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Identification and validation of viable targets is an important first step in drug discovery and new

methods, and integrated approaches are continuously explored to improve the discovery rate and

exploration of new drug targets. An in silico machine learning method, support vector machines, has

been explored as a new method for predicting druggable proteins from amino acid sequence

independent of sequence similarity, thereby facilitating the prediction of druggable proteins that

exhibit no or low homology to known targets.
Introduction
Most drugs exert their therapeutic effect by binding to and

regulating the activity of a particular protein or nucleic acid

target. The identification and validation of such targets is an

important first step in the drug discovery processes [1,2], and

various target identification technologies [3,4] have been devel-

oped by analyzing disease relevance, functional roles, expression

profiles and loss-of-function genetics between normal and dis-

ease states [5–12]. Computational methods have been used for

predicting druggable proteins, the activity of which can be

regulated by drug-like molecules [13], from genomic, structural

and functional information [13–16] – druggable proteins with

key roles in a disease can then be explored as therapeutic targets

[13].

Despite increasing levels of spending and extensive use of new

technologies [17], there is a shortage of approved drugs and a lack

of innovative drug targets [5]. Therefore, new and improved

methods [18], and integrated and systems-based approaches

[5,6,19], are being explored for identifying targets and druggable

proteins. The commonly used computational methods have pri-

marily been based on the detection of sequence and functional

similarity to known targets [13,14], drug-binding domain family

affiliation [7,13], and structural analysis of geometric and ener-

getic features [15,16]. These methods are less effective in finding
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targets that exhibit no or low homology to known targets, disease

proteins and proteins with available 3D structures. However, such

non-homologous and structurally unknown proteins constitute a

substantial percentage, �20–100%, of the open reading frames in

many of the completed genomes and might, therefore, be an

untapped source of novel drug targets [20]. Hence, methods

independent of sequence and functional similarity, and structural

availability, are highly desirable.

One such method, support vector machines (SVMs), which is

summarized in Box 1, has recently been explored for predicting

druggable proteins [21], anticancer genes [22], proteins in families

of high target concentrations [23–28], as well as proteins of various

broadly defined functional and structural classes [29], from

sequence-derived constitutional and physicochemical properties,

irrespective of similarity to known proteins. This method is parti-

cularly useful for predicting novel druggable proteins that exhibit

no or low homology to known targets. Here, we describe SVM

algorithms, evaluate their performance through statistical and

proof-of-concept tests, and discuss the underlying difficulties

and perspectives of their potential applications for facilitating

the discovery of innovative targets.

Recent progress in exploring SVM approaches for
predicting druggable proteins
To facilitate the identification of genes related to anticancer target-

ing genes, SVMs have been used for assigning genes into predefined
ee front matter � 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2007.02.015
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BOX 1

SVMs
SVMs represent a supervised ML method for classifying objects
into separate groups and for developing regression models
based on quantitative information on the characteristics
inherent in a training set of objects. Regression models describe
quantitative relationships between the activities and
characteristics of objects. SVMs use the structural risk
minimization principle to minimize both training and
generalization errors. When used for classification, SVMs
separate positive and negative training objects by projecting
their characteristics into a multidimensional feature space and
then constructing a hyperplane that separates these positive
and negative samples optimally. A testing sample is then
projected onto this multidimensional space to determine its
class affiliation based on its relative position to the hyperplane.
SVMs have been explored for predicting druggable proteins,

compounds that interact with specific target or absorption,
distribution, metabolism, excretion and toxicity (ADMET)-related
protein, compounds of specific pharmacokinetic or toxicological
properties, and peptide vaccines. Other applications include
prediction of proteins of specific structural or functional class,
prediction of protein–protein interactions, protein fold
recognition, prediction of a specific class of RNAs, disease
diagnosis or outcome prediction, microarray gene expression
data analysis, text categorization, hand-writing recognition, tone
recognition, image classification and recognition, sonar
data analysis, vehicle identification, and flood stage
forecasting.

FIGURE 1

Schematic diagram illustrating the process of the prediction of a druggable
protein from the sequence of a protein by using an ML method.
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mechanistic categories based on their expression and anticancer

profiles, enabling the selection of genes related to the common

anticancer mechanisms, with a 2–10-fold lower false-positive rate

against random selection [22]. Known drug targets are strongly

represented in families such as G-protein-coupled receptors

(GPCRs), nuclear receptors, DNA-binding proteins, specific trans-

porter classes (e.g. ion transport proteins) and enzyme families (e.g.

kinases) [21]. SVMs have consistently shown good performance for

predicting members of these families [23–28]. A twofold cross-vali-

dation test suggests that SVMs recognize members of GPCR sub-

families at a lower per-sequence error rate than those of BLAST and

the hidden Markov model [23]. SVMs have also performed well for

proteins of less than 20% sequence identity [25]. These studies

suggest that SVMs might be useful for finding novel druggable

proteins.

Efforts have also been directed at predicting druggable pro-

teins based on common features of known druggable targets

instead of affiliation to a specific mechanism or family [18,21].

Investigations of known drug targets have shown that they

have common characteristics collectively manifested by some

combinations of functional, structural, physicochemical and

localization features [13,19]. SVMs have consistently shown

good performance in predicting various classes of proteins of

specific functional, structural, physicochemical or localization

feature [29], which is why one would expect them to be

similarly useful for predicting druggable proteins characterized

by combinations of these features. Recently reported proof-

of-principle studies have shown that SVMs are capable of

predicting druggable proteins at reasonably good accuracy levels

[18,21].
SVM approach for predicting druggable proteins
Outline of prediction strategy
One strategy for predicting druggable proteins from their

sequences, without the use of sequence similarity, is to use a

sequence-independent classifier generated from the analysis of

known druggable targets that share some characteristics but might

be substantially different in sequence, structure and function

[13,21]. To be of value for therapeutic intervention, targets need

to have crucial roles in disease processes. It is preferable that they

are not involved in other important physiological processes, to

rule out side effects. Expression of these targets should be either

tissue selective or at lower levels than that coverable by drugs at

therapeutic dosage, to enable sufficient drug efficacy. To be drug-

gable, targets need to contain drug-binding sites with certain

structural and physicochemical properties to accommodate

high-affinity, site-specific binding and subsequent activity mod-

ulation by drug-like molecules. These characteristics define the

sequence, genomic, structural and proteomic profiles of druggable

proteins and the roles of targets at the pathway, cellular and

physiological levels.
www.drugdiscoverytoday.com 305



REVIEWS Drug Discovery Today � Volume 12, Numbers 7/8 �April 2007

FIGURE 2

Schematic diagram illustrating the process of the prediction of a druggable protein from the sequence of a protein by using SVMs. A,B: feature vectors of
druggable proteins; E,F: feature vectors of non-druggable proteins; green circles: druggable proteins; black-filled squares: non-druggable proteins; feature vector

(hj, pj, vj,. . .) represents hydrophobicity, volume, polarizability, etc.
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Proteins can be divided into druggable and non-druggable

classes. Thus, two-tier classification machine learning (ML) meth-

ods such as SVMs [30] can be applied for developing an artificial

intelligence model to separate druggable from non-druggable

proteins. Figure 1 illustrates the process of training an ML model

and using it for predicting druggable proteins. Each protein is

represented by a feature vector composed of sequence-derived

descriptors representing its structural and physicochemical prop-

erties. As illustrated in Figure 2, SVMs classify proteins by project-

ing their feature vectors into a multidimensional space in which
306 www.drugdiscoverytoday.com
druggable and non-druggable proteins are separated by a hyper-

plane. A protein is predicted to be druggable or non-druggable

depending on whether its feature vector is projected onto the

druggable or non-druggable side of the hyperplane.

Sources of druggable and non-druggable proteins
Sufficiently diverse sets of druggable and non-druggable proteins

are needed for training and testing a SVM prediction model. There

are 1484 successfully commercialized and research targets in the

therapeutic target database [31] with available sequence informa-



Drug Discovery Today � Volume 12, Numbers 7/8 �April 2007 REVIEWS

R
ev
ie
w
s
�
IN
F
O
R
M
A
T
IC
S

tion, which together form the druggable class. Some viral and

microbial targets have multiple sequence entries because there are

substantial sequence variations across strains. Based on their family

distribution pattern, targets are expected to be represented by<800

protein families, including 460 covered by the known targets

[21,32]. There are 8957 protein families in the Protein Family (Pfam)

database [33] that contain no known target at present. Protein

families in the Pfam database are defined based on domain affilia-

tions or sequence clustering. Therefore, without substantially redu-

cing SVM prediction performance, putative non-druggable proteins

can be tentatively derived from these non-target families,producing

a maximum possible ‘wrong’ family representation rate of <7%,

even when all of the<340 unidentified target families are misplaced

[21]. Representative proteins of these non-target families form the

non-druggable class. Importantly, inclusion of the representative of

a ‘wrong’ family into the non-druggable class does not preclude

other family members from being classified as druggable. Statisti-

cally, a substantial percentage of druggable members can be located

on the druggable side of the SVM hyperplane, even if its family

representative is on the non-druggable side. Therefore, in principle,

a reasonably good SVM prediction model can be derived from these

putative non-druggable proteins for predicting druggable proteins

rather than Pfam family membership, as confirmed by the case

studies described here. The quality of the non-druggable class and

the performance of SVM can be further improved, in line with the

discovery of new targets.

Representation of protein sequence
In using SVMs for predicting druggable proteins, each protein is

represented by a multidimensional feature vector composed of

descriptors that encode constitutional and physicochemical prop-

erties of that protein [29]. These descriptors define structural,

functional and interactive properties of proteins. Web servers such

as PROFEAT [34] and ProtParam [35] have been developed by

different research groups for facilitating the computation of these

descriptors. The descriptors used for predicting druggable proteins

[21] include a constitutional descriptor, amino acid composition

and several physicochemical descriptors that describe the compo-

sition, transition and distribution of hydrophobicity (h), polarity

(p), polarizability (z), charge (c), secondary structures (s), solvent

accessibility (a), surface tension (t) and normalized van der Waals

volumes (v) [36].

Amino acid composition is the fraction of each type of amino

acid in a sequence fk = Nk/N, where k = 1,2,3, . . ., 20 is the index of

amino acids, Nk is the number of a particular type of amino acid

and N is sequence length. For computing descriptors of each of the

physicochemical properties of a protein, amino acids are divided

into three types. For instance, for hydrophobicity descriptors,

amino acids can be divided into hydrophobic (CVLIMFW), neutral

(GASTPHY) and polar (RKEDQN) types. Three descriptors, compo-

sition (Cq), transition (Tq) and distribution (Dq), are introduced to

describe global composition of each of the physicochemical prop-

erties, where q = h, p, z, c, s, a, t and v.

Cq ¼
Nq1

N
;
Nq2

N
;
Nq3

N

� �
[Equation 1]

Equation 1 represents the percentage of each type of residue in a

sequence, where Nqi is the number of type i residues, and Equation
2 characterizes the percentage frequency of transition between

different types of residues.

Tq ¼
Tq12

N � 1
;

Tq13

N � 1
;

Tq

N � 1

� �
[Equation 2]

Tqij is the number of type i to j transitions and N-1 is the total

number of transitions.

Tqi j ¼ Tqi j and Dq ¼ Dq1
;Dq ;Dq

� �
[Equation 3]
with Dqi ¼
Pqi0

N
;
Pqi25

N
;
Pqi50

N
;
Pqi75

N
;
Pqi100

N

� �

These transitions are undirected, such that Equation 3 mea-

sures the chain length, within which the first 25%, 50%, 75%

and 100% of the amino acids of a particular group are located,

respectively, and where Pqik is the length, within which k% of

type i residues are located. Overall, each physicochemical prop-

erty is represented by 21 elements: three for Cq, three for Tq and

15 for Dq. The complete feature vector consists of 188 elements,

including 20 for amino acid composition and 8 � 21 for phy-

sicochemical properties. All generated vectors have equal

length.

SVM algorithms and software
SVMs represent a supervised ML method based on the structural

risk minimization principle for minimizing both training and

generalization error [30]. As illustrated in Figure 2, when used

for classification, SVMs separate positive (druggable) and negative

(non-druggable) training samples in a multidimensional space by

constructing a hyperplane optimally positioned between the posi-

tive and negative samples. A testing sample is then projected onto

this multidimensional space to determine its class affiliation based

on its relative position to the hyperplane (druggable if on the

druggable side of the hyperplane, non-druggable if on the non-

druggable side of the hyperplane).

There are linear and non-linear SVMs: linear SVMs are

applicable for samples separable by linear mapping of their

feature vectors; non-linear SVMs are used for samples insepar-

able by linear mapping of their feature vectors, which is more

useful for classifying proteins of diverse sequences and has

been used primarily for predicting druggable [21] and

other classes [29] of proteins. In non-linear SVMs, each

feature vector xi is projected into a higher dimensional feature

space by using a kernel function such as a Gaussian function

(Equation 4)

K xi; x j

� �
¼ e�jjx j�xijj2=2s2

[Equation 4]

where a hyperplane is constructed by finding a vector w and a

parameter b minimize jjWjj2. The hyperplane equation is shown in

Equation 5

w�xi þ b ¼ 0 [Equation 5]

and the equations for druggable (Equation 6) or non-druggable

(Equation 7) are:

w�xi þ b� þ 1; for yi ¼ þ1 [Equation 6]

w�xi þ b � �1; for yi ¼ �1 [Equation 7]
www.drugdiscoverytoday.com 307



REVIEWS Drug Discovery Today � Volume 12, Numbers 7/8 �April 2007

B
L
E
1

rf
o
rm

a
n
ce

o
f
M
L
m
e
th
o
d
s
S
V
M
,
P
N
N
,
k
N
N

a
n
d
d
e
ci
si
o
n
tr
e
e
,
a
n
d
se
q
u
e
n
ce

a
li
g
n
m
e
n
t
m
e
th
o
d
B
L
A
S
T
fo
r
p
re
d
ic
ti
n
g
d
ru
g
g
a
b
le

p
ro
te
in
s,

a
s
te
st
e
d
b
y
a
fi
v
e
fo
ld

cr
o
ss
-

li
d
a
ti
o
n
st
u
d
y
o
f
1
4
8
4
d
ru
g
g
a
b
le
a
n
d
6
6
3
7
n
o
n
-d
ru
g
g
a
b
le
p
ro
te
in
s.
T
h
e
n
u
m
b
e
r
o
f
d
ru
g
g
a
b
le
a
n
d
n
o
n
-d
ru
g
g
a
b
le
p
ro
te
in
s
in

e
a
ch

tr
a
in
in
g
a
n
d
te
st
in
g
se
t
is
d
e
sc
ri
b
e
d
in

th
e

x
t

e
th
o
d

A
cc
u
ra
cy

fo
r
d
ru
g
g
a
b
le

p
ro
te
in
s
P
+
(%

)
A
cc
u
ra
cy

fo
r
n
o
n
-d
ru
g
g
a
b
le

p
ro
te
in
s
P
–
(%

)
A
v
e
ra
g
e
a
cc
u
ra
cy

P
(%

)

Fo
ld
-1

Fo
ld
-2

Fo
ld
-3

Fo
ld
-4

Fo
ld
-5

A
v
e
ra
g
e

Fo
ld
-1

Fo
ld
-2

Fo
ld
-3

Fo
ld
-4

Fo
ld
-5

A
v
e
ra
g
e

Fo
ld
-1

Fo
ld
-2

Fo
ld
-3

Fo
ld
-4

Fo
ld
-5

A
v
e
ra
g
e

M
6
9
.2

7
1
.0

6
4
.1

6
6
.6

6
7
.1

6
7
.6

8
5
.0

8
5
.1

8
5
.8

8
5
.1

8
5
.3

8
5
.3

8
3
.5

8
3
.8

8
3
.7

8
3
.2

8
3
.7

8
3
.6

N
6
4
.5

6
4
.5

5
8
.5

6
1
.1

6
3
.5

6
2
.4

8
1
.4

8
1
.6

8
1
.5

8
3
.5

8
1
.3

8
1
.9

7
9
.8

8
0
.0

7
9
.3

8
1
.3

7
9
.7

8
0
.0

N
6
7
.6

6
9
.3

6
3
.5

6
4
.6

6
8
.6

6
6
.7

7
5
.9

7
6
.2

7
6
.6

7
8
.4

7
7
.2

7
6
.9

7
5
.1

7
5
.6

7
5
.4

7
7
.0

7
6
.4

7
5
.9

ci
si
o
n
tr
ee

5
7
.5

5
6
.3

5
2
.5

5
3
.5

5
5
.2

5
5
.0

8
1
.8

8
2
.1

8
2
.2

8
2
.1

8
3
.3

8
2
.3

7
9
.4

7
9
.7

7
9
.3

7
9
.2

8
0
.8

7
9
.7

A
ST

6
1
.9

6
3
.5

6
0
.8

6
5
.0

6
1
.0

6
2
.4

9
9
.9

1
0
0
.0

9
9
.9

9
9
.9

9
9
.8

9
9
.9

9
6
.2

9
6
.6

9
6
.1

9
6
.4

9
6
.3

9
6
.3

R
eview

s
�IN

F
O
R
M
A
T
IC
S

TA P
e

v
a

te M SV P
N

kN D
e

B
L

308 www.drugdiscoverytoday.com
Based on the derived w and b, a new protein, x, can be classified

as druggable or non-druggable when the sign of [(w�x) + b] is

positive or negative. In the case studies described here, Gaussian

kernel SVMs implemented by our own software [20] were used and

were optimized by scanning the parameter s. Free SVM software

tools such as SVMlight, LIBSVM and mySVM can also be used.

Websites for these and other free ML software tools are provided in

the supplementary material. Because of the sequence diversity of

druggable proteins, convergence parameters of these software

tools might need to be adjusted to achieve a better prediction

performance.

Performance measurement
The performance of SVMs has frequently been measured by the

fivefold cross-validation method [29]. In this method, proteins in

both the druggable and non-druggable classes are randomly

divided into five subsets of approximately equal size. Four subsets

are selected as the training set for developing SVM model, and the

fifth as the testing set for evaluating it. This process is repeated five

times so that every subset is used as a testing set once. The

performance of SVM can be measured by positive accuracy (drug-

gable; Equation 8), negative accuracy (non-druggable; Equation 9)

and and overall accuracy (Equation 10).

Pþ ¼ TP=ðTP þ FNÞ [Equation 8]
P� ¼ TN=ðTN þ FPÞ [Equation 9]
P ¼ ðTP þ TNÞ=N [Equation 10]

Here, TP, TN, FP, FN and N are the true positive, true negative, false

positive, false negative and the total number of proteins, respec-

tively [29].

Case studies for testing SVM prediction of druggable
proteins
Several case studies were conducted for testing the ability of SVMs

to predict druggable proteins. These include statistical estimation

of prediction performance, comparison with the reported predic-

tion results of other methods, and practical usefulness for genome

searching of druggable proteins.

Statistical tests
Table 1 gives the performance of SVM prediction of druggable

proteins based on a fivefold cross-validation study of 1484 drug-

gable and 6637 non-druggable proteins. The five training sets

consist of 1187/5310, 1187/5311, 1187/5311, 1187/5311 and

1188/5312 druggable/non-druggable proteins; and the corre-

sponding testing sets contain 297/1328, 297/1327, 297/1327,

297/1327 and 296/1326 druggable/non-druggable proteins,

respectively. These testing sets include 82, 72, 71, 74 and 64 ‘novel’

druggable proteins, with none of their Pfam family members in the

corresponding training set. The computed prediction accuracies

for druggable and non-druggable proteins are in the range 64.1–

71.0% and 85.0–85.8%, respectively. In particular, 44%, 50%,

43%, 32% and 39% of the ‘novel’ druggable proteins are correctly

predicted, suggesting that SVMs are capable of predicting

druggability beyond protein family membership. The prediction
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TABLE 2

Known, successfully commercialized research and proposed research targets in M. tuberculosis genome

Gene name Swissprot protein

accession number

Target status [40] SVM prediction result Prediction result from

DDA analysis [40]

rpoB P0A680 Successfully commercialized Druggable Non-druggable

embC P72059 Successfully commercialized Druggable Non-druggable

embA P0A560 Successful target Druggable Non-druggable

embB P72030 Successfully commercialized Druggable Non-druggable

rpsL P41196 Successful target Druggable Non-druggable

inhA P0A5Y6 Successful target Druggable Druggable

gyrA Q07702 Successful target Druggable Druggable

gyrB P41514 Successful target Druggable Druggable

alr P0A4X2 Successful target Druggable Druggable

ddlA P95114 Successfully commercialized Druggable Non-druggable

dfrA P0A546 Research target Druggable Druggable

folP1 P0A578 Research target Druggable Druggable

fbpC P0A4V4 Research target Druggable Non-druggable

fbpB P31952 Research target Druggable Non-druggable

fbpD P0A4V6 Research target Non-druggable Druggable

fbpA P0A4V2 Research target Druggable Non-druggable

cyp51 P0A512 Research target Non-druggable Druggable

cyp121 P0A514 Research target Druggable Druggable

def P96275 Research target Druggable Non-druggable

atpE P63691 Research target Non-druggable Non-druggable

icl P0A5H3 Proposed research target Druggable Non-druggable

pcaA Q7D9R5 Proposed research target Non-druggable Non-druggable

relA P66014 Proposed research target Non-druggable Non-druggable

devR P95193 Proposed research target Non-druggable Non-druggable

devS P95194 Proposed research target Non-druggable Non-druggable

lysA P0A5M4 Proposed research target Non-druggable Druggable

panD P65660 Proposed research target Non-druggable Druggable

panC P0A5R0 Proposed research target Non-druggable Non-druggable

glnE P69942 Proposed research target Non-druggable Non-druggable

glnA1 P0A590 Proposed research target Druggable Non-druggable

aroK P0A4Z2 Proposed research target Non-druggable Non-druggable

glf O06934 Proposed research target Non-druggable Non-druggable

IdeR P0A672 Proposed research target Non-druggable Non-druggable

ompA P65593 Proposed research target Non-druggable Non-druggable

mshC P67017 Proposed research target Non-druggable Non-druggable
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accuracy for non-druggable proteins is better than that of drug-

gable proteins. This probably results from the more diverse set of

non-druggable proteins compared with that of druggable proteins,

enabling SVMs to better recognize non-druggable proteins.

A total of 188 feature elements were used in deriving SVM

models for predicting druggable proteins. In some classes, not all

feature elements are essential, and their removal improves pre-

diction performance [37]. Although higher numbers of descrip-

tors are needed for representing the highly diverse druggable

proteins, it is of interest to examine the extent to which feature

reduction improves prediction performance. A rigorous feature

selection method, recursive feature elimination (RFE) [38], was
applied to the best-performing sampling set (fold-2) in Table 1.

Implementation of RFE [38] is described in the supplementary

material, from which 148 elements were selected and SVM

performance was improved by 1%. These results confirm the

need for a higher number of descriptors for predicting druggable

proteins. The level of correlation in the 188-element descriptor

set is relatively small, involving 21% of the elements. A reduc-

tion in these correlated elements has little effect on prediction

performance, probably because they contribute an insubstantial

level of noise. The full 188-element descriptor set is preferred

because of its higher potential in covering novel druggable

proteins.
www.drugdiscoverytoday.com 309
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TABLE 3

Statistics of predicted druggable proteins in different genomes by using an SVM prediction model

Genome Number of predicted druggable proteins Estimated druggable proteins or

targets from other studies [Ref.]
SVM model trained by both

successfully commercialized and

research targets

SVM model trained by successfully

commercialized targets

SVM model trained

by research targets

H. sapiens 3379 662 2845 3051 [13]

S. cerevisiae 400 82 378 508 [13]

C. elegans 2687 398 2144 2267 [13]

D. melanogaster 1500 287 1238 1714 [13]

C. albicans 716 100 600 567 [42]

M. tuberculosis 845 105 732 333 [41], 354 [40]

H. influenzae 400 66 348 >40 [43], <478 [54]

H. pylori 277 43 237 594 [44]
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Comparison with other methods
The performance of SVMs was compared with that of three other

popular ML methods, probabilistic neural network (PNN), C4.5

decision tree and k nearest neighbor (kNN)], and with the

sequence similarity method BLAST [39], based on the same fivefold

cross-validation study. These methods are described in the sup-

plementary material. The BLAST search was conducted between

the drug-binding domains of each testing and training protein, to

identify the training protein with the highest similarity score

above a predetermined cut-off point. A testing protein is predicted

as druggable or non-druggable when the identified training pro-

tein is druggable or non-druggable; and it is designated as non-

druggable when no similar protein is identified. As shown in

Table 1, the prediction accuracies for druggable and non-druggable

proteins are in the range 52.5–69.3% and 75.9–83.3% for the ML

methods, and 60.8–65.0% and 99.8–100% for the BLAST method,

respectively. SVM outperforms all of these methods but shows a

lower non-druggable prediction accuracy than BLAST, partly

owing to the tentative designation of non-similar proteins as

non-druggable. These proteins constitute 29.0–31.0% druggable

and 81.6–85.5% non-druggable proteins in the testing sets, which

favors non-druggable prediction performance by BLAST.

The performance of SVMs was further compared with that of the

druggable domain affiliation (DDA) method. The DDA method has

been tested on 35 published, successfully commercialized research

and proposed research targets in the Mycobacterium tuberculosis

genome [40]. DDA predicts druggable proteins by evaluating

whether a member of the InterPro domain family of the studied

protein is bound by a drug-like compound [40]. As shown in

Table 2, 54% of the overall total of 35 targets and 64% of the

11 proposed research targets were predicted as druggable by SVMs,

which is substantially better than the values of 31% and 45%,

respectively, derived from DDA [40].

Evaluation of SVM-predicted druggable proteins in
human, microbial and viral genomes
The numbers of SVM-predicted druggable proteins in the complete

genomes of Homo sapiens, Saccharomyces cerevisiae, Caenorhabditis

elegans, Drosophila melanogaster, Candida albicans, Mycobacterium

tuberculosis, Haemophilus influenzae and Helicobacter pylori were

compared with those predicted by other studies [13,41–44]. As
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shown in Table 3, the numbers of druggable proteins predicted by

SVMs are highly consistent with the estimated numbers of targets

or druggable proteins derived from other studies. Moreover, SVM-

predicted druggable proteins in the genome of HIV-1, hepatitis C

and influenza A H5N1 were compared with the known targets in

these genomes. These viral genomes were selected because it is

probable that all of their potential targets have been identified,

owing to intensive research efforts directed at them [45]. The

results are given in Table 4, Table 5 and Table 6, respectively.

None of the encoded protein sequences in these genomes are in

the SVM training and testing sets. There are four successfully

commercialized and seven research targets in the HIV-1 genome,

three research targets (one for the vaccine) in the hepatitis C

genome and two successfully commercialized and two research

targets in the influenza A H5N1 genome, respectively. SVMs

correctly predicted all but one HIV research target, which was

nucleocapsid.

To evaluate further whether SVMs predict druggable proteins

rather than membership of certain Pfam families, Pfam family

distribution of the predicted druggable proteins in the H. sapiens

and S. cerevisiae genomes were analyzed. For the SVM model

trained by using successfully commercialized and research targets,

16.4% and 31.8%, respectively, of the predicted druggable proteins

in these genomes belong to Pfam families that contain no known

successfully commercialized or research target. For the SVM model

trained by using successfully commercialized targets, 34.1% and

53.7%, respectively, of the predicted druggable proteins in these

genomes belong to Pfam families that contain no known success-

fully commercialized target, and 15.4% and 23.2%, respectively, of

the predicted targets belong to Pfam families that contain no

known successfully commercialized or research target. These

results suggest that SVMs predict druggable proteins rather than

membership to certain Pfam families.

Underlying difficulties in using SVMs for predicting
druggable proteins
The performance of SVMs depends on the diversity of druggable

and non-druggable proteins in a training dataset and the appro-

priate representation of the features of these proteins. The cur-

rently available datasets are not expected to be fully representative

of all of the druggable and non-druggable proteins. Various
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TABLE 4

Comparison of the known HIV-1 protein targets and the SVM-predicted druggable proteins in the NCBIa HIV-1 genome entry
NC_001802

Protein NCBI protein accession number Target status SVM prediction status

Gag-Pol NP_057849.4 Non-target Non-druggable

Gag-Pol transframe peptide NP_787043.1 Non-target Non-druggable

Pol NP_789740.1 Non-target Non-druggable

Protease NP_705926.1 Successfully commercialized target Druggable

Reverse transcriptase NP_705927.1 Successfully commercialized target Druggable

Reverse transcriptase p51 subunit NP_789739.1 Research target Druggable

Integrase NP_705928.1 Research target Druggable

Gag NP_057850.1 Non-target Non-druggable

Matrix NP_579876.2 Non-target Non-druggable

Capsid NP_579880.1 Non-target Non-druggable

p2 NP_579882.1 Non-target Non-druggable

Nucleocapsid NP_579881.1 Research target Non-druggable

p1 NP_787042.1 Non-target Non-druggable

p6 NP_579883.1 Non-target Non-druggable

Vif NP_057851.1 Research target Druggable

Vpr NP_057852.2 Non-target Non-druggable

Tat NP_057853.1 Successfully commercialized target Druggable

Rev NP_057854.1 Non-target Non-druggable

Vpu NP_057855.1 Non-target Non-druggable

Envelope surface glycoprotein gp160 NP_057856.1 Research target Druggable

Envelope signal peptide NP_579893.2 Non-target Non-druggable

Envelope surface glycoprotein gp120 NP_579894.2 Research target Druggable

Envelope transmembrane glycoprotein gp41 NP_579895.1 Successfully commercialized target Druggable

Nef NP_057857.2 Research target Druggable

a NCBI, National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/).
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degrees of inadequate sampling are likely to affect the prediction

accuracy of the developed SVM models. Discovery of novel targets

and a deeper understanding of the characteristics of non-drug-

gable proteins will enable further improvement of the prediction

performance of SVMs.
TABLE 5

Comparison of the known hepatitis C protein targets and the SVM-pr
entry NC_004102

Protein NCBI protein accession num

Core protein NP_751919.1

E1 protein NP_751920.1

E2 protein NP_751921.1

p7 protein NP_751922.1

NS2 protein NP_751923.1

NS3 protease/helicase NP_803144.1

NS4A protein NP_751925.1

NS4B protein NP_751926.1

NS5A protein NP_751927.1

NS5B RNA-dependent RNA polymerase NP_751928.1

Protein F NP_671491.1

a NCBI, National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov).
In the available datasets, statistically, the number of drug-

gable proteins is significantly smaller than that of non-

druggable proteins. SVMs tend to push the hyperplane towards

the side with a smaller number of samples [46], which leads to a

reduced prediction accuracy for druggable proteins. However, it
edicted druggable proteins in the NCBIa hepatitis C virus genome

ber Target status SVM prediction status

Non-target Non-druggable

Non-target Non-druggable

Vaccine research target Druggable

Non-target Non-druggable

Non-target Non-druggable

Research target Druggable

Non-target Non-druggable

Non-target Non-druggable

Non-target Non-druggable

Research target Druggable

Non-target Non-druggable
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TABLE 6

Comparison of the known H5N1 influenza A virus protein targets and the SVM-predicted druggable proteins in the eight NCBIa

influenza A virus [A/Goose/Guangdong/1/96 (H5N1)] genome segment entries NC_007357, NC_007358, NC_007359, NC_007360,
NC_007361, NC_007362, NC_007363 and NC_007364

Protein NCBI protein accession number Target status SVM prediction status

Non-structural protein 2 YP_308672 Non-target Non-druggable

Polymerase YP_308664 Research target Druggable

Polymerase YP_308665 Non-target Non-druggable

PB1-F2 protein YP_473348 Non-target Non-druggable

Polymerase YP_308666 Non-target Non-druggable

Nucleocapsid protein YP_308667 Non-target Non-druggable

Neuraminidase YP_308668 Successful target Druggable

Hemagglutinin YP_308669 Research target Druggable

HA1 YP_529486 Non-target Non-druggable

HA2 YP_529487 Non-target Non-druggable

Matrix protein 2 YP_308670 Successful target Druggable

Matrix protein 1 YP_308671 Non-target Non-druggable

Non-structural protein 1 YP_308673 Non-target Non-druggable

a NCBI, National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov).
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would be inappropriate simply to reduce the number of non-

druggable proteins to match artificially that of druggable pro-

teins, because this compromises the diversity needed for fully

representing all types of non-druggable proteins. Instead, meth-

ods for readjusting the biased shift of hyperplanes are being

explored [47].

A substantially higher number of descriptors are available

than those used for predicting druggable proteins [29]. Selection

of the most relevant subset of descriptors from the full set of

descriptors is useful for improving the performance of SVMs

[38]. Therefore, there is a need to explore different combina-

tions of descriptors and to select an optimal set of descriptors by

using feature selection methods [38]. Effort has been directed at

improving the efficiency and speed of feature selection methods

[48], which will enable a more extensive application of feature

selection methods. Moreover, indiscriminate use of available

descriptors, particularly overlapping and redundant ones, might

introduce noise as well as extending the coverage of protein

features. Investigation of cases of incorrectly predicted proteins

has also suggested that the available descriptors might not

always be sufficient for fully representing the properties of

proteins [29]; this has prompted studies into developing new

descriptors [25].
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Perspectives
Statistical and proof-of-concept tests consistently show that SVMs

are useful for facilitating the identification of druggable proteins.

Rapid progress in genomics [49], structural genomics [50] and

proteomics [51] is revolutionizing the process of target identifica-

tion and drug development. In addition to the incorporation of

newly discovered knowledge and information into SVMs and

other in-silico methods, target identification can be further

improved by the collective analysis of multiple sequence, struc-

ture, systems and physiological profiles [5,6,18,19,21], particularly

sequence and functional similarity to known targets [13,14], drug-

binding domain family affiliation [7,13], geometric and energetic

features of protein structures [15,16], ligand–protein inverse dock-

ing [52] and systems-related properties [18,21]. These methods

might potentially be developed into useful tools for facilitating the

identification of novel targets. These developments, combined

with advances in the molecular understanding of disease processes

[53], have opened opportunities for discovering new and novel

targets.

Supplementary data
Supplementary data associated with this article can be found at

doi:10.1016/j.drudis.2007.02.015.
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