosis.

Facilitating actions. facilitating actions can be illus-
trated by two examples. The first is the gentamicin and 
vancomycin combination, which produces synergistic 
antibacterial action against penicillin-resistant bacterial 
strains84. Gentamicin targets the bacterial ribosome, 
causes misreading of the genetic code and inhibits 
translocation to disrupt protein synthesis85. vancomycin 
inhibits bacterial cell-wall peptidoglycan synthesis86, 
selectively inhibits ribonucleic acid synthesis and alters 
permeability of the cell membrane87. The alteration in 
cell-membrane permeability by vancomycin enhances 
gentamicin penetration into bacterial cells, thereby 
increasing its bioavailability.

The second example is the bQ-123 and enalapril 
combination, which produces synergistic endothelium-
dependent vasodilation enhancement88. bQ-123 is an 
endothelin A (ETA) receptor antagonist that mediates 
vasodilation89. Enalapril upregulates the ETb receptor 
and inhibits angiotensin-converting enzyme, leading to 
vasodilation90,91. bQ-123 antagonism of the ETA receptor89 
displaces endogenous ET1 from the ETA receptor on to 
the upregulated ETb receptor to enhance its activity by 
effectively increasing ETb agonist concentration88. 

Pharmacodynamically additive combinations
Investigation of additive and antagonistic combinations 
provides contrasting perspectives for facilitating the 
study of synergistic combinations. Additive combina-
tions (see Supplementary information S4 (table), with 
selected examples in TABLE 4) result from equivalent or 
overlapping actions (nine combinations) and independent 
actions (four combinations) of the drugs involved.

Equivalent and overlapping actions involve inter-
actions with different targets of the same pathways that 
equivalently regulate the same target (seven combina-
tions), or interactions that directly or indirectly affect 
the same site of the same target (two combinations). 
for example, retinoic acid and trichostatin A additively 
inhibit cell proliferation by overlapping actions of upreg-
ulation of retinoic acid receptor β and reactivation of its 
mrnA expression92.

Independent actions involve interactions with differ-
ent targets of unrelated pathways (three combinations), 

Table 7 | Examples of pharmacokinetically reductive drug combinations*

Biochemical 
class of 
reductive 
effect 

drug A (therapeutic 
or toxic effects and 
MoA)

drug B (MoA 
related to 
reductive effect)

reported reductive 
effect

Possible 
mechanism of 
reductive actions

Drug transport 
and permeation 

Amphotericin B 
(antileishmanial, 
forms aggregate with 
miltefosine231)

Miltefosine 
(antileishmanial, 
forms aggregate 
with amphotericin 
B231)

Reduces miltefosine-
induced paracellular 
permeability 
enhancement in Caco-2 
cell monolayers, inhibits 
uptake of both drugs, 
decreases transepithelial 
transport of both drugs232

Reduces drug 
permeability  
and transport 

Drug distribution 
and localization 

Cisplatin (DnA inter- 
and intra- strand 
adduct, preferably binds 
to the major groove of 
GG, AG and TACT sites65 
thereby inhibiting DnA 
polymerization and 
induces DnA damage 
to trigger apoptosis120)

Procainamide 
hydrochloride 
(forms cisplatin–
procainamide 
complex233)

Reduces 
cisplatin-induced 
hepatotoxicity via 
formation of less toxic 
platinum complex, 
leading to inactivation 
of cisplatin or its highly 
toxic metabolites and to 
a different subcellular 
distribution of platinum233

Reduces level 
of toxic drug by 
formation of less 
toxic complex and 
rearrangement 
of its subcellular 
distribution

Drug metabolism Warfarin (anticoagulant 
and antithrombotic, 
affects coagulation 
proteins that act 
sequentially to produce 
thrombin, metabolized 
by CyP3A4234)

Quinidine 
(stimulates 
CyP3A4-mediated 
metabolism of 
warfarin235)

Reduces anticoagulant 
effect of warfarin 
by stimulating its 
metabolism235

Enhances 
metabolism of active 
drug into inactive 
metabolite

*In these examples, reductive effect has been determined by established methods and its molecular mechanism has been revealed. 
CyP3A4, cytochrome P450 3A4; MoA, mechanism of action.
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Table 8 | Assessment of clinically widely used drug combinations (part 1)*

suggested 
combination type

drug A (MoA)‡ drug B (MoA)‡ reported combination 
effect (method)

Possible mechanism of 
combination actions

Different targets of unrelated pathways

Potentiative 
combination by 
enhancing drug 
distribution or 
localization

Amoxicillin (inhibits bacterial 
cell-wall synthesis236, 
destroyed by β-lactamase237) 

Clavulanate 
(β-lactamase 
inhibitor117)

Antibacterial synergy103 

(comparison of inhibitory 
activity)

• Clavulanate maintains level of 
amoxicillin at bacterial cell wall 
by inhibiting its degradation 
enzyme β-lactamase117, thereby 
potentiating the antibacterial 
activity of amoxicillin

Different targets of related pathways that regulate the same target

synergistic 
combination due to 
facilitating actions

salmeterol (β
2
-adrenoceptor 

agonist238 that activates 
T-cell subtypes186,  promotes 
apoptosis via adrenoreceptor- 
and cAMP-independent, 
Ca2+-dependent mechanism239) 

Fluticasone 
(glucocorticoid 
receptor binder240 that 
induces apoptosis241, 
upregulates 
β

2
- adrenoceptor112)

synergistic  in vitro T-cell 
activation and apoptosis 
induction in asthma110 

(comparison of activity 
and protein levels)

• salmeterol’s agonistic activity on 
the β

2
-adrenoceptor238 is facilitated 

by fluticasone’s upregulation of 
the β

2
- adrenoceptor112, leading 

to synergistic T-cell activation and 
apoptosis induction

Different targets of the same pathway (upstream – downstream relationship)

Redundant 
combination in 
targeting upstream 
and downstream 
targets of the 
same single-route 
pathway

sulphamethoxazole  
(DHPs inhibitor118, metabolite 
covalently haptenates human 
serum proteins242)

Trimethoprim  
(DHFR inhibitor119)

no synergy detected  
against E. coli111 and  
S. somaliensis strains104, 
therapeutic effect due 
to sulphamethoxazole 
alone, clinical use 
of combination 
discontinued and 
converted to single 
drug104 (chequerboard)

• Both drugs target the same 
single-route folate metabolism 
pathway 

• sulphamethoxazole targets 
the upstream DHPs118 and 
trimethoprim targets the 
downstream DHFR119 

• Redundant combination if 
sulphamethoxazole effectively 
inhibits  DHPs 

• Trimethoprim inhibition of DHFR  
serves as a backup when  
sulpha meth oxazole becomes less 
effective

Different targets of related pathways

Unclear Rifampicin (bacterial 
DnA-dependent RnA 
polymerase inhibitor243)

Fusidic acid (interferes 
with bacterial protein 
synthesis by inhibiting 
the translocation of 
peptide elongation 
factor G from the 
ribosome244)

synergistic effect against 
S. somaliensis strains in 
vitro104 (chequerboard)

• Mechanism unclear 
• A report suggests that transcribing 

activity of DnA-dependent RnA 
polymerase from E. coli is inhibited 
in vitro by addition of preparations 
of elongation factor T purified to 
homogeneity245

synergistic 
combination due to 
facilitating action

Erythromycin (binds to 
bacterial 70s ribosomal 
complex to inhibit bacterial 
protein synthesis114)

Penicillin (binds to 
DD-transpeptidase that 
links peptidoglycan, 
which weakens 
bacterial cell wall246)

Combination inhibits 
80% of the S. somaliensis 
strains both synergically 
and additively104 

(chequerboard)

• Weakening of bacterial cell wall 
by penicillin, which enhances 
erythromycin penetration into 
bacterial cells, thereby enhancing 
its bioavailability114

Potentiative 
combination by 
enhancing drug 
distribution or 
localization

Ergotamine (5-HT1B/5-HT
1D

 
receptor agonist247, 
agonist of presynaptic 
dopamine receptors and 
α

2
-adrenoceptors, postsynaptic 

α
1
 and α

2
-adrenoceptors, and 

antagonist of the postsynaptic 
α

1
-adrenoceptors248)

Caffeine (adenosine 
receptor antagonist249 
that increases 
dopamine and 
GABAergic activities250, 
cAMP-PDE inhibitor251)  

symptomatic 
treatment of chronic 
vascular headache by 
the combination105 

(comparison of activity)

• Caffeine increases water solubility 
of ergotamine to enhance 
its absorption122, producing 
potentiative effect 

• Possible synergy may occur at 
dopamine receptor, which requires 
further investigation

Additive 
combination due to 
equivalent action

niacin (niacin receptor 
HM74A agonist that inhibits 
hepatocyte DGAT and 
triglyceride synthesis leading 
to increased intracellular ApoB 
degradation252)

simvastatin (HMG-CoA 
reductase inhibitor123)

Combination reduces lDl 
and VlDl, and increases 
HDl cholesterol106 

(comparison of activity 
and protein levels)

• niacin reduces secretion of  VlDl 
and lDl cholesterol252 

• simvastatin reduces synthesis of 
lDl cholesterol and triglycerides, 
and increased HDl-cholesterol123 

• Both drugs equivalently reduce  
the level of lDl cholesterol

*These combinations, which were not collected by our literature search procedure, have primarily been studied by less rigorous combination analysis methods and 
the relevant studies have been published before 1999. ‡MoA, mechanisms of action related to combination effect. 5-HT, 5-hydroxytryptamine (serotonin); ApoB, 
apolipoprotein B; COX, cyclooxygenase; DGAT, diacylglycerol acyltransferase; DHFR, dihydrofolate reductase; DHPs, dihydropteroate synthase; E. coli, Escherichia 
coli; GABA, γ-aminobutyric acid; HDl, high density lipoprotein; HM74A, G protein-coupled receptor HM74a (also known as GPR109A) HMG-CoA, 3-hydroxy-3-me-
thyl-glutaryl-CoA;  lDl, low density lipoprotein; PDE, phosphodiesterase; S. somaliensis, Streptomyces somaliensis; TyMs, thymidylate synthase; VlDl, very-low 
density lipoprotein.
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or different sites of the same target (one combination). 
for instance, doxorubicin and trabectedin produce an 
additive anticancer effect via equivalent action of DnA 
intercalation and covalent guanine adduct formation at 
specific sites in the DnA minor groove93. both drugs 
bind to DnA in a non-interfering manner; doxorubicin 
prefers AT regions94, whereas trabectedin alkylates 
guanines95. recent progress in designing dual platinum-
intercalator conjugates96 suggests that it is possible for 
both drugs to act without hindering the binding mode 
of each other.

Pharmacodynamically antagonistic combinations
Antagonistic drug combinations (see Supplementary 
information S5 (table), with selected examples in 
TABLE 5) involve interfering actions at the same target 
(two combinations), or different targets of related path-
ways that regulate the same target (two combinations). 
one possible mechanism for antagonistic drug combina-
tion against the same target is mutual interference at the 
same site, which can be illustrated by the aminophylline 
and theophylline combination97. both aminophylline 
and theophylline are adenosine receptor antagonists 
and phosphodiesterase inhibitors, and are involved in 
the release of intracellular calcium97. Adenosine receptor 
antagonist binding may be associated with non-unique 
binding site conformations98. Therefore, aminophylline 

or theophylline binding probably locks the receptor into 
a unique conformation that hinders theophylline or 
amino phylline binding, leading to antagonism. Similarly, 
inhibitor–activator, antagonist–agonist, blocker–substrate, 
and other mutually interfering pairs of drugs that bind to 
the same site may also produce antagonism.

one mechanism for antagonistic drug combination 
against different targets of related pathways is counter-
active actions that hinder the normal actions of the 
partner drug, which can be illustrated by the cytarab-
ine and 17-AAG combination99. Cytarabine is a DnA 
binder99 and 17-AAG is a heat-shock protein antagonist 
that abrogates the AKT survival pathway61,100. 17-AAG 
antagonizes the cytotoxic activity of cytarabine, which is 
partly due to the induction of G1 cell-cycle arrest, which 
subsequently prevents the incorporation of cytarabine 
into cellular DnA99.

Pharmacokinetically potentiative combinations
Potentiative drug combinations (see Supplementary 
information S6 (table), with selected examples in TABLE 6) 
involve positive modulation of drug transport or permea-
tion (seven combinations), distribution or localization 
(eight combinations), and metabolism (three combi-
nations). Potentiative modulation of drug transport or 
permeation enhances drug absorption via disruption of 
transport barrier, delay of barrier recovery, or inhibition 

Table 8 | Assessment of clinically widely used drug combinations (part 2)*

suggested 
combination type

drug A (MoA)‡ drug B (MoA)‡ reported combination 
effect (method)

Possible mechanism of 
combination actions

Same target (different binding sites)

synergistic 
combination due 
to complementary 
action 

Cisplatin (DnA inter- and 
intra-strand adduct, 
preferably binds to the 
major groove of GG, 
AG and TACT sites65 
thereby inhibiting DnA 
polymerization and 
induces DnA damage to 
trigger apoptosis120)

Cyclophosphamide 
(metabolite forms DnA 
adduct at phosphoester121 
and at G n-7 positions253, 
thereby inhibiting DnA 
polymerization and 
induces DnA damage to 
trigger apoptosis208)

Combination produces 
response rates of 
60–80% in patients with 
small-cell lung cancer107 
(comparison of activity)

• Cisplatin and cyclophosphamide 
form DnA adducts at different 
sites120,121, possibly at mutually 
compatible binding conformation 
because of the small size of the 
drugs

• The two drugs thereby  
complement each other’s actions 
on DnA

Same target

synergistic 
combination due to 
facilitating action

Methotrexate (DHFR 
inhibitor134)

Fluorouracil (anticancer, 
metabolite inhibits 
TyMs that stops DnA 
synthesis254, stabilizes 
and activates p53 by 
blocking MDM2 feedback 
inhibition through 
ribosomal proteins255)

synergism in inhibiting 
viability of l1210 
murine tumour cells113 

(comparison of activity)

• Apart from methotrexate’s 
anticancer DHFR inhibitory 
activity134,  methotrexate 
metabolite forms reversible ternary 
complexes with fluorouracil on one 
site of TyMs to enhance its binding 
to the enzyme113

• Fluorouracil’s anticancer TyMs 
inhibitory activity is therefore 
enhanced

synergistic 
combination due 
to complementary 
action

Diclofenac (non-selective 
COX inihibitor115, COX1 
inhibition increases 
formation of kynurenic 
acid in brain to produce 
analgesic effect115)

Paracetamol (metabolite 
agonizes cannabinoid 
receptors to produce 
analgesic effect212,256, 
selective COX2 variant 
inhibitor257)

synergy in treatment of 
acute pain in humans109 

(isobolographic analysis)

• Apart from its analgesic action 
via cannabinoid receptors212,256, 
paracetamol reduces active oxidized 
form of COX to resting form116  to 
complement diclofenac’s analgesic 
action of  COX1 inhibition115

*These combinations, which were not collected by our literature search procedure, have primarily been studied by less rigorous combination analysis methods and 
the relevant studies have been published before 1999. ‡MoA, mechanisms of action related to combination effect. 5-HT, 5-hydroxytryptamine (serotonin); ApoB, 
apolipoprotein B; COX, cyclooxygenase; DGAT, diacylglycerol acyltransferase; DHFR, dihydrofolate reductase; DHPs, dihydropteroate synthase; E. coli, Escherichia 
coli; GABA, γ-aminobutyric acid; HDl, high density lipoprotein; HM74A, G protein-coupled receptor HM74a (also known as GPR109A) HMG-CoA, 3-hydroxy-3-me-
thyl-glutaryl-CoA;  lDl, low density lipoprotein; PDE, phosphodiesterase; S. somaliensis, Streptomyces somaliensis; TyMs, thymidylate synthase; VlDl, very-low 
density lipoprotein.
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Figure 1 | Pathways affected by the cisplatin and trastuzumab combination. Cisplatin forms adducts with DnA 
that inhibit DnA polymerization and induce DnA damage to trigger apoptosis120 (via p53– BCl-2-associated X protein 
(BAX), p53–Fas, p38– Jun n-terminal kinase (JnK), and p73 pathways). Trastuzumab is an anti-HER2 (also known as 
ERBB2) antibody that inhibits HER2-mediated proliferation, angiogenesis, survival and migration130 (via phosphatidyl-
inositol 3-kinase (PI3K)–AKT–mammalian target of rapamycin (mTOR) and Ras– extracellular signal-regulated kinase 
(ERK) pathways). Induction of DnA damage and apoptosis by cisplatin may be attenuated by DnA repair systems in 
certain cell types120 (via p53–p21 pathways). This counteractive DnA repair action may be reduced by the anti-HER2 
activity of trastuzumab, which suppresses the DnA repair pathway131 and inhibits the PI3K–AKT pathway132 to enhance 
apoptosis133. The corresponding pathways (dashed lines) involve the inhibition of HER2–PI3K–AKT-mediated activation 
of p21, which reduces the activity of p21 in facilitating checkpoint kinase 1 (CHK1)–p53–p21 and CHK1–p53–growth 
arrest and DnA-damage-inducible, alpha (GADD45α)–p21 mediated induction of cell-cycle arrest that is important for 
ataxia telangiectasia mutated (ATM)-mediated DnA repair. Reduction of AKT activity by trastuzumab’s inhibition of 
HER2 also lowers the activity of p53 binding protein homologue (MDM2) in facilitating p53 degradation, which 
enhances p21 activation to counterbalance the reduced AKT activation of p21. We were unable to identify another 
counterbalancing pathway, and it is unclear to what extent the MDM2-mediated counterbalance pathway affects the 
overall state of p21 activation. 4EBP, eukaryotic initiation factor 4E (eIF4E)-binding protein; ATR, ataxia telangiectasia 
and Rad3 related; BAD, BCl-2-associated agonist of cell death; BRCA1, breast cancer 1, early onset; CAsP, caspase; 
CDC2, cell division cycle 2, G1 to s and G2 to M; CDC25, cell division cycle 25 homologue; CDK2, cyclin-dependent 
kinase 2; Cyt c, cytochrome c; DnA PK, DnA protein kinase; DnA Pol, DnA polymerase; Fasl, Fas ligand; GRB2, growth 
factor receptor-bound protein 2; GsK3, glycogen synthase kinase 3; KU70, also known as XRCC6; KU80, also known as 
XRCC5; MEK, mitogen-activated protein kinase/ERK kinase; MMR, mismatch repair; nBs1, nijmegen breakage 
syndrome 1; PCnA, proliferating cell nuclear antigen; PP2A, protein phosphatase 2A; RFC, replication factor C; s6K,  
s6 kinase (also known as RPs6KB1); sHC, src homology 2 domain containing; sMC1, structural maintenance of 
chromosomes 1A; XRCC, X-ray-repair-cross-complementing.
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of drug efflux. Potentiative modulation of drug distri-
bution or localization increases drug concentration in 
plasma or a specific tissue by blocking drug uptake and 
inhibiting metabolic processes that convert drugs into 
excretable forms. Potentiative metabolism modulation 
stimulates the metabolism of drugs into active forms, or 
inhibits the metabolism of drugs into inactive forms.

Typical potentiative effects can be illustrated by 
two examples. one is the enhanced absorption of anti-
thrombotic low-molecular-weight heparin (lMWH) 
by chitosan101. lMWH is an antithrombin binder that 
inhibits activated coagulation factors. Chitosan reversibly 
interacts with components of tight junctions to widen 
paracellular routes, which increases the permeability of  
lMWH across mucosal epithelia and therefore enhances 
its absorption. The second example is 2′-deoxyinosine 
enhancement of antitumour activity of 5-fluorouracil 
in human colorectal cell lines and colon tumour 
xenografts102. 5-fluorouracil is metabolized by thymi-
dine phosphorylase and other enzymes into a metabo-
lite that stabilizes p53 due to rnA-directed effects. 
2′-Deoxyinosine enhances thymidine phosphorylase 
activity and thus the metabolism of 5-fluorouracil into 
its active metabolite.

Pharmacokinetically reductive combinations
Seven reductive drug combinations were identified, 
which involve negative modulation of drug transport 
or permeation (two combinations), distribution or 
localization (one combination), and metabolism (four 
combinations), respectively (see Supplementary infor-
mation S7 (table), with selected examples in TABLE 7). 
reductive modulation of drug transport or permeation 
typically blocks drug absorption or promotion of first-
pass elimination by actions such as drug–drug aggrega-
tion to reduce the permeability and inhibition of drug 
transport into plasma or target site. reductive modu-
lation of drug distribution/localization decreases the 
drug concentration in plasma or a specific tissue, which 
typically involves stimulation of metabolic processes for 
converting drugs into excretable forms and inhibition of 
metabolic processes for increasing drug concentration. 
Drug activity can also be reduced by metabolism modu-
lation to convert drugs into inactive forms.

Further assessment of popular drug combinations
Several drug combinations have been extensively used 
for clinical applications for many years103–109. for some 
of these classical drug combinations, the studies of their 
combination effects have been primarily conducted 
and published before 1999, and are frequently based on 
non-rigorous combination analysis methods. Therefore, 
some of these classical combinations were not selected 
by our search procedure. nonetheless, their popular use 
is a strong indication of their possible beneficial com-
bination effects in comparison with those of individual 
drugs, and so it is of interest to assess the effects and 
mechanisms of these classical drug combinations.

We identified ten sets of classical drug combinations 
that were missed by our search procedure and contain no 
drug of abuse or withdrawn drug. TABLE 8 summarizes 

literature-described modes of actions of individual drugs, 
suggested combination type and possible mechanism 
of these combinations. The ten combinations include 
five synergistic103,104,109,110,113, one dual synergistic/addi-
tive104, and one non-synergistic104,111 combinations. The 
clinical use of the non-synergistic combination has been 
replaced by single-drug therapy104. for the remaining 
three combinations, we were unable to find a literature 
report indicating their possible types of combination. 
It is also noted that four of the ten combinations have 
been studied by rigorous drug combination analysis 
methods.

literature-described MI profiles seem to provide 
some clues to the possible mechanisms for nine of the 
ten combinations. The synergistic salmeterol and fluti-
casone, methotrexate and fluorouracil, and erythromycin 
and penicillin combinations probably involve facilitating 
actions112–114. The diclofenac and paracetamol synergism 
may arise from complementary action115,116, and amoxi-
cillin and clavulanate synergism possibly stems from 
potentiative enhancement of drug distribution117. We were 
unable to find information for assessing the reported syn-
ergism of the rifampicin and fusidic acid combination104. 
The reported non-synergistic sulphamethoxazole and 
trimethoprim combination seems to involve redundant 
actions in targeting upstream and downstream targets of 
a single-route pathway, with the downstream drug acting 
as a second line of defence118,119. for the three combina-
tions without reported types of combination actions, the 
cisplatin and cyclophosphamide combination probably 
produces synergistically complementary action120,121; 
caffeine in the ergotamine and caffeine combination 
may involve the potentiation of ergotamine’s action by 
enhancing its distribution122; and the niacin and sim-
vastatin combination possibly produces an additive effect 
due to their equivalent actions123.

Pathway analysis
Pathway analysis is an effective approach for a more com-
prehensive assessment of drug combination effects124, as 
well as other drug activities and responses125,126. Advances 
in systems biology and other areas of biomedical and 
pharmaceutical research have enabled the integration 
of biomolecular network information, individual MI 
profiles, ‘omics’ data, and disease information for drug 
validation and for understanding the mechanism of drug 
actions127–129. It is therefore of interest to explore pathway 
analysis approaches for further study of some of the drug 
combinations evaluated by MI profiling.

FIGURE 1 shows the related pathways of the cisplatin 
and trastuzumab combination (see Supplementary 
information S1 (table)), and describes potential mecha-
nisms underlying the effects of the combination120,130–133. 
In addition to protein–protein, protein–substrate and 
protein–nucleic acid interactions, pathway analysis 
also needs to take into consideration drug metabolism, 
transport, drug–drug interactions and complex forma-
tion. This can be illustrated by comparative analysis of 
the anticancer combination of methotrexate and fluor-
ouracil113,134, and the antibacterial combination of sulpha-
methoxazole and trimethoprim118,119 (TABLE 8), which 
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Figure 2 | constrasting effects of drug combinations on folate metabolism pathways. The human folate 
metabolism pathway affected by the combination of methotrexate (MTX) and fluorouracil (5-FU) is shown in panel (a), 
and the Escherichia coli folate metabolism pathway affected by the sulphamethoxazole and trimethoprim drug 
combination is shown in panel (b). Although both combinations target upstream and downstream targets in a single 
pathway leading to DnA synthesis (assuming that synthesis of 7,8-dihydropteroate is essential for bacterial growth), 
only the sulphamethoxazole and trimethoprim combination shows the expected redundant effect such that effective 
inhibition of 7,8-dihydropteroate synthase (7,8-DHPs)  by sulphamethoxazole renders trimethoprim inhibition of 
dihydrofolate reductase (DHFR) unnecessary for reducing DnA synthesis118,119. The unexpected MTX–5-FU synergism 
arises because the MTX metabolite forms reversible ternary complexes with 5-FU on one site of thymidylate synthase 
to enhance its binding to the enzyme113,134 (dashed line in part a), which synergistically facilitates the anticancer 
thymidylate synthase inhibitory activity of 5-FU. AICARFT, 5-amino-imidazole-4-carboxamide ribonucleotide 
transformylase; CBs, cystathionine β-synthase; dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine 
monophosphate; FPGs, folypolyglutamate synthase; GART, glycinamide ribonucleotide transformylase; MTHFR, 
methylene tetrahydrofolate reductase; sAH, S-adenosyl homocysteine; sAM, S-adenosyl methionine; sHMT, serine 
hydroxymethyl transferase; THF, tetrahydrofolate.
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Mechanisms of drug combinations: interaction and network 
perspectives
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There are two errors in the author names: Zhiwei W. Cao should be Zhiwei Cao and Yixue X. Li should be Yixue Li.
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